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Binary Flower Pollination Algorithm and Its
Application to Feature Selection

Douglas Rodrigues, Xin-She Yang, André Nunes de Souza and João Paulo Papa

Abstract The problem of feature selection has been paramount in the last years,

since it can be so important as the classification step itself. The main goal of feature

selection is to find out the subset of features that maximizes some fitness function,

which can be some classifier’s accuracy, or even the computational burden for ex-

tracting each feature, for instance. Therefore, such approaches are likely to be mod-

eled as being optimization tasks, as well as evolutionary-based ones. In this chapter,

we evaluate a binary-constrained version of the Flower Pollination Algorithm (FPA)

for feature selection purposes, in which the optimization search space is carried out

on a boolean lattice where each possible solution a string of bits that denote whether

a feature will be used to compose the final set. Experiments over some public and

private datasets against with Particle Swarm Optimization, Harmony Search and

Firefly Algorithm have demonstrated the suitability of FPA for feature selection.

1 Introduction

Machine learning techniques have been actively pursed in the last years, since there

is an increasing number of applications that make use of some sort of intelligence-

based decision process. Roughly speaking, a standard workflow for tackling such

problems can be divided in four phases: (i) to preprocess the data (signal or im-
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age filtering, for instance); (ii) to extract features; (ii) to train a machine learning

technique, and finally (iv) to evaluate its effectiveness over an unseen (test) data [3].

One of the most important steps concerns the feature extraction, which aims at

finding the most important subset of features that leads to the best recognition rates.

There are situations we may obtain the same accuracy as before (with the original

set of features) even after feature selection, but we can save computational effort by

avoiding to extract some features that are too costly for that.

Several studies have modeled the problem of feature selection as an optimization

task, since the idea is to find out the subset of features that maximizes the accuracy

of a given classifier, or minimizes its error over some validating set, for instance.

Such environment is friendly to the application of evolutionary optimization tech-

niques, which have as the main feature to imitate living beings for solving complex

tasks. The reader can refer to some interesting literature such as the Binary Parti-

cle Swarm Optimization (BPSO) [5], Binary Firefly Algorithm (BFA) [4], Binary

Harmony Search (BHS) [14], Binary Gravitational Search Algorithm (BGSA) [16],

Binary Cuckoo Search (BCS) [17], Binary Charged System Search (BCSS) [19],

and Binary Bat Algorithm (BBA) [18].

Yang and Honavar [23] presented a multicriteria Genetic Algorithm (GA) to the

problem of feature selection, in which the idea was to optimize both the accuracy

and the feature extraction computational costs. Later on, Oh et al. [10] proposed a

hybrid GA to tackle the same problem with a better final performance. Also, there

are many papers that address feature selection with Ant Colonization [21, 7, 2],

among others. The main idea consists of reducing the number of possible paths

visited by ants in some works, as well as modified pheromone update rules. Other

approaches such as Artificial Bee Colony [20, 9] and Gravitational Search Algo-

rithm [15, 1] have been also employed to the same context.

Basically, the idea of these methods is to convert the position of the agents (bats,

particles, harmonies, etc.) into binary-valued coordinates, which are represented by

a string of bits, each denoting the presence or absence of a feature. One can consider

the problem of feature selection as a search task in a boolean lattice, in which the

number of dimensions stands for the number of features. As the original versions

of the evolutionary optimization techniques were proposed to handle continuous-

valued problems, the idea is to apply a discretization function (usually a constrained

sigmoid function) to map the agents to the boolean lattice.

Very recently, Yang [25, 26] proposed the Flower Pollination Algorithm (FPA),

which is inspired by the flower pollination process of flowering plants. This ap-

proach has demonstrated interesting results for traditional (continuous-valued) op-

timization problems, which motivated us to extend it to solve binary optimization

tasks. In this case, we have tackled the problem of feature selection to evaluate the

proposed approach, which is called Binary Flower Pollination Algorithm (BFPA).

In regard to the fitness function, we have used a classifier’s effectiveness over a

validating set: as we need to train a classifier every time an agent (pollen) changes

its position, we need a fast classifier. For such purpose, we opted to employ the

Optimum-Path Forest (OPF) [12, 13], which has demonstrated very promising re-

sults in several application, being also parameter-independent. The proposed ap-
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proach has been compared against with BPSO, BFA and BHS in several datasets,

being their results analized through statistical tools.

The remainder of this chapter is organized as follows. Section 2 introduces the

theory background about FPA and OPF techniques. Sections 3 and 4 present the

methodology and the experimental results, respectively. Finally, Section 5 states

conclusions and future works.

2 Theoretical Background

In this section we briefly review some of the main important concepts regarding the

techniques employed in this paper, as well as the proposed Binary Flower Pollina-

tion Algorithm.

2.1 Flower Pollination Algorithm

The Flower Pollination Algorithm was proposed by Yang [25], being inspired by the

pollination process of flowering plants. The FPA is governed by four basic rules:

1. Biotic cross-pollination can be considered as a process of global pollination, and

pollen-carrying pollinators move in a way that obeys Lévy flights.

2. For local pollination, abiotic pollination and self-pollination are used.

3. Pollinators such as insects can develop flower constancy, which is equivalent to

a reproduction probability that is proportional to the similarity of two flowers

involved.

4. The interaction or switching of local pollination and global pollination can be

controlled by a switch probability p ∈ [0,1], slightly biased towards local polli-

nation.

However, it is necessary that the aforementioned basic rules be converted into

appropriate updating equations. For example, in the global pollination step, flower

pollen gametes are carried by pollinators such as insects, and pollen can travel over a

long distance because insects can often fly and move over a much longer range [25].

Therefore, Rules 1 and 3 can be represented mathematically as:

x
(t+1)
i = xt

i +αL(λ )(g∗− xt
i), (1)

where

L(λ ) =
λ ·Γ (λ ) · sin(λ )

π
·

1

s1+λ
, s≫ s0 > 0 (2)

where xt
i is the pollen i (solution vector) at iteration t, g∗ is the current best solution

found among all solutions at the current generation, and α is a scaling factor to con-

trol the step size, L(λ ) is the Lévy flights step size, that corresponds to the strength

of the pollination, Γ (λ ) stands for the gamma function, and s is the step size. Since



4 Douglas Rodrigues, Xin-She Yang, André Nunes de Souza and João Paulo Papa

insects may move over a long disntace with various distance steps, a Lévy flight can

be used to mimic this characteristic efficiently.

For local pollination, both Rules 2 and 3 can be represented as:

x
(t+1)
i = xt

i + ε(xt
j− xt

k), (3)

where xt
j and xt

k stand for the pollen from different flowers j and k of the same

plant species, respectively. This mimics flower constancy in a limited neighbour-

hood. Mathematically, if xt
j and xt

k come from the same species or are selected from

the same population, it equivalently becomes a local random walk if ε is drawn

from a uniform distribution in [0,1]. In order to mimic the local and global flower

pollination, a switch probability (Rule 4) or proximity probability p is used.

2.1.1 Binary Flower Pollination Algorithm

In the standard FPA, the solutions are updated in the search space towards continuous-

valued positions. However, in the proposed Binary Flower Pollination Algorithm the

search space is modelled as a d-dimensional boolean lattice, in which the solutions

are updated across the corners of a hypercube. In addition, as the problem is to select

or not a given feature, a solution binary vector is employed, where 1 corresponds

whether a feature will be selected to compose the new dataset, and 0 otherwise. In

order to build this binary vector, we have employed Equation 5 just after Equation 3,

which can restrict the new solutions to only binary values:

S(x j
i (t)) =

1

1+ e−x
j
i (t)

, (4)

x
j
i (t) =

{
1 if S(x j

i (t))> σ ,

0 otherwise
(5)

where σ ∼U(0,1). Algorithm 1 presents the proposed BFPA for feature selection

using the recognition rate of the OPF classifier as the objective function. Note the

proposed approach can be used with any other supervised classification technique.

Lines 1−4 initialize each pollen’s position as being a binary string with random

values, as well as the fitness value fi of each individual i. The main loop in Lines

6−27 is the core of the proposed algorithm, in which the inner loop in Lines 7−13

is responsible for creating the new training Z′1 and evaluating sets Z′2, and then OPF

is trained over Z′1 and it is used to classify Z′2. The recognition accuracy over Z′2 is

stored in acc and then compared with the fitness value fi (accuracy) of individual

i: if the later is worse than acc, the old fitness value is kept; in the opposite case,

the fitness value is then updated. Lines 12−13 update the best local position of the

current pollen. Lines 14− 18 update the global optimum, and the last loop (Lines

19−27) moves each pollen to a new binary position restricted by Equation 5 (Lines

25−27).
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Algorithm 1: BFPA - Binary Flower Pollination Algorithm

input : Training set Z1 and evaluating set Z2, α , number of flowers m, dimension d and

iterations T .

output : Global best position ĝ.

auxiliaries: Fitness vector f with size m and variables acc, max f it, global f it and maxindex.

1 for each flower i (∀i = 1, . . . ,m) do

2 for each dimension j (∀ j = 1, . . . ,d) do

3 x
j
i (0)← Random{0,1};

4 fi←−∞;

5 global f it←−∞;

6 for each iteration t (t = 1, . . . ,T ) do

7 for each flower i (∀i = 1, . . . ,m) do

8 Create Z′1 and Z′2 from Z1 and Z2, respectively, such that both contains only

features such that x
j
i (t) 6= 0, ∀ j = 1, . . . ,d;

9 Train OPF over Z′1, evaluate its over Z′2 and stores the accuracy in acc;

10 if (acc > fi) then

11 fi← acc;

12 for each dimension j (∀ j = 1, . . . ,d) do

13 x̂
j
i ← x

j
i (t);

14 [max f it,maxindex]← max( f );
15 if (max f it > global f it) then

16 global f it← max f it;

17 for each dimension j (∀ j = 1, . . . ,d) do

18 ĝ j ← x
j

maxindex(t);

19 for each flower i (∀i = 1, . . . ,m) do

20 for each dimension j (∀ j = 1, . . . ,d) do

21 rand← Random{0,1};
22 if rand < p then

23 x
j
i (t)← x

j
i (t−1)+α⊕Lévy(λ ); else

24 x
j
i (t)← x

j
i (t−1)+ ε(x j

i (t−1)− xk
i (t−1));

25 if (σ <
1

1+e
x

j
i
(t)
) then

26 x
j
i (t)← 1; else

27 x
j
i (t)← 0;

2.2 Optimum-path Forest classifier

The Optimum-Path Classifier [12, 13] works by modelling the samples as graph

nodes, whose arcs are defined by an adjacency relation and weighted by some dis-

tance function. Further, a role competition process between some key nodes (proto-

types) is carried out in order to partition the graph into optimum-path trees (OPTs)

according to some path-cost function. Therefore, to design an Optimum-Path Forest-
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based classifier, one needs to define: (i) an adjacency relation, (ii) a path-cost func-

tion and (iii) a methodology to estimate prototypes.

Suppose we have a fully labeled dataset Z = Z1 ∪Z2, in which Z1 and Z2 stand

for training and test sets, respectively. Let S⊂ Z1 be a set of prototypes of all classes

(i.e., key samples that best represent the classes). Let (Z1,A) be a complete graph

whose nodes are the samples in Z1 and any pair of samples defines an arc in A =
Z1× Z1. Let πs be a path in the graph that ends in sample s ∈ Z1, and 〈πs · (s, t)〉
the concatenation between πs and the arc (s, t), t ∈ Z1. In this chapter, we employ

a path-cost function that returns the maximum arc-weight along a path in order to

avoid chains, and also to give the idea of connectivity between samples. This path-

cost function is denoted here as Ψ , and it can be computed as follows:

Ψ(〈s〉) =

{
0, if s ∈ S

+∞, otherwise,

Ψ(πs · 〈s, t〉) = max{Ψ(πs),d(s, t)}, (6)

in which d(s, t) means the distance between nodes s and t. Thus, the objective of the

Optimum-Path Forest algorithm (supervised version) is to minimize Ψ(πt), ∀t ∈ Z1.

An optimal set of prototypes S∗ can be found by exploiting the theoretical re-

lation between minimum-spanning tree and optimum-path tree for Ψ . By comput-

ing a minimum-spanning tree in the complete graph (Z1,A), we obtain a connected

acyclic graph whose nodes are all samples of Z1 and the arcs are undirected and

weighted by the distances d between adjacent samples. The spanning tree is opti-

mum in the sense that the sum of its arc weights is the minimum as compared to any

other spanning tree in the complete graph. In the minimum-spanning tree, every pair

of samples is connected by a single path, which is optimum according to Ψ . Thus,

the minimum-spanning tree contains one optimum-path tree for any selected root

node. The optimum prototypes are the closest elements of the minimum-spanning

tree with different labels in Z1.

The Optimum-Path Forest training phase consists, essentially, of starting the

competition process between prototypes in order to minimize the cost of each train-

ing sample. At the final of such procedure, we obtain an optimum-path forest, which

is a collection of optimum-path threes rooted at each prototype. A sample connected

to an OPT means that it is more strongly connected to the root of that tree than to

any other root in the forest.

Further, in the classification phase, for any sample t ∈ Z2, we consider all arcs

connecting t with samples s ∈ Z1, as though t were part of the training graph. Con-

sidering all possible paths from S∗ to t, we find the optimum path P∗(t) from S∗ and

label t with the class λ (R(t)) of its most strongly connected prototype R(t) ∈ S∗.

This path can be identified incrementally, by evaluating the optimum cost C(t) as:

C(t) = min{max{C(s),d(s, t)}}, ∀s ∈ Z1. (7)
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Let the node s∗ ∈ Z1 be the one that satisfies (Equation 7) (i.e., the predeces-

sor P(t) in the optimum path P∗(t)). Given that L(s∗) = λ (R(t)), the classification

simply assigns L(s∗) as the class of t.

3 Methodology

In this section, we present the methodology used to evaluate the performance of

BFPA. Details about the dataset used, experimental setup and the compared tech-

niques are also provided.

3.1 Datasets

Table 1 presents the datasets used in this work1. Such datasets differ on the number

of samples, features and also classes. Therefore, the idea is to evaluate the proposed

approach in different contexts.

Table 1 Description of the benchmarking datasets.

Dataset # samples # features # classes

GLI-85 85 22,283 2

SMK-CAN-187 187 19,993 2

TOX-171 171 5,748 4

AR10P 130 2,400 10

NTLc 4,952 8 2

NTLi 3,182 8 2

The two last datasets, i.e., NTLc and NTLi, are related with non-technical losses

detection in comercial and industrial profiles, respectively. These are private datasets

obtained by a Brazilian electrical power company. Such sort of problem is of great

interest of electrical power companies, mainly in Brazil, in which the amount of

losses in energy thefts reaches up to 20% in some regions. Therefore, the character-

ization of illegal consumers, i.e., to find out the most important features that allow

us to identify them, is so important as to effective recognize them.

1 The first four datasets can be found on http://featureselection.asu.edu/datasets.php
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3.2 Nature-Inspired Metaheuristic Algorithms

In this work, we have also employed three others evolutionary optimization tech-

niques for comparison purposes. A brief detail about each of them is given below.

Particle Swarm Optimization (PSO): is inspired on the social behavior of bird

flocking or fish schooling [8]. The fundamental idea is that each particle represents

a potential solution which is updated according to its own experience and from its

neighbors’ knowledge. The motion of an individual particle for the optimal solu-

tion is governed through its position and velocity interactions, and also by its own

previous best performance and the best performance of their neighbors.

Firefly Algorithm (FA): it was also proposed by Yang [24], being derived from the

flash attractiveness of fireflies for mating partners (communication) and attracting

potential preys. The brightness of a firefly at a given position is determined by the

value of the objective function in that position. Each firefly is attracted by a brighter

firefly through the attraction factor.

Harmony Search (HS): is a meta-heuristic algorithm inspired in the improvisa-

tion process of music players [6]. Musicians often improvise the pitches of their

instruments searching for a perfect state of harmony. The main idea is to use the

same process adopted by musicians to create new songs to obtain a near-optimal

solution according to some fitness function. Each possible solution is modelled as a

harmony, and each musical note corresponds to one decision variable.

Notice we have used the binary optimization version of each aforementioned

technique, i.e., Binary PSO (BPSO) [5], Binary Firefly (BFA) [11, 4], as well as

Binary HS (BHS) [14].

3.3 Experimental Setup

Firstly, the dataset Z is randomly partitioned in N folds, i.e., Z = F1∪F2∪ ·· ·∪FN .

For each fold Fi, we train a given instance of the OPF classifier over it, for further

evaluation of another fold Fj, i 6= j. Therefore, the classification accuracy over Fj is

then used as the fitness function to guide the optimization algorithms for selecting

the most representative set of features. Each agent of the population (pollen, particle,

firefly, harmony) in the meta-heuristic algorithm is associated with a string of bits

denoting the presence or absence of a feature. Thus, for each agent, we construct

a classifier from the training set Fi only with the selected features, say that F∗i ,

and assigns the accuracy over Fj as the fitness function. As long as the procedure

converges, i.e, all generations of a population were computed, the agent with the

highest fitness value encodes a solution with the best compacted set of features.

After that, we build a classification model using the training set with the selected

features (F∗i ), and we also evaluate the quality of the solution through a classification

process over the test set, which is built over the remaining folds in Z\{Fi∪Fj}. This

procedure is conducted for each fold Fi in the dataset to be part of the training set,

and thus we have N(N − 1) accuracies in the final of the process, which will be
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averaged for comparison purposes. Figure 1 illustrates the methodology described

above.

iTraining over fold F

jClassification over fold F

Feature selection

iTraining over fold F* Classification over Z\{F    F }i j∪

Final classification accuracy

Fig. 1 Proposed methodology to evaluate the compared techniques.

In regard to the recognition rate, we used an accuracy measure proposed by Papa

et al. [12]. If there are two classes, for example, with very different sizes and a

classifier always assigns the label of the largest class, its accuracy will fall drastically

due to the high error rate on the smallest class. The accuracy is measured by taking

into account that the classes may have different sizes in a testing set Fj. Let us

define:

ei,1 =
FPi∣∣Fj

∣∣−
∣∣∣F i

j

∣∣∣
(8)

and

ei,2 =
FNi∣∣∣F i

j

∣∣∣
, i = 1,2, . . . ,C, (9)

where C stands for the number of classes,

∣∣∣F i
j

∣∣∣ concerns with the number of samples

in Fj that come from class i, and FPi and FNi stand for the false positives and false

negatives for class i, respectively. That is, FPi is the number of samples from other

classes that were classified as being from the class i in Fj, and FNi is the number of

samples from the class i that were incorrectly classified as being from other classes

in Fj. The error terms ei,1 and ei,2 are then used to define the total error from class i:

Ei = ei,1 + ei,2. (10)

Finally, the accuracy Acc is then defined as follows:

Acc = 1−

C

∑
i=1

Ei

2C
. (11)
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4 Experimental results

In this section, we discussed the experimental results regarding the proposed ap-

proach for feature selection. The results presented in this section stand for the mean

accuracy and standard deviation over 25 rounds using the methodology presented in

Section 3.3. Since the evolutionary optimization algorithms are non-deterministic,

such approaches seem to be robust to avoid biased results. The optimization algo-

rithms (BFPA, BPSO, BHS and BFA) were implemented in C language following

the guidelines provided by their references. The experiments were executed in a

computer with a Pentium Intel Core i5 R© 3.20Ghz processor, 4 GB of RAM and

Linux Ubuntu Desktop LTS 10.04 as the operational system.

Table 2 presents the parameters used for each optimization technique employed

in this work. The c1 and c2 parameters of PSO control the pace during the particles’

movement, and the “Harmony Memory Considering Rate” (HMCR) of BHS stands

for the amount of information that will be used from the artist’s memory (songs

that have been already composed) in order to compose a new harmony. In regard to

BFA, α and β0 are related with the step size of a firefly, and γ stands for the light

absorption coefficient. In addition, we have used a population of 30 agents and 100

iterations for all techniques, with such values being an empirical set.

Technique Parameters

BPSO c1 = c2 = 2

BFA γ = 0.8, β0 = 1.0, α = 0.01

BHS HMCR= 0.9

BFPA α = 1.0, p = 0.8

Table 2 Parameters used for each meta-heuristic optimization technique. Notice the inertia weight

w for PSO was linearly decreased from 0.9 to 0.4 during the convergence process.

Figure 2 displays the mean accuracy results using the proposed methodology

(Section 3.3). One can observe the feature selection techniques can slightly improve

the results obtained using the original datasets, i.e., without feature selection. The

second point is that all techniques achieved quite similar results. Therefore, the re-

sults showed BFPA is suitable for feature selection tasks. We have also performed

the statistical Wilcoxon Signed-Rank Test [22] to verify whether there is a signif-

icant difference between BFPA and the other techniques used in this work (con-

sidering the OPF recognition rate). Table 3 displays the p-values, being the bold

ones the situations in which BFPA and the respective technique have obtained dif-

ferent performances, i.e., when the p-values are lower than a significance level of

α = 0.05.

One can observe there is a statistical difference between BFPA and BPSO, and

BFPA and BFA for AR10P dataset, and also a difference between BFPA and BHS

considering TOX-171 dataset. Figure 3 displays the convergence rates of all tech-
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niques considering the datasets employed in this work. Such recognition rates are

the ones obtained over the validating set Fj, as depicted in Figure 1.
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Fig. 2 Average OPF accuracy over (a) GLI-85, (b) SMK-CAN-187, (c) TOX-171, (d) AR10P, (e)

NTLc and (f) NTLi datasets.
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Dataset BPSO BFA BHS

GLI-85 0.3130 0.5629 0.1425

SMK-CAN-187 0.1829 0.2012 0.4432

TOX-171 0.1742 0.1500 0.0112

AR10P 0.0023 0.0197 0.0573

NTLc 0.3281 0.4769 1.2290

NTLi 0.1957 0.3318 1.2290

Table 3 Wilcoxon Signed-Rank Test evaluation: p-values computed between BFPA, BPSO, BFA

and BHS.

From Figure 3, it is possible to observe BPSO has been the technique with the

fastest convergence rate, followed by BFA and BFPA. However, the good BPSO

performance over the feature selection process does not seem to enhance a lot its

final accuracy over the test set, as displayed in Figure 2. In addition, BHS has the

slowest convergence process, since it updates only one agent (harmony) per itera-

tion, which turns it fast considering the execution time, but it tends to be slower for

convergence. Figure 4 displays the execution time for all considered optimization

techniques. Though it is possible to observe BFPA has been one of the slowest tech-

niques, since it is the only one that employs Lévy flights to move pollens across

the search space, which can increase the computational burden slightly. It is also

observed that BFPA in general produces better results in terms of accuracy, as seen

in Figure 2.

In addition, Figure 5 displays the mean number of selected features for each

dataset. It is possible to observe BHS has selected the fewest number of features,

followed by BPSO. However, as we have high dimensional datasets (in case of GLI-

85, SMK-CAN-187, TOX-171 and AR10P), the absolute number do not differ a lot

from all techniques. It seems all techniques have been similar to each other con-

sidering the recognition rate, except for the computational load and convergence

speed.

5 Conclusions

In this work, we considered the problem of feature selection as being an evolutionary-

based optimization task constrained on a boolean lattice. The idea is to represent

each possible solution as a string of bits, in which each of them denotes whether a

feature will be used no compose the final set or not.

We have evaluated a recent approach called Flower Pollination Algorithm to this

task in six datasets, being compared against with the well-known Particle Swarm

Optimization, Harmony Search and Firefly Algorithm. The experimental setting has

evaluated the recognition rates, convergence speed, number of selected features and

computational load. All techniques have obtained similar recognition rates, being

PSO the one with the fastest convergence process, and HS the one with lowest com-
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Fig. 3 Average convergence rate considering the OPF accuracy over the feature selection step

for (a) GLI-85, (b) SMK-CAN-187, (c) TOX-171, (d) AR10P, (e) NTLc and (f) NTLi datasets.

putational cost. Therefore, we have showed FPA is also suitable for feature selection

tasks, since its results are comparable to the ones obtained by some state-of-the-art

evolutionary techniques. Future works will be guided to observe the behavior of

FPA regarding its parameters, as well as hybrid versions of it.
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BFPA BHS BFA BPSO0

10

20

30

40

50

60

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF 57.216

2.266

52.394

43.582

BFPA BHS BFA BPSO0

20

40

60

80

100

120

140

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF

138.776

5.201

137.522

111.946

(a) (b)

BFPA BHS BFA BPSO0

5

10

15

20

25

30

35

40

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF

35.039

1.244

37.224

28.097

BFPA BHS BFA BPSO0

2

4

6

8

10

12

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF

10.307

0.358

9.607

8.231

(c) (d)

BFPA BHS BFA BPSO0

20

40

60

80

100

120

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF 109.767

4.508

109.694
104.212

BFPA BHS BFA BPSO0

10

20

30

40

50

60

Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(m

s)
 u

si
ng

 O
PF

50.398

2.090

49.930
47.422

(e) (f)

Fig. 4 Average execution time (ms) for feature selection considering (a) GLI-85, (b) SMK-CAN-

187, (c) TOX-171, (d) AR10P, (e) NTLc and (f) NTLi datasets.
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