Mon. Not. R. astr. Soc. (1975) 173, 729-787.

BINARY EVOLUTION IN STELLAR DYNAMICS

 binaries in N-body systems, and this paper aims to provide a comprehensive
theoretical picture of their behaviour. It begins by testing possible 'equilibrium ' distributions for binaries against the results of computational experiments, but is mainly concerned with the dynamics of encounters between

Using an impulsive approximation, it is shown that pairs with low binding energies, i.e. much less than the average kinetic energy of single cluster members, tend to be disrupted by encounters. The theory for energetic pairs including distant encounters in which changes in eccentricity much exceed changes in energy, and exchange events in which an incoming star may

 tend to become more energetic, at an average rate which is approximately independent of their binding energy.
 Galaxy as collisionless (Jeans 1929; Chandrasekhar 1942) and to describe the evolution of their distribution in terms of a Vlasov equation. However, in open star
 have a pronounced or even decisive influence on the dynamical evolution. On the assumption that encounters between three or more bodies are of negligible importance, an approximation, which, in particular, leads to neglect of interactions

 evolution of clusters
 popular method of studying small N-body systems, namely by direct numerical
integration of the equations of motion. Some of the difficulties formerly attaching

 play an important part in the ejection of particles, and so in the disruption of the system. That the role of binaries is not restricted to such phenomena is revealed by the observation (van Albada; Aarseth; op. cit.) that the total binding energy of binaries generally increases, becoming a large fraction of the binding energy of the
cluster in a time much less than that required for disintegration of the system.
 of Larson, Hénon and Spitzer \& Hart (op. cit.) lead to results which suggest strongly
 of two-body encounters is the enhancement of spatial inhomogeneity, the system consisting after a time of a tenuous halo of stars, with predominantly radial velocities, surrounding a central core, where the velocity distribution is almost isotropic and the central density steadily increases. The mass of the core decreases with time and yet, macroscopically, we witness an inward flux of binding energy,
 the core. It seems difficult to avoid the conclusion that these processes can only end with the appearance of an energetic binary (Aarseth 1972a).
In the face of so much evidence for important three-body activity there is a

 this can be done, however, it is necessary to study in detail the dynamics of indi-

 tion of the evolution of a system by collisional relaxation. It is the principal aim of the present paper to study three-body encounters from this viewpoint, and to deduce the rate at which encounters with a binary cause changes in its properties, especially its binding energy, by specified amounts. The actual application of these basic data to the question posed above will be found elsewhere (Heggie 1975), together with a discussion of several other phenomena in the evolution of clusters

 they have formed dynamically in clusters?
 bulk of our investigation, we begin in the following section by enquiring how much
 as possible important equilibrium properties of the distribution of binary stars in highlight the limitations of the equilibrium approach, and so in Section 3 we construct a framework suitable for a description of the evolution of binaries. The
 in Section 4, and Section 5 contains the considerably more difficult theory for
It may be helpful to the reader to note that many of the results to be presented in this paper, but unencumbered with mathematical details in order that their significance may be clearer, are briefly discussed elsewhere (Heggie 1974b).

No. 3, $1975 \quad$ Binary evolution in stellar dynamics $73 \mathbf{I}$
-

$732 \quad$ D. C. Heggie
with R_{h}, from (2.1) we have typically

$$
\beta x \gtrsim 7.5 N^{-1},
$$

if β and the masses take roughly average values; while x cannot exceed the binding

 Кроq-омұ рие sұәәШә әл!
 interactions with a third body in which both components of a binary participate strongly. This we shall confirm in Section 4.3 when we discuss encounters with soft binaries.
Arguing by analogy with the statistical theory of simple reactions in chemistry or atomic physics, several authors (Jeans 1929, p. 302; Ambartsumian 1937; Gurevich \& Levin 1950; Allen 1968; Lynden-Bell 1969) have proposed the alternative pair distribution function

$$
f(\mathrm{I}, 2)=f(\mathrm{I}) f(2) \exp \left(\frac{\beta m_{1} m_{2}}{r}\right)
$$

 tion is lacking, and certain difficulties associated with (2.9) will appear shortly,
 typically negligible in comparison with the velocity, $|\dot{\mathbf{Q}}|$, of their centre mass, and so we may write $\mathbf{v}_{i} \simeq \dot{\mathbf{Q}}$ in $f\left(\mathbf{q}_{i}, \mathbf{v}_{i} ; m_{i}\right)$. Likewise, if

[^0] әұпұ!

(2.11)
 (2.9) takes the same form, with $h \equiv \exp (\beta x)$, whenever (2.10) holds.

$f\left(\mathbf{Q}, \dot{\mathbf{Q}}, x, e, \omega, \Omega, i, M_{0}\right)=f\left(\mathbf{Q}, \dot{\mathbf{Q}} ; m_{1}\right) f\left(\mathbf{Q}, \dot{\mathbf{Q}} ; m_{2}\right) h(x ; \beta)$

 the case when $h \equiv \exp (\beta x)$ and the single-particle function is Maxwellian in the velocities, is found to be
where $n_{i}(i=\mathrm{I}, 2)$ is the number-density of stars with mass m_{i}.
D. C. Heggie Vol. 173
The case of a rotating cluster was also treated by Gurevich \& Levin (1950),

 angular momentum.
When we adopt a Maxwellian velocity distribution for single particles, we note from (2.12) that $\dot{\mathbf{Q}}$ obeys such a distribution. Furthermore, if the single-particle distribution implies a spatial concentration towards the centre of the cluster, then the mass-centres of binaries are still more strongly centrally concentrated, as we observe in (2.13), for example.
When equal masses are being considered, an extra factor of one-half is required in equations for the pair distribution, otherwise each pair is counted twice. Therefore for Plummer's distribution (cf. Lynden-Bell \& Sanitt 1969) the marginal distribution of x and e is
(2.14)
 as N increases, the number of pairs at each energy decreases, but since the inequality
(2.10) becomes more generous as N increases, their total number in the range in which (2.7) and (2.10) are valid will increase. Incidentally, the form of equation (2.14) holds for any homologous series of collisionless equilibrium models.

From (2.12) we observe that the eccentricity is distributed independently of

$$
f(e)=2 e
$$

(2.I5)
(2.16)

$$
(2.17)
$$

for (2.II). The apparent divergence in each case for $x \downarrow 0$, which is caused by the great size of the volume of phase space available to a loosely-bound binary, is

 the exponential factor, and so the validity of the distribution (2.9) is by no means unrestricted.

2.3 Comparison with experiment

 our subsequent course. We begin by discussing the spatial distribution of binaries, and then in Figs $\mathrm{I}-3$ the distribution of their eccentricities. This section then deals
with the binding energies of wide pairs and finally, with the aid of Figs 5 and 6
 the whole cluster.

Remarks on the numerical techniques will be given in the Appendix, and here

$\stackrel{n}{n}$

numerical integration of the equations of motion for small N-body systems. We
shall quote results for bound systems, at most very slowly rotating, where N lies
between 25 and 250 , and all masses are equal except where otherwise stated.
Those binaries present and satisfying the condition (2.18)

 with equilibrium in the virial theorem.
It was seen in the previous section that at least very soft binaries are expected to
 found to be true of the binaries sampled in the numerical experiments discussed here. We take the 'centre' of the cluster to be the 'potential centre', which is defined to be the location of that star for which the potential due to all other stars,
 the star with largest potential often would have been one component of a close

In the discussion of the distribution of eccentricities, the pairs will be split up into three ranges by energy. When
$3 N^{-2 / 3}\left\langle\beta^{-1}\right\rangle \leqslant x \ll 3 N^{-1 / 2}\left\langle\beta^{-1}\right\rangle$
we expect (2.8), and so (2.15) and (2.16), to hold. By (2.16) the distribution of binding energies is decreasing so rapidly in this range, if $N \gg \mathrm{I}$, that we may expect (2.15) still to hold approximately when we relax (2.19) by writing $3 N^{-2 / 3}\left\langle\beta^{-1}\right\rangle \leqslant x \leqslant 3 N^{-1 / 2}\left\langle\beta^{-1}\right\rangle$

 next division is taken at $x=\left\langle\beta^{-1}\right\rangle$; the intermediate range accordingly being
$3 N^{-1 / 2}\left\langle\beta^{-1}\right\rangle \leqslant x \leqslant\left\langle\beta^{-1}\right\rangle$, and the high-energy range embracing $x \geqslant\left\langle\beta^{-1\rangle}\right.$.

 each case. As mentioned, agreement was to be expected for the low energy range,
 Van Albada (1968a), analysing numerical integrations of about 30 systems, each

 classification. Aarseth \& Hills (1972), considering a system with initial conditions
 harmony with (2.15) for a total sample consisting of 19 hard binaries.

No. 3, 1975

should approximately satisfy
 $\stackrel{\infty}{N}$
$(o z \cdot z)$ for x satisfying (2.7) and (2.10). In Fig. 4 the experimental values of $\log F$ are plotted against $\log \left(x /\left\langle\beta^{-1}\right\rangle\right)$, the results from no less than 18 consecutive samples being accumulated. It is to be noted that successive samples were here retained even if there were binaries in common, but since we are now concerned mostly with very soft pairs which should have small mean lifetimes, it is not thought that correlations between successive samples are of any importance. The dashed line gives the result expected for 18 independent examples of a Plummer model, using (2.14), and a plot of any distribution of the form (2.20) would be parallel to this. It can be
 over at least a decade of energies. This is true even when (2.7) is not satisfied,
which is an experimental indication that the conditions imposed in Section 2.2

 represented empirically over a considerable range by the expression

$f(x) \propto \exp \left(\frac{x}{\mu E_{0}}\right)$,

where μ is the reduced mass and E_{0} is a constant. Although this form is different from (2.16), the logarithmic derivatives of the two functions are equal near the middle of the range, delimited by (2.7) and (2.10), over which (2.16) is valid.
 :s 8 :

 $t \simeq 6$, does so when the vigorous phase of binary evolution is under way, but the connection emerges clearly from Fig. 6.

Violent relaxation is the process responsible for the early spread of binding

 and the interval of time between successive visits to the centre of the cluster, which

shared amongst the steadily decreasing number of stars in the core. One may surmise (Aarseth 1972a; Hénon 1972a) that this process ends when the core has degenerated into a single binary with a binding energy which is a large fraction of that of the whole system.
These remarks successfully account in qualitative terms for the evolution of the system until about $t \sim 10$. With the arrival of a very energetic pair, collisional relaxation is not over, however, and over the next 12 or 15 time units one sees that the halo is itself behaving in much the same way as the whole cluster did previously. By $t \simeq 25$ most of the stars have very low energies indeed, the remaining binding energy having been donated in part to a new energetic pair and in part to the old binary.
The escape of the hardest binary at time $t \simeq 25$ is not typical, but in the features on which we have laid emphasis in this discussion, the case we have considered
 firmation of the generality of these phenomena will be found in the discussions of Aarseth (1972a, 1974), whose cases are all larger, with $N=250$ or 500 , than those considered here. Aarseth noted also that the evolution of hard pairs is substantially more rapid when not all stars have the same mass, and he stresses the fact that the
 three most massive members of the system. The link between the evolution of binaries and that of the core is strengthened when this fact is compared with the

No. 3, 1975 Binary evolution in stellar dynamics 741

Vol. 173
at least not immediately, and the outcome of such a 'resonance' encounter is decided by further interactions. The precise boundaries between resonance,

 (3.1) is strictly inappropriate if the original binary is destroyed, but the concepts themselves are quite clearly distinguished. More information on this point will be found in Section 5.2.
The classification is not universal. For example, Yabushita (1971) refers under the name of 'capture' to events which are classified in our scheme as exchanges, while Harrington (1970) uses the same word 'capture' for encounters resulting in a resonant system. The classification is immediately extensible to encounters where not all masses are equal. which various types of encounter occur. Granted certain assumptions on the distributions of single stars and of binaries, these rate functions are then expressed in terms of a ' cross-section', σ, defined in (3.11).
Let $f(x, \mathbf{R}, t) d x$ be the number-density, at time
Let $f(x, \mathbf{R}, t) d x$ be the number-density, at time t and at the point with position
vector \mathbf{R}, of binaries whose binding energies are in the small range $d x$ about x. Then f may change with time as a result of two processes: by the spatial convection of binaries through the cluster, because of the motion of their centres of mass; and by encounters with other stars in which the binding energy, x, of a binary is altered.
 number of binaries only if a binary escapes (cf. Fig. 5). With this uncommon exception its sole effect is the spatial redistribution of binaries. For example, the formation rate of new pairs is proportional to $n^{3}(\mathbf{R})$, where $n(\mathbf{R})$, the local number-
 therefore new binaries are initially much more strongly concentrated towards its centre than the single stars are. However, as a result of the velocity dispersion of their centres of mass, if their lifetimes are sufficiently long they soon convect into a spatial distribution broadly resembling that of the single stars, after a time of the order of one mean crossing time.
The rate at which $f(x, \mathbf{R}, t)$ ever

 tion of new binaries with energies in the range $(x, x+d x)$, per unit volume; let $n(\mathbf{R}) f(x, \mathbf{R}, t) Q(x,-\infty) d x$ likewise be the rate of destruction of binaries with energies in the range $(x, x+d x)$, per unit volume; and let

$n(\mathbf{R}) f(x, \mathbf{R}, t) Q(x, y) d x d y$

 undergo encounters resulting in a change in the energy lying in the range $(y, y+d y)$. It should be noted that the three rate functions $Q(x), Q(x,-\infty), Q(x, y)$ thus defined have different physical dimensions. Note also that $Q(x,-\infty)$ is related to $Q(x,-\infty)=\int_{-\infty}^{-x} Q(x, y) d y$.
$\varepsilon \nleftarrow L$

 of masses are present is trivial.
In order to arrive at expressions for the rate functions Q, let us consider an encounter between a star and a binary initially separated by a great distance, when the velocities and coordinates of the binary components are $\mathbf{v}_{1}, \mathbf{q}_{1}$ and $\mathbf{v}_{2}, \mathbf{q}_{2}$,

 C; let Π be the plane through C and normal to \mathbf{V}; and let ξ be the position vector
 would intersect Π. Then the rate of occurrence of encounters leading to a change in the binding energy of the pair from x to $x+y$ is obtainable from

$Q(x, y) f(x, \mathbf{R}, t) n(\mathbf{R}, t)=\int d^{3} \mathbf{v}_{1} d^{3} \mathbf{v}_{2} d^{3} \mathbf{v}_{3} d^{2} \xi d^{3} \mathbf{q}_{1} d^{3} \mathbf{q}_{2} f\left(\mathbf{q}_{1}, \mathbf{v}_{1}, \mathbf{q}_{2}, \mathbf{v}_{2}, t^{\prime}\right)$

 $x f\left(\mathbf{q}_{3}, \mathbf{v}_{3}, t^{\prime}\right)|\mathbf{V}| \delta\left(x^{\prime}-x\right) \delta\left(y^{\prime}-y\right) \delta^{3}\left(\mathbf{R}^{\prime}-\mathbf{R}\right), \quad(3.2)$

 binary are uncorrelated in distribution at time t^{\prime}, and so we certainly require that
 Accordingly we suppose that $\langle\boldsymbol{m}\rangle V^{2}>\langle m\rangle / d$ and $d \geqslant a$ initially, where d and a
are the initial separation of the third body from C, and the semi-major axis of the binary, respectively. Typically, therefore, we require

$$
d \gg\langle m\rangle^{2} \beta
$$

$d \geqslant\langle m\rangle^{2}$

The vector \mathbf{R}^{\prime} is meant to be the position-vector of C at the time of encounter, but can be taken to be the position at t^{\prime} if $d \ll R_{h}$, for then the distance moved by C during the encounter is much less than the length scale for spatial inhomogeneities. If we may set $\beta^{-1} \sim\left\langle\beta^{-1}\right\rangle$ in (2.1), this condition becomes of order

```
\((t \cdot \mathcal{E})\)
```

$$
d \ll N\langle m\rangle^{2} \beta
$$

We can also evaluate the distribution functions on the right-hand side of (3.2) at
 $(t \cdot \mathcal{E}) \kappa \mathbb{q}$ suọ̣nq!й

 in which our assumption is violated must be exceptional.
We now adopt specific forms for the distribution functions. For single particles
Vol. 173

D. C. Heggie

$\left(m_{3} \beta\left(m_{3}\right)\right)^{3 / 2}$

$\exp \left\{-\frac{1}{2} \beta\left(m_{3}\right) m_{3} \mathbf{v}_{3}{ }^{2}\right\}$,

(3.5) i.e. where we have allowed for a possible dependence of the mean kinetic energy
 in stellar systems (Spitzer \& Hart 197rb; Aarseth 1973). This form is a reasonable approximation to the velocity distribution in the core of a cluster (Standish 1968), where most binary activity occurs because of the high particle density. However, it
 әм suọ̣еэ! shall take care to check whether this is of any importance.

 of mass, we take
 where $M_{12} \equiv m_{1}+m_{2}$, the total mass of the binary, and g is some function. By the theory of Section 2.2 we see that we have imposed the form (2.15) on the distribution of eccentricity, and we shall offer some dynamical justification for this assumption in later sections; it is certainly consistent with the experimental data from
 and (2.12) the function g can be related to $f(x, \mathbf{R})$ when we identify \mathbf{Q} with \mathbf{R}, and (3.6) becomes
$f\left(\mathbf{q}_{1}, \mathbf{v}_{1}, \mathbf{q}_{2}, \mathbf{v}_{2}\right)=\frac{\mathbf{I}}{4 \pi^{9 / 2}}\left(\frac{\beta\left(M_{12}\right)}{m_{1} m_{2}}\right)^{3 / 2} x^{5 / 2} \exp \left\{-\frac{1}{2} \beta\left(M_{12}\right) M_{12} \dot{\mathbf{R}}^{2}\right\} f(x, \mathbf{R}) . \quad$ (3.7)

 $\mathbf{R} \equiv\left(m_{1} \mathbf{q}_{1}+m_{2} \mathbf{q}_{2}\right) / M_{12}, \mathbf{r} \equiv \mathbf{q}_{1}-\mathbf{q}_{2}$ and ξ. By (3.4) we may set $\mathbf{q}_{3} \simeq \mathbf{R}$ and, after integrating out Z and \mathbf{R}, we obtain

$$
(8 \cdot \varepsilon) \quad{ }^{6} \mathbf{\Lambda}_{\varepsilon} p(\mathbf{\Lambda}) f|\mathbf{\Lambda}| \rho \int=\left(\kappa^{\prime} x\right) \widetilde{O}
$$

ふ

\cdots
(3.10)

$$
m^{*} \beta^{*} \equiv \frac{m_{3} \beta\left(m_{3}\right) M_{12} \beta\left(M_{12}\right)}{m_{3} \beta\left(m_{3}\right)+M_{12} \beta\left(M_{12}\right)},
$$

> where, defining
> we have written

$$
f(\mathbf{V}) \equiv\left(\frac{m^{*} \beta^{*}}{2 \pi}\right)^{3 / 2} \exp \left(-\frac{1}{2} m^{*} \beta^{*} \mathbf{V}^{2}\right)
$$

No. 3, 1975 Binary evolution in stellar dynamics
and

$$
\sigma=\frac{\mathrm{I}}{\sqrt{2} \pi^{3}} \frac{1}{\left(m_{1} m_{2} M_{12}\right)^{3 / 2}} x^{5 / 2} \int \delta\left(x^{\prime}-x\right) \delta\left(y^{\prime}-y\right) d^{2} \xi d^{3} \mathbf{r} d^{3} \mathbf{v} \text {. (3.II) }
$$

Since $f(\mathbf{V})$ is the distribution of \mathbf{V}, it is clear from the form of (3.8) that σ is to be
-
 where \mathscr{H}_{1} and \mathscr{H}_{2} are, respectively, the one- and two-body Hamiltonians. Using
$(3 \cdot 7)$ to obtain $f(x, \mathbf{R})$ we find that (3.16) implies that $(3 \cdot 18)$

 if $\beta(m)$ does not vary with m. Equation (3.8) is independent of the factor of proportionality, and so the rate functions Q are the same for the two sets of distributions. In particular, the 'detailed balance relation' (cf. Fowler 1936) numbered (3.18) holds also for the rate functions when the distributions of single particles and binaries are given by (3.5) and (3.7) respectively. namely
There is a similar relation between the rates of formation and destruction,

$$
(3 \cdot 19)
$$

and the theory of detailed balancing can even be refined to yield relations for the cross-sections, σ, corresponding to inverse processes. However, we shall use only (3.18) and (3.19), normally for the purpose of checking approximate analytic

 pairs for, although they are energetically much less significant than hard pairs, the

 close, vigorous encounters to the milder but more numerous distant encounters, and, after discussing some implications of our results, compare them with numerica
evidence.

. 1 Close encounters

 of the binary, and such that the motion of the third star relative to this component is approximately unperturbed by the other component during the most important

 and define $\mathbf{R} \equiv \mathbf{q}_{\mathbf{3}}-\mathbf{q}_{2}, \mathbf{r} \equiv \mathbf{q}_{1}-\mathbf{q}_{2}$, where the vectors $\mathbf{q}_{i}(i=\mathbf{1}, 2,3)$ are those

 $|\mathbf{R}| \ll|\mathbf{r}|$, the equations of motion may be written in the approximate forms
No. 3, $1975 \quad$ Binary evolution in stellar dynamics
and

$$
\ddot{\mathbf{R}}=-M_{23} \frac{\mathbf{R}}{\left.\mathbf{R}\right|^{3}}
$$

where $m_{i}(i=1,2,3)$ are the three masses and $M_{i j} \equiv m_{i}+m_{j}$. The first term on

4.2 Wide encounters

Our attention is now directed to encounters such that the third body does not approach either component particularly closely. The change in binding energy is

From (4.5) we observe that, if $\cos \phi$ is sufficiently small, then the third body is almost undeflected even by the closer of the components, and the sort of order-ofmagnitude theory which led to the result (4.8) demonstrates that this is so when $p \gg\left(\beta^{*} x\right) a$, typically. Therefore, when this condition is satisfied we may assume that the vector \mathbf{R}, now defined to be the position vector of the third body with
respect to the centre of mass of the binary, is approximately given by

$$
(4.15)
$$

$$
\mathbf{R}=\mathbf{R}_{0}+\dot{\mathbf{R}}_{0} t
$$

where $\beta_{i} \equiv \beta\left(m_{i}\right)$ for $i=\mathbf{1}, 2,3$. In the case of equipartition, when β is independent of m, the detailed balance relation (3.19) is satisfied approximately by (4.13) and
(4.14), since for the present we have $\beta x \ll 1$.
It is possible to calculate the destruction cross-section given the initial eccen-
tricity, e_{0}, as well as the initial binding energy. The cross-section, and therefore the rate of destruction, turns out to be independent of e_{0} except for very large e_{0}, and so a detailed balance argument leads us to conclude that new soft binaries already form in N-body systems with eccentricities nearly distributed according to (2.15).
This observation helps to account for the success of this distribution as we noted in our discussion of Figs 1 and 2.

3, $1975 \quad 749$
We obtain the destruction rate by integrating the first of equations (4.12) over
-
$75^{\circ} \quad$ D. C. Heggie
much less than the period of the binary. This condition is

$$
(4.18)
$$ \[

y=-\frac{2 m_{1} m_{2} m_{3}}{M_{12} V} \dot{\mathbf{r}}_{0} \cdot\left\{\frac{\widehat{\mathbf{R}}_{0}-\left(m_{2} / M_{12}\right) \hat{\mathbf{r}}_{0}}{\left|\hat{\mathbf{R}}_{0}-\left(m_{2} / M_{12}\right) \mathbf{\hat { \mathbf { r } }}_{0}\right|^{2}}-\frac{\hat{\mathbf{R}}_{0}+\left(m_{1} / M_{12}\right) \hat{\mathbf{r}}_{0}}{\left|\hat{\mathbf{R}}_{0}+\left(m_{1} / M_{12}\right) \hat{\mathbf{r}}_{0}\right|^{2}}\right\}, \quad (4.19)
\]

where \mathbf{r}_{0} and $\dot{\mathbf{r}}_{0}$ are the initial values, a hat denotes the projection normal to $\dot{\mathbf{R}}_{0}$,

 typical values into (4.19), we can rewrite (4.18) as
(4.20)
apart from numerical factors, or, replacing V by its root mean square value under the distribution ($3 \cdot 10$), as

$$
(4.2 \mathrm{I})
$$

 ordinates for \mathbf{v} with ($\rho_{1}{ }^{-2} \rho_{1}-\rho_{2}{ }^{-2} \rho_{2}$) as polar axis. Thus
$\sigma=2^{-1 / 2} \pi^{-2}\left(m_{1} m_{2}\right)^{-5 / 2} m_{3}{ }^{-1} M_{12^{-1 / 2}} V x^{5 / 2} \int v \delta\left(x^{\prime}-x\right) \rho_{1} \rho_{2} \hat{\mathbf{r}}^{-1} d v d^{2} \xi d^{3} \mathbf{r}$
 $\xi \equiv\left(\xi_{1}, \xi_{2}\right)$ in such a way that the position vectors of the components of the binary, projected on to the plane on which ξ is defined, are $\pm\left(0, \frac{1}{2} \hat{r}\right)$. Then we whose significance is best appreciated by writing it in complex notation. Noting that the transformation is $2-1$, we next choose plane polar coordinates for ζ and find that

$\sigma=2^{1 / 2} \pi^{-2}\left(m_{1} m_{2}\right)^{-5 / 2} m_{3}{ }^{-1} M_{12}-1 / 2 V x^{5 / 2}$

 is restricted to

$$
\zeta \leqslant 2 m_{1} m_{2} m_{3} v \hat{r}\left(M_{12} V|y|\right)^{-1}
$$

$\equiv \zeta_{0}$, say. Using a known transformation (Abramowitz \& Stegun 1965, equation 17.3.29) and applying a linear transformation to ζ, we may recast the result in
$\sigma=2^{-7 / 2} \pi^{-2}\left(m_{1} m_{2}\right)^{-5 / 2} m_{3}^{-1} M_{12^{-1 / 2}} V x^{5 / 2} \int v \delta\left(x^{\prime}-x\right) \hat{r}^{3} d v d^{3} \mathrm{r} f\left(\frac{4 \zeta_{0}}{\hat{r}^{2}}\right)$,

 \& Watson 1965, p. ${ }^{21}$ I), where E is the complete elliptic integral of the second kind, to eliminate K, for E is non-singular. Thus it is found that the formulae $f(u) \simeq \begin{cases}\frac{\pi}{6} u^{3}\left(1+0 \cdot 3 u^{2}\right) & (u<1 \cdot 2) \\ \frac{\pi}{4}\left(u^{2}+0 \cdot 25\right) & (u \geqslant 1 \cdot 2)\end{cases}$
are in error by at most about 7 per cent and, furthermore, they exhibit the correct asymptotic behaviour for $u \downarrow 0$ and $u \uparrow \infty$. Taking spherical polar co-ordinates (r, θ, ϕ) for \mathbf{r} with \mathbf{V} as polar axis, we have $\hat{f}=r \sin \theta$ and find that
$\sigma=2^{-5 / 2} \pi^{-1}\left(m_{1} m_{2}\right)^{-5 / 2} m_{3}{ }^{-1} M_{12}{ }^{-1 / 2} x^{5 / 2} V \int v \delta\left(x^{\prime}-x\right) r^{5} g\left(u_{0}\right) d v d r$,

$$
g(u) \equiv \int_{0}^{\pi} \sin ^{4} \theta f\left(\frac{u}{\sin \theta}\right) d \theta
$$

By (4.22) we find that g itself may be approximated by the formulae

$$
u^{3}\left(\mathrm{I}+0 \cdot \mathrm{I} 8 u^{2}\right) \quad(u<\mathrm{I} \cdot \mathrm{I})
$$

where the total error is at most about 15 per cent and the asymptotic behaviour of g is preserved correctly.
and we obtain the asymptotic results

$$
\begin{aligned}
& (\not \downarrow z \cdot \downarrow) \\
& (\varepsilon z \cdot \downarrow)
\end{aligned}
$$

$$
\frac{\pi^{2}}{8}\left(u^{2}+0 \cdot 19\right), \quad(u \geqslant \mathrm{I} \cdot \mathrm{x})
$$

The remaining integrations can be performed if we set $r \equiv\left(m_{1} m_{2} / x\right) \sin ^{2} \phi$,

 but it will be noted that (4.23) agrees with (4.10) and (4.II) in this limit.

Vol. 173

 easy, and by (3.8) and (4.24) we obtain the approximate result

$$
Q(x, y)=\frac{\pi}{3 \sqrt{2}} \frac{\left(m_{1} m_{2}\right)^{3 / 2} m_{3}}{M_{12^{1 / 2}}} \frac{1}{x^{1 / 2} y^{2}}, \quad\left(\left(\beta^{*} x\right)^{5 / 2} \ll \beta^{*}|y| \ll\left(\beta^{*} x\right)^{3 / 2}\right) \quad \text { (4.26) }
$$

 magnitude. As in Section 4.1, the occurrence of resonances and exchanges, and the loss of high-energy field stars, lead to only small errors.

When condition (4.18) is reversed the angular velocity of the third body is much less than that of the binary and the character of the dynamics changes. Such encounters are of importance for the study of hard binaries and will be studied in that context in Section 5.4, but here we merely remark that the corresponding energy changes must be extremely small.

4.3 Discussion of the rates for soft binaries

We have already remarked that the detailed balance theorem is approximately satisfied by the rate derived in Section 4.I, and the same is true, rather trivially, of that given by (4.26). Here we shall continue the discussion of these calculations by computing the mean energy change and the lifetime of a soft binary, and by comparing some of our results with those of previous workers.

The mean rate of change of binding energy, per unit density of free particles, is just

$$
\frac{\langle\dot{x}\rangle}{n}=\int_{0}^{\infty} y\{Q(x, y)-Q(x,-y)\} d y
$$

where n is the number density of single particles. Now in the case of equipartition the detailed balance relation (3.18) implies that

$$
Q(x,-y)=Q(x, y)-\frac{y}{f(x)} \frac{\partial}{\partial x}\{f(x) Q(x, y)\} \quad(\beta|y| \ll \beta x \ll 1)
$$

approximately, where $f(x) \equiv x^{-5 / 2}$. Hence by (4.26)-(4.28) we find that, as a result of wide encounters only

$$
(6 z \cdot t)
$$

In performing the integration we have taken the range of validity of (4.26) to be $(\beta x)^{5 / 2} \ll|\beta y| \leqslant(\beta x)^{3 / 2}$, and so the result may be relied upon to order of magnitude only, especially in regard to its mass-dependence. Here, n is to be taken as the

 situation in two-body relaxation theory (Chandrasekhar 1942).

At this point we recall a remark made in Section 2.2, to the effect that the processes responsible for the evolution of very soft pairs must be the same as those effective in the relaxation of the single-particle distribution. Two-body relaxation may be treated by consideration of hyperbolic 'collisions' between pairs of stars,
$E S L$

 tance of such encounters for the evolution of binaries.

No special device is required to obtain the rate of change of binding energy
from (4.12), the result after a little labour being roughly

$$
\frac{\langle\dot{x}\rangle}{n}=8 \sqrt{2 \pi} \frac{m_{1} m_{2} m_{3}^{2} m^{* 1 / 2}}{M}
$$

$$
\frac{m_{3}^{2} m^{* 1 / 2}}{M_{12}} \beta^{* 1 / 2}\left(\ln \frac{\beta^{*} x}{2}+\frac{I}{3}\right)
$$

where we have had to extend the range of validity of the expressions for the rate function to $\left(\beta^{*} x\right)^{3 / 2} \leqslant\left|\beta^{*} y\right| \leqslant \mathrm{I}$. It is noteworthy that the very largest changes

 Gurevich \& Levin (1950), Oort (1950) and Hills (1975), estimated the lifetime, t, essentially on the basis of
$(I \mathcal{E} \cdot t)$
 \& Poveda (1971), however, noted that such a calculation might underestimate the
 destruction rate, by (4.I3), we see that t is in fact to be found from

$n Q(x,-\infty)$

$t=$
 лоғ ‘วนо \downarrow чธ!

 ik (op. cit.).
Chandrasek $\left(\mathbf{F}_{1}-\mathbf{F}_{2}\right) . \mathbf{F}_{1} /\left|\mathbf{F}_{1}\right|$, where $\mathbf{F}_{i}(i=\mathrm{I}, 2)$ are the perturbing forces on the two components, and computing the time needed to attain escape velocity. Such a method

 parallel to v , the relative velocity vector of the components, that gives the rate of change of the binding energy. The derivation of the lifetime by Cohen (1975) is in S! 11 'sə! concerned only with close binaries, however

Vol. 173

D. C. Heggie

 that all those with lower binding energies and all free particles satisfy a Boltzmann distribution. In our notation, the quantity computed is$$
R=n_{1} n_{2} n_{3} \int_{x_{0}}^{\infty} Q(x) d x+n_{3} \int_{0}^{x_{0}} d x f(x) \int_{x_{0}-x}^{\infty} d y Q(x, y),
$$

where n_{i} is the number-density of particles with mass $m_{i}(i=1,2,3), f(x)$ is the Boltzmann distribution of binding energies given by (2.13), and different masses are in equipartition. Mansbach's semi-analytic result is, in our notation
$R \simeq n_{1} n_{2} n_{3} 4 \pi \sqrt{ } 2 \frac{\left(m_{1} m_{2}\right)^{9 / 2} m_{3}}{M_{12^{1 / 2}}} \beta^{3 / 2} x_{0}{ }^{-3}$

$(\mathcal{E} \varepsilon \cdot \downarrow)$

although we have omitted a term in the curly bracket of order $\left(\beta x_{0}\right)^{0.8}$, which is negligible for sufficiently small energies.
We may evaluate R using our expressions for Q provided that, as before, we
 with a little more care, transferring from the second of equations (4.12)-(4.26) when these are equal, i.e. at

$$
\frac{3^{2}}{\sqrt{\pi}}\left(m_{1} m_{2} M_{123}\right)^{-1 / 2} m_{3} 3 / 2 \beta^{1 / 2} x^{3 / 2}
$$

ио

 the forms
from (4.14), (4.12) and (4.26) respectively, in the limit $\beta x_{0} \downarrow \circ$.
The dominant contributions are the last two, and their functional forms are

$$
\begin{aligned}
& (\varsigma \varepsilon \cdot \nleftarrow) \\
& (\nleftarrow \varepsilon \cdot \nleftarrow)
\end{aligned}
$$

Binary evolution in stellar dynamics $\quad 755$
 $-\log \left(\beta x_{0}\right) /\left(\beta x_{0}\right)^{1 / 2}$.
and numerical experiments, we begin by testing (4.19), and then proceed in Figs $9-11$ to investigate the extent of agreement Some impression of the accuracy of (4.19) may be obtained by computing three-body systems with simple geometries. Consider, for example, the third body initially approaching in the plane of the binary with velocity V on an orbit with $p=\mathrm{I}$ in some units, while the relative orbit of the binary components is a circle with unit radius. If all masses are unity, we find from (4.19) that

$$
(L \varepsilon \cdot b)
$$

In Fig. 8 this limit, represented by a straight line, is compared with the results of computations, the two points for each value of V being obtained by two choices of the initial relative orientation of the binary components. For sufficiently large values of V (i.e. sufficiently soft binaries) the limit (4.37) is approximately observed, and broadly similar results have been achieved for other geometries.
 designed to test σ almost directly. In preparation for this we may obtain expressions for the cumulative cross-section $\Sigma\left(y_{0}\right)$, where

756
and

$$
\sum\left(y_{0}\right) \equiv \int_{y_{0}}^{\infty} \sigma(y) d y \text { for } y_{0}>0,
$$

by using (4.Io), (4.II) and (4.24). Graphs of the function $\Sigma\left(y_{0}\right)$ thus obtained
are represented in Figs 9 and Io for the case $m_{1}=m_{2}=m_{3}=I=V, x=0 \cdot 01$.
Here we have switched from (4.11) to (4.24) at that value of $|y|$ at which they are

equal. On the other hand, with these parameters (4.10) always exceeds (4.24), and we have simply switched from one expression to the other at the same value of $|y|$; since this results in a discontinuity in σ, the curve in Fig. 9 exhibits an abrupt
Also plotted in these figures are experimentally determined values, obtained
 cumulative, the successive values are not independent in the sense of random variables. Different symbols correspond to different values of the maximum impact

Fig. ıı. Cumulative distribution function, F, of initial eccentricities, e, of those binaries

The agreement at $y_{0}=-0.01$, where Σ is the destruction cross-section, courages us to investigate the distribution of initial eccentricities among these							
The data shown in Fig. II confirm experimentally the result stated in 4.I, that the destruction rate is almost independent of eccentricity.							
uracy of these integrations, it may be said that, of the first $p_{0}=50$, which contains the largest proportion of close							
ncounters, the mean absolute energy change in the integra-							
n, due to numerical errors, was 7×10^{-6}, and the largest value was only 3×10^{-5}. Other numerical investigations already reported in the literature include those							
Agekian, Anosova \& Bezgubova (1969) and of Agekian \& Anosova (1971).							
these deal with the formation							
icities among new binaries than would h							
imposed on the initial impact parameters, and so any new binary with a or axis much exceeding p_{0} can only have high eccentricity. Other studies							
ho found							
unters, as we expect from the work of Section $4 \cdot 3$.		ignificant mean decrease in the binding energy of a binary subject to random counters, as we expect from the work of Section 4.3.					
Certain workers, e.g. Yabushita (1972), motivated by an interest in cometary mics, have studied systems in which one component of the binary is massless. certain obvious modifications, the work of Sections 4 . I and 4.2 is then equally							
ble. Cruz-Gonzalez \& Poveda (197I), beginning with binaries of this type cular orbits and subjecting them to repeated encounters, found that the							
ution of eccentricities was more or less uniform by the time a substantial of them had been destroyed. This observation suggests that the success							
5), in the comparison with experimental data for soft pairs in Section 2.3, to the fact that newly-formed soft pairs already have this distribution, as							

-
Vol. 173
that new hard pairs will be formed with a distribution of eccentricities not far removed from (2.15).
Now we turn to the cases in which one component of the old binary is ejected immediately after the encounter, the third body becoming one component of a
 functions are computed for the case of equal masses and found to be of the forms
 the imposition of (5.2). Clearly, the third body cannot remain unbound to the
 to the binary. The case in which it remains intact is considered in the next section, but here we suppose it is disrupted.
To summarize the whole event: we envisage the third body approaching initially with velocity V, and being accelerated towards the binary until there occurs a two-
body encounter of the type considered in Sections 4.I and 5.I. Thereafter the

 valid in order of magnitude only.
As usual, we denote by $-y$ the decrease in the binding energy of the pair forming the original binary, and we let r be their separation during the encounter between the second component and the third body; this is approximately constant since the encounter is treated as being impulsive. Hence

$$
(5 \cdot 7)
$$

 the new pair is bound, the relative velocity, v^{\prime}, between its components must satisfy

$\frac{m_{1} m_{3}}{M_{13}} v^{\prime 2} \leqslant \frac{m_{1} m_{3}}{r}$,

where $M_{13} \equiv m_{1}+m_{3}$. Now the velocity of the receding third body relative to the
 ($\left.2 M_{123 / r}\right)^{1 / 2}$ for escape. Thus $v^{\prime} m_{3} / M_{13}$ will generally be substantially smaller than

[^1]By conservation of energy we obtain
$\left(8^{\cdot \mathcal{G}}\right)$

$$
\begin{aligned}
& \qquad \frac{1}{2} \frac{m_{2} M_{13}}{M_{123}} v_{1}^{2} \geqslant \frac{m_{2} M_{13}}{r} \\
& \text { of energy we obtain } \\
& -z+\frac{1}{2} \frac{m_{2} M_{13}}{M_{123}} v_{1}^{2}-\frac{m_{2} M_{13}}{r}=-x+\frac{1}{2} \frac{m_{3} M_{12}}{M_{123}} V^{2}
\end{aligned}
$$

v_{1}.
B

\mathfrak{N}
No. 3, 1975 Binary evolution in stellar dynamics

I-
D. C. Heggie Vol. 173
Agekian \& Anosova (1968b) found that the time for disruption is on average Agekian \& Anosova (1968 b) found that the time for disruption is on average
of the order of 60 crossing times for the triple system, in the case of equal masses,

 ponents describe highly complicated orbits has sufficient time to relax before disruption, and, therefore, that the mode of disruption depends statistically only on the conserved quantities-binding energy, z, and angular momentum, H, in the rest frame of the centre of mass-while other details of the initial conditions are 'forgotten '. Incidentally a similar approximation, called the Bohr assumption, is often made in nuclear physics when discussing the disintegration of a compound nucleus (Blatt \& Weisskopf 1952, p. 340).
Denoting by $Q(z, H \rightarrow x)$ the rate at which bound triple systems of energy z
and angular momentum H disrupt to give binaries of energy $x(>z)$, we find that the normalized distribution of final pair energies is

$$
g(x \mid H, z)=\frac{Q(z, H \rightarrow x)}{\int Q(z, H \rightarrow x) d x}
$$

Now, by detailed balance of the formation and disruption of triple systems, this may be written as

$\int f(x) Q(x \rightarrow z, H) d x$,

where $Q(x \rightarrow z, H)$ is the rate of the reaction inverse to that which we are considering, and $f(x)$ is the energy distribution for binaries under a Maxwellian pair distribution, i.e. (2.13). Note that the distribution of triple systems, which is introduced by the detailed balance relation, cancels out in the expression for g and so, fortunately, its calculation is unnecessary.
The function $g(x \mid H, z)$ clearly depends on H, if z is fixed. At very large H the pericentric distance of the receding third body must much exceed the semi-major axis of the binary, and so changes in the binding energy of the pair due to its perturbations will have been very small, as we shall see in detail in Section 5.4. Hence the escape energy of the third body must be much less than x; whence $x-z \ll x$ and $g(x)$ is strongly peaked near $x \approx z$. Much larger values of x are possible if H is sufficiently small that the three particles can interact strongly, but it is not expected that g depends critically on H for small values of H, except, systems formed after close encounters, we can replace g by

$$
\begin{gathered}
g(x \mid z) \simeq \frac{f(x) Q(x \rightarrow z)}{\int f(x) Q(x \rightarrow z) d x} \\
Q(x \rightarrow z) \equiv \int Q(x \rightarrow z, H) d H
\end{gathered}
$$

765
In order to obtain the rate $Q\left(x \rightarrow x^{\prime}\right)$ at which binaries change binding energy from x to x^{\prime} via resonant encounters, we write

$$
\begin{aligned}
Q\left(x \rightarrow x^{\prime}\right) & =\int d z d H Q(x \rightarrow z, H) g\left(x^{\prime} \mid z, H\right) \\
& \simeq \int d z Q(x \rightarrow z) g\left(x^{\prime} \mid z\right)
\end{aligned}
$$

The total cross-section, Σ, for appropriate resonant encounters is obtained by

 setting $y=-x$ and multiplying by the range of integration, whence

$$
\Sigma \sim \frac{28 \pi}{3} \frac{m_{1} m_{2} m_{3}^{2}}{M_{12}} \frac{\mathrm{I}}{V^{2} x^{2}}\left(x-\frac{\mathrm{I}}{2} \frac{m_{3} M_{12}}{M_{123}} V^{2}\right)
$$

where $f_{3}(z)$ is the 'equilibrium ' distribution of triple systems of energy z, and n_{3} is the number-density of single stars with mass m_{3}. Using (2.I3) and (5.23) we

$$
Q(z \rightarrow x) \propto \frac{\left(m_{1} m_{2} m_{3}\right)^{4}}{f_{3}(z) M_{123^{1 / 2}}} m_{3}^{-3 / 2} M_{12^{-1 / 2} z x^{-9 / 2}} \exp (\beta z)
$$

where the factor of proportionality is independent of x, z and the masses. Now m_{3} is here the mass of the body ejected, and f_{3} must be a symmetric function of the masses, and so we predict that a triple system is most likely to break up with the ejection of the lightest particle.

$$
\begin{aligned}
& \qquad \begin{aligned}
Q(x \rightarrow z) & \sim \int \Sigma|\mathbf{V}| f(\mathbf{V}) \delta\left(z-x-\frac{\mathbf{I}}{2} \frac{m_{3} M_{12}}{M_{123}} V^{2}\right) d^{3} \mathbf{V} \\
& =\frac{28 \sqrt{2 \pi}}{3} \frac{m_{1} m_{2} m_{3}{ }^{5 / 2}}{\left(M_{12} M_{123}\right)^{1 / 2}} \beta^{3 / 2} x^{-2} z \exp \{-\beta(x-z)\} ; \quad(z \leqslant x) \quad(5.23)
\end{aligned} \\
& \text { if we take the function } \beta \text { in }(3.9) \text { to be independent of mass. } \\
& \text { Again by detailed balance we may write }
\end{aligned}
$$

$$
Q(z \rightarrow x)=\frac{n_{3} f(x)}{f_{3}(z)} Q(x \rightarrow z)
$$

find that

over $z \leqslant \min \left(x, x^{\prime}\right)$. We now evaluate $Q(x \rightarrow z)$.

$Q\left(x \rightarrow x^{\prime}\right)$	$=\int d z d H Q(x \rightarrow z, H) g\left(x^{\prime} \mid z, H\right)$
	$\simeq \int d z Q(x \rightarrow z) g\left(x^{\prime} \mid z\right)$

$$
\text { By analogy with }(3.8) \text {, the rate itself is }
$$ find that

[^2]

$(x y>x y>1)$

and so, by (5.21),

$Q\left(x \rightarrow x^{\prime}\right) \simeq$

767
 No. 3, 1975

 the leading term in y. However, it is reasonable to expect that, if any secular terms
 $x(a / q)^{c}$ for some positive number c, where a is the initial semi-major axis of the

 rigorous one, for treating y_{0} as a valid first approximation to y.
We write the Hamiltonian for the system as

 by substituting unperturbed expressions for \mathbf{r} and \mathbf{R}. For the former we take (5.3I)
the eccentric anomaly. It is related to the time, t, by the equation $n\left(t-t_{0}\right)=E-e$
$\sin E$, where t_{0} is a constant and

$$
(5 \cdot 32)
$$

$n^{2} a^{3}=M_{12}$ of mass of the binary, the eccentricity, e^{\prime}, of the relative orbit, approximated to a
 $e^{\prime}-\mathrm{I} \sim q /(a \beta x)$. Since we deal with hard binaries, $\beta x \gg \mathrm{I}$, and if we take the orbit of the binary, and that its motion relative to the binary be approximately parabolic. Hence
Fig. 12. Deformation of the contour in the σ-plane for the approximate evaluation of (5.38)
by the method of steepest descents. The limit $\sigma_{0} \rightarrow \infty$ is considered in order that the contribution from the 'vertical' parts of \mathscr{C}_{2} may be neglected.

769

No. 3, $1975 \quad$ Binary evolution in stellar dynamics
which shows part of the complex σ-plane, and after several partial integrations we find that the integral is just
where
Retaining only the largest powers of K, we deduce that the contribution from the pole may be neglected, and the result is $I_{\alpha} \simeq \gamma K^{5 / 2} \exp \left(-\frac{2}{3} K\right)(\pm i)^{\alpha}, \quad(K \uparrow \infty)$ where γ is some constant; we have given the answer for both signs in $(5 \cdot 38)$. Hence, substituting $(5 \cdot 37)$ into (5.30) and utilizing (5.39), we deduce that $y \simeq \frac{m_{1} m_{2} m_{3}}{M_{12}} a^{2} q^{-3} K^{5 / 2} \exp \left(-\frac{2}{3} K\right)\left(f_{1} \cos M_{0}+f_{2} \sin M_{0}\right), \quad \quad(5 \cdot 40)$ in which $M_{0} \equiv n t_{0}$ and f_{1}, f_{2} are scalar functions of e and the orientations of the orbits, i.e. the vectors $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \hat{\mathbf{A}}, \widehat{\mathbf{B}}$.
Here it is of interest to estimate the error introduced by omitting higher terms
 is smaller by a factor of order r / R, which is of order a / q. However, in place of integrals like $(5 \cdot 38)$ we have a set of integrals with $\left(1+\sigma^{2}\right)^{7}$ in the denominator of the integrand, and these would be larger than (5.39) by a factor of order $K^{1 / 2}$,
 $\sin 2 M$ would have increased the exponent by a factor of 2 , and can be neglected
safely. On the other hand, (5.39) is only the first term in an asymptotic
 that caused by neglect of higher terms in the perturbing function.
We now relate q to the impact parameter and velocity of the third body ' at infinity ', using the equations for Keplerian motion, and obtain respect to ξ, noting that $|\xi| \equiv p$, we have section that $B p^{3} \gg \mathrm{I}$, whence the last factor of the denominator is approximately

$$
{ }_{\varepsilon} d g-\frac{x}{{ }_{\tau / \varepsilon} d|H|} u_{I}=\frac{x}{|\kappa|} u_{I}
$$

 where A is $V^{3 / 2} x^{7 / 4}\left(f_{1} \cos M_{0}+f_{2} \sin M_{0}\right)$ times a function of the masses, and

 unity. From (5.42) we find that

Binary evolution in stellar dynamics $1975 \quad 771$
While the third body is bound to the binary, its orbit is approximately parabolic While the third body is bound to the binary, its orbit is approximately parabolic
except when it is so far away that perturbations are negligible, and so we may take
 $-\Delta E_{m}$ for y. However, it is preferable to rewrite this in terms of h, where $h \equiv p V$ is the angular momentum, per unit reduced mass, for the relative motion of the third body and the binary. Thus we have

$\Delta E_{m} \simeq G \sin \left(M_{0}-F\right)$

səйว

 is drawn from the distribution $f\left(M_{0}\right)=\mathrm{I} / 2 \pi$: the interval between successive

$$
f_{m}(z)=\int f_{m-1}\left(z-G \sin \theta_{m}\right) \frac{d \theta_{m}}{2 \pi} \quad\left(G \sin \theta_{m} \leqslant z \text { if } m \geqslant 2\right),
$$

 ($m-1$) encounters will suffer another. By induction we find that, since the initial binding energy is E_{0}, $f_{m}(z)=$
with the restrictions

$$
(6 t \cdot 9)
$$

$$
f_{m}(z)=\frac{2}{(2 \pi)^{m}} \int d \theta_{2} \ldots d \theta_{m}\left\{\mathrm{I}-\left(\frac{z-E_{0}}{G}-\sum_{2}^{m} \sin \theta_{r}\right)^{2}\right\}^{-1 / 2} G^{-1} \quad(m \geqslant 2)
$$

provided that we impose the condition

in addition to (5.49). If $E_{m}<0, f_{m}\left(E_{m}\right)$ is the probability that the third body escapes after m encounters, with energy E_{m}.
 given values of $h, x, e, \omega, \Omega, i$ and E_{0} is simply
$R=\left(m^{*} \beta^{*}\right)^{3 / 2}(2 \pi)^{-9 / 2} \int \exp \left(-\frac{1}{2} m^{*} \beta^{*} \mathbf{V}^{2}\right)|\mathbf{V}| e^{\prime} \sin i^{\prime} \delta(h-p V)$

$$
\times \delta\left(e-e^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) \delta\left(\Omega-\Omega^{\prime}\right) \delta\left(i-i^{\prime}\right)
$$

 set $A \simeq 45$.
The reaction rates for distant encounters are easily summarized. The results of Section $5 \cdot 5$ imply that we merely double the rates given by $(5 \cdot 45)$ when $|\beta y| \gg \mathrm{I}$,
An immediate consequence of these results is that the average rate at which the binding energy of a hard pair changes is positive (Heggie 1975), because the rate of occurrence of changes such that $\beta y \ll-I$ is exponentially small. For the reason stated in Section 3.2 our reaction rates are unreliable in this range, but our con-

 pairs should exhibit a tendency to harden, but they failed to take account of the initial acceleration of the third body, which makes the argument more involved (Heggie 1975, discussion). Jeans (1929, p. 309), also basing his reasoning on equi-
partition, reached erroneous conclusions.
For even a moderately hard binary, the lower limit on $|y|$ in (5.45) corresponds

 motion is approximately rectilinear has been considered by Walters (1932), on the assumption that the orbit of the binary is nearly circular, and, in the context of
atomic physics, by Percival \& Richards (1967). This type of theory is also applicable

 than this. Jeans (1929), Gurevich \& Levin (1950) and Lynden-Bell (1969) all
 - ifeuis Kıən әq pinom

 5.4 it is easy to show that the change in e is approximately

$$
\left(99^{\cdot} \Im\right)
$$

 Eccentricity therefore relaxes more rapidly than energy, as Hills (1975) found numerically, and since, as we noted in Section 5.1 , new hard binaries will have a

 of (2.15) to experimental data on hard pairs, as described in Section 2.3 .

Vol. 173

5.7 Numerical results

the lower limit on negative values arising because the initial binding energy of the triple system is $x-\frac{1}{2} M_{12} m_{3} V^{2} / M_{123}$. Here we suppose σ to be that appropriate to ordinary encounters, excluding resonances and exchange.
The results of a series of numerical experiments are shown in Fig. I3, which is a
 are plots of Σ obtained from (4.11) and (5.44), transfer from one expression to the other taking place at that value of y where they are equal.
The agreement with the experimental data for the larger maximum impact parameter p_{0}, at least for sufficiently small values of $\left|y_{0}\right|$, is quite acceptable.
 discussion of Section 5.1, (4.11) is not expected to be valid for values of y as low as those observed.
This series of experiments was performed with the aid of a regularization technique which is described elsewhere (Heggie 1973). The average absolute energy change due to numerical errors in the first 100 cases of the set with smallest and the maximum $0 \cdot 13$. Fig. I3 shows that most of the observed energy changes in the binary exceed those attributable to errors.

$$
\frac{\langle | y\rangle}{x} \simeq-B\left(\frac{q}{a}\right)^{3 / 2}
$$

$$
a \ll q
$$

where B is some function of the masses and the average is taken with respect to everything except the masses, q and a. Likewise, from (5.66) we find that $\langle | \Delta e\left\rangle=C(a / q)^{3 / 2}\right.$, where C is some function of the masses. Thus
$\langle | \Delta e\left\rangle \simeq \frac{-D}{\log (\langle | y\rangle| x)}\right.$,
where D is some positive constant for this series of experiments. The solid line in

Fig. 13. Cumulative cross-section, Σ, for energy changes such that $-\frac{1}{3} \leqslant y^{5} \leqslant y_{0}<0$ in the upper graph and $0<y_{0} \leqslant y$ in the lower, excluding resonances, which are plotted separately
at $y_{0}=-\frac{1}{3}$. The two symbols correspond to different values of the maximum impact at $y_{0}=-\frac{1}{3}$. The two symbols correspond to different values of the maximum impact
parameter, p_{0}, but in both cases $x=50$. The theoretical resonance cross-section, shown by a cross, and the theoretical result for ordinary encounters, represented by a smooth line, are derived as described in the text. Error bars illustrate 95 per cent confidence intervals. averages, and that it contains an uncomputed constant, we may be content that the curve at least follows the trend of the plotted points. Certainly, energy changes are relatively much smaller in general than those in eccentricity: the dashed line
The experimental cross-section for exchange was $\Sigma=0.02$, with confidence limits of the same order, since only four such cases were obtained. From the theory of Section 5.2 we obtain the result $\Sigma=0.034$, which we may regard as being consistent with the experimental estimate.
The values of the cross-sections for resonances may now be compared. Equation
(5.22) yields the theoretical result for close encounters. To this must be added the in

(
contribution from wide encounters, which may be obtained by integrating (5.44)
over $-x \lesssim y \leqslant-\frac{1}{2} M_{12} m_{3} V^{2} / M_{123}$, and this yields
Altogether, the cross-section is about 0.57 when $x=50$, and 0.067 when $x=500$. The former, indicated by a cross on Fig. 13, is not far above the upper experimental

One consequence of the hypothesis of Section 5.3 -that
One consequence of the hypothesis of Section $5 \cdot 3$-that resonant systems of
low angular momentum can relax before disruption-is that, in the case of equal masses, the probabilities of ejection are the same for all three particles. Table I

 final binaries for resonances in case $x=500$. Note the change in scale at $y=100$. The solid experimental line gives results for the group with $p<0 \cdot 1$, i.e. with low angular momentum,
and the dotted line represents the cases for which $p>0 \cdot 1$. The smooth line is derived from

 the 20 per cent level.
It was noted in Section 5.4 that energy changes during wide encounters were

 ments are in fact verified on detailed study of the wide resonant systems which

$780 \quad$ D. C. Heggie Vol. 173
Aarseth (1972a) noticed systematic evolution of the binary eccentricity in a triple
system which formed in a real N-body problem, and previously van Albada (1968a)
had drawn attention to this phenomenon. Again, detailed study of hard binaries
in the N-body systems discussed in Section 2.3 above reveals that they are subject
to much faster evolution of eccentricity than of energy.

[^3]Of the comparatively small number of numerical studies of hard binaries reported in the literature, mention may be made again of that by Lyttleton $\&$
Yabushita (1965), in case $e=0$ initially and $m_{2}=0$, and that by Yabushita (971) Yabushita (1965), in case $e=0$ initially and $m_{2}=0$, and that by Yabushita (1971),
which was motivated more by galactic problems than by those in the solar system. Yabushita found cases of exchange in which the more massive component of the
 it would be unlikely for a very light component to escape. Agekian \& Anosova (1968a) did not distinguish between exchange and resonance, and none of the

 that the outcome depends strongly on the distance of closest approach. This conclusion was also reached by Valtonen (1974), who noted in addition that the

No. 3, $1975 \quad$ Binary evolution in stellar dynamics
mean change in energy satisfied $\langle y\rangle \simeq 0.5 x$ for the limit of hard binaries with all mean change in energy satisfied $\langle y\rangle \simeq 0.5 x$ for the limit of hard binaries with all
masses equal, and this agrees tolerably well with our theoretical result $\langle y\rangle \simeq 0.4 x$, which is obtainable from (5.65).
Thorough studies of bound triple systems have been conducted by Agekian \&
 or very small angular momentum, and the authors' observation that the outcome

 they showed that the escaper is most likely to be the particle with least mass, a

 appears to be steeper than the theory would predict. Worrall (1967) considered a variety of initial conditions, but was often content to terminate the computation before disruption. Szebehely (1972a) and Valtonen (1974) noted that the lifetime tends to increase with the angular momentum.

 sеч $\mathfrak{7 n q}$ 'eare s! already been described elsewhere (Heggie 1974b, 1975), and so here we shall

 formed in galactic clusters.

 $\left\langle v^{2}(m)\right\rangle$, is remarkably insensitive to m (Gliese 1956), and it is comparable for single stars and for the centres of mass of binaries. Accordingly we may write approximately
$782 \quad$ D. C. Heggie
where \bar{m}_{3} is, roughly speaking, the mass contributing most to the integral. We have
also neglected any anisotropy in the distribution of velocities. From data tabulated
by Schmidt (1959) we find that the mass-integral is about $2 \cdot 7 \times 10^{-2} M_{\odot}^{2} \mathrm{pc}^{-3}$,
the greatest contribution coming from stars with mass of order $1 M_{\odot}$, and so we
shall adopt $\left\langle v^{2}\right\rangle 1 / 2=40 \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}$. Equation (6.1) was calculated in units such that
$G=1$ and so, by dimensions, a factor G^{-1} is needed. Hence the e-folding time is
approximately
$$
{ }^{\prime} \mathrm{S} \frac{D}{{ }^{\mathrm{II}} W I} \mathrm{GI} \mathrm{OI} \times L \cdot \mathrm{I}=7
$$
where M_{12} is in solar units and a is in astronomical units. This agrees with Opik's result (1973) to within a factor of about 2, and he also noticed that the stars of an

 ҰечҰ sәұеэ!

 condensation, or else in dynamical processes in operation in star clusters or associa-

 later evaporating into the field.
The most energetic pair that can form has about the binding energy of the

 (Hogg 1959), and since the hardest binary usually forms from the most massive
stars, we may adopt $m_{1} m_{2}\left\langle\langle m\rangle^{2} \sim\right.$ 100, whence $a \sim 4 \times 10^{3} \mathrm{AU}$, although it
 әдлеп \mathfrak{e} р
 fraction of field stars which are observed to be members of binaries with semi-major axes of this size or less.
If dynamical processes are ruled out, then binaries must form during the forma-

 initially with binaries is a third problem in which results on three-body encounters have been applied (Hills 1975; Heggie 1975).

No. 3, 1975 Binary evolution in stellar dynamics
since, and also some of the numerical results discussed in Section 2.3 were obtained
using a computer program kindly loaned by him.
Sincere thanks are due to the UK Science Research Council and to Trinity
College for support, and to the Directors of the Institute of Astronomy and the
erstwhile Institute of Theoretical Astronomy for the use of their facilities.
REFERENCES
Aarseth, S. J., I966. Dynamical evolution of clusters of galaxies. II. Mon. Not. R. astr. Soc.,
Aarseth, S. J., 1972 a. Binary evolution in stellar systems, in Gravitational N-body problem,
Araseth, S. J., 1972b. Direct integration methods of the N-body problem, in Gravitational Aarseth, S. J., 1972c. Numerical experiments on the N-body problem, in Gravitational Aarseth, S. J., 1973. Computer simulations of star cluster dynamics. Vistas in Astronomy, Aarseth, S. J., 1974. Dynamical evolution of simulated star clusters. I. Isolated models. Aarseth, S. J. \& Hills, J. G., 1972. The dynamical evolution of a stellar cluster with initial Aarseth, S. J. \& Zare, K., 1974. A regularization of the three-body problem. Celest. Mech., Abramowitz, M. \& Stegun, I. A., 1965. Handbook of mathematical functions, Dover, New Agekian, T. A. \& Anosova, Zh. P., 1967. (A study of the dynamics of triple systems by means of stat
(1968) Agekian, T. A. \& Anosova, Zh. P., 1968a. (Evolution of binary systems in the galactic field.) Astrofizika, 4, 469; transl. in Astrophys., 4, 196 (1968).
Agekian, T. A. \& Anosova, Zh. P., 1968b. (Investigation of th an, T. A. \& Anosova, Zh. P., r968b. (Investigation of the dynamics of triple systems
by the method of statistical tests, II.) Astrofizika, 4, 3 ; ; transl. in Astrophys., 4, I I
(i968).
Agekian, T. A. \& Anosova, Zh. P., 1971. (Probability of binary-system formation through triple encounters.) Astr. Zh., 48, 524; transl. in Sov. Astr.-Af, 15, 41 (1971).
Agekian, T. A., Anosova, Zh. P. \& Bezgubova, V. N., 1969. (Formation of binary systems during triple encounters.) Astrofizika, 5, 637; transl. in Astrophys., 5, 329 (1969).
Allen, C., 1968. Sobre el Origen de las Estrellas Dobles Masivas, Thesis, Mexico. Ambartsumian, V., 1937. (On the statistics of double stars.) Astr. Zh., 14, 207. a, Zh. P., 1969. (Investigation of the dynamics of triple systems by the Monte Carlo

method. III. The Case of components with different masses.) Astrofizika, 5, 161; metrsl. in Astrophys., 5, 81 (1969). Bettis, D. G. \& Szebehely, V., $\begin{aligned} & \text { transl. in Astrophys. 5, } \\ & \text { 1972. }\end{aligned}$ D. G. \& Szebehely, V., 1972. Treatment of close approaches in the numerical
integration of the gravitational problem of N-bodies, in Gravitational N-body
problem, ed. M. Lecar, Reidel, Dordrecht. Blatt, J. M. \& Weisskopf, V. F., 1952. Theoretical nuclear physics, Wiley, New York \& Born, M., 1960. The mechanics of the atom, Ungar, New York. Branch, D., 1974. On the absence of wide moving pairs among K and M dwarfs. Observatory, Brosche, P., 1962. Zum Masse-Drehimpuls-Diagramm von Doppel- und Einzelsternen. Burdet, C. A., 1967 . Regularization of the two-body problem. Z. Angew. Math. Phys., 18, 434. Burgess, A. \& Percival, I. C., 1968. Classical theory of atomic scattering, in D. R. Bates Chandrasekhar, S., 1942. Principles of stellar dynamics, University of Chicago Press; also Dover, New York, 1960 .

No. 3, $1975 \quad$ Binary evolution in stellar dynamics $\quad 785$
Mansbach, P, 1970. Binary formation by three-body collisions.
Mansbach, P., 1970. Binary formation by three-body collisions. Astrophys. $7 .$, 160, 135 . Miller, R. H., 1967. Positional correlations of nearby stars. Astrophys. $\mathfrak{F} ., 148,865$. Miller, R. H., I972. On the statistics of stellar dynamical systems. Astrophys. 7., I72, 685.
 Öpik, E., 1932. Note on stellar perturbations of nearly parabolic orbits. Proc. Am. Acad. Öpik, E. J., 1973. Stellar perturbations and Monte Carlo experiments. Irish Astr. Ұ., $1 \mathbf{1}, \mathbf{1 2 5 .}$ Percival, I. C. \& Richards, D., 1967. Classical adiabatic perturbation theory of atomic
Plummer, H. C., 1918. An introductory treatise on dynamical astronomy, Cambridge University Press; also Dover, New York, 1960
Schmidt, M., I959. The rate of star formation.
Spitzer, L. \& Hart, M. H., r97ra. Random gravitational encounters and the evolution of
Spitzer, L. \& Hart, M. H., r97xb. Random gravitational encounters and the evolution of

 Szebehely, V., 1972a. Velocity effects in triple stellar systems. Astr. F., 77, 169. Szebehely, V. \& Bettis, D. G., 1971. Recent developments of integrating the gravitational Szebehely, V. \& Peters, C. F., 1967. Complete solution of a general problem of three bodies. Astr. F., 72, 876.
Valtonen, M. J., 1974. Statistics of three-body experiments, in The stability of the solar van Albada, T. S., 1968a. Numerical integrations of the N-body problem. Bull. astr. Inst.

van Albada, T. S., 1968b. The evolution of small stellar systems and its implications for the van de Kamp, P., 1971. The nearby stars, in A. Rev. Astr. Astrophys., 9.
Vandervoort, P. O., 1968. Moving pairs among the A-type stars within 20 pc. Astrophys. F.,
 XIGNAddV
AI. NUMERICAL DETERMINATION OF CROSS-SECTIONS
 5.7 is described in this section, and we give a relation between the cross-section, for a certain class of events, and its probability, namely (A.2).

787
a suggestion of Mr M. J. Valtonen, the motion was then treated by the analytic formulae of Keplerian motion, on the one hand for the binary, and, on the other,
 [еэ!

 any one case.
 analytically. Suppose that a certain type of outcome, \mathcal{O}, is found in a fraction f of a series consisting of n trials. Then appropriate 95 per cent confidence limits for the probability, P, of \mathcal{O} are given by (Lindgren 1960, p. 310).
(AI)
Bearing in mind that the maximum initial impact parameter was p_{0}, we may obtain
an estimate of the cross-section, Σ, for \mathcal{O} from
$(z \cdot v)$
the extra factor, as in (3.14), accounting for the focusing of the third particles in
the extra factor, as in (3.14), accounting for the focusing of the third particles in
A2. COMPUTATIONAL TECHNIQUES

 1971).
 more powerful methods can be devised. The most satisfactory is KS-regularization

The integration algorithm used was the force-polynomial fitting scheme
described by Aarseth (1972b).

[^0]: (2.10)

[^1]: With this approximation the condition for escape becomes

[^2]: $(\downarrow\ulcorner\cdot \varsigma)$

[^3]: Fig. 16. Cumulative distribution function, F, of (x / z) for 84 initially bound triple systems computed by Szebehely ($1972 b$), where z is the binding energy of the system and x is that of
 the final binary. There is a change of scale at $x / z=2$, and the curve is obtained from (5.24).

