
I.J. Modern Education and Computer Science, 2018, 10, 22-30
Published Online October 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.10.03

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Binary Log Design for One-Way Data

Replication with ZeroMQ

I Gede John Arissaputra

Student, Departement of Information Technology, Udayana University, Bali, Indonesia

Email: john.arissaputra@gmail.com

I Made Sukarsa
Lecturer, Departement of Information Technology, Udayana University, Bali , Indonesia

Email: sukarsa@unud.ac.id

Putu Wira Buana
Lecturer, Departement of Information Technology, Udayana University, Bali , Indonesia

Email: wbhuana@gmail.com

Ni Wayan Wisswani
Departement of Informatic Management, Bali State Polytechnic, Indonesia

Email: wisswani@yahoo.com

Received: 15 July 2018; Accepted: 05 September 2018; Published: 08 October 2018

Abstract—Today, many business transactions are done

online, especially in the financial sector or banking [1].

But as companies grow, many problems occur such as the

inability to manage data consistency, especially when

data is associated with more than one database.

Replication is one of the most commonly used way of

syncing data. However, to ensure data remains consistent,

it is not enough just to take advantage of the replication

process. The problem that often happens is connection

failure or offline host. The Binary Log approach is one of

the alternative methods that can be used to develop

database synchronization. Generally, binary log is used

for data recovery or backup purposes. Binary log in the

DBMS (Database Management System) record all

changes that occur in the database both at the data and

structure level, as well as the duration of time used. This

information can be used as a reference in updating data,

while the ZeroMQ socket used as data exchange medium

so data in all system locations will be synchronized and

integrated in real time. This research will discuss how to

develop a synchronization system by utilizing Binary Log

from MySQL to recognize data changes, inherit changes,

send changes, and hopefully can contribute new

alternative method in developing real time database

synchronization.

Index Terms—Synchronization, Binary log, Socket,

Replication

I. INTRODUCTION

Today, database design for real-time applications has

been widely researched. A Real-time database systems

are generally known as database systems where

transactions are related to deadline, right when their

transactions are finished. All data elements must remain

valid until the commit time, otherwise it will have a

serious impact on the validity of an information [2].

Electronic data exchange between agencies or

corporations must be supported with sufficient data

storage capacity. MySQL database is an engine which is

used to store data. MYSQL has several advantages, such

as providing convenience in terms of access and can

work on various platforms [3]. Data integration is an

important part of distributed databases, where data from

multiple sources can be integrated by implementing data

integration. Distributed database systems have several

advantages, such as the capability to take care of

expansion (enhancement or widening) of data and data

availability, as well as the capability to manage where to

distribute data. Replication in a distributed database is

one of several ways that can be used to distribute data [4].

However, to ensure data remains consistent, it is not

enough just to take advantage of the replication process.

The problem that often happens is connection failure or

offline host. Data synchronization procedure or model

can be used to solve the problem. Data synchronization is

part of replication, this is the process to make sure every

copy of the database contains similar data. The

synchronization process allows data in the database to be

updated in real time or periodically in other databases.

Database synchronization can be used in various

purposes, such as creating audit records to record every

activity that occurs in the database. The audit trails from

database manipulation, enables DBA (Database

Administrator) to maintain audit trails over time, to

perform an access patterns and data modifications review

 Binary Log Design for One-Way Data Replication with ZeroMQ 23

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

on the DBMS (Database Management System) [5].

Binary log approach is one of several methods that can be

used in developing one-way synchronization on the

database. Binary log in the DBMS (Database

Management System) record all changes that occur in the

database both at the data and structure level, as well as

the duration of time used. This information is used as a

reference in updating data, while the ZeroMQ socket

used as data exchange medium so data in all system

locations will be synchronized and integrated in real time.

Socket is a communication mechanism that allows

users to exchange data between processes or programs

over a TCP / IP based network according to configuration.

ZeroMQ is an open source socket library that supports

concurrency framework. Concurrency is when the DBMS

allows multiple transactions at the same time to access

the same data. This socket supports programming

languages like C, C ++, JAVA, .NET, Python and on

platforms like Linux and Windows. ZeroMQ, or often

known as ØMQ, 0MQ, or zmq provides sockets that

transmit messages across various transport layers such as

in-process, inter-process, TCP, and multicast [6].

ZeroMQ is suitable for use in this research as a medium

of data exchange because it can be used on centralized,

distributed, small scale, or large scale systems.

Combination of socket mechanism and information

from binary logs allows the development of a

customizable synchronization system that can handle

problems that existed before, such as connection failure.

II. THE USE OF BINARY LOG

The binary log contains “events” that represent

database changes that happen in the database such as the

operation to create a table or data changes that occur in

the table. It also contains events for statements that

probably made changes to database (for example, a

DELETE query which matched no rows would still

recorded in the binary log), except row-based logging is

used. Information regarding the length of every statement

took the updated data is also recorded in the binary log.

There are two general uses in the use of Binary Log:

1) Replication, the slave server will receive a

record of data changes sent by the master replication

server. The data changes is obtained from the binary log.

The master server forward events containing binary log

data to its slaves, then those events will be executed by

the slave to equalize the data with the master.

2) Particular data recovery processing needs binary

log data. events on binary logs that saved since the

backup created will be re-executed after a backup fully

recovered. These events take databases keep up to date

from the backup point.

Expressions like SELECT or SHOW that do not

change data didn’t recorded in the binary log. If a server

running with binary logging in active state will slightly

slow down the performance. Still, the advantages of the

binary log that allow you to manage replication and for

recovery process mostly outweigh this small performance

reduction. Binary log is secure even if there is a sudden

transaction termination. Only finished transactions or

events are recorded or read back.

III. RELATED RESEARCH

G.Jothipriya & Shri, (2013) in their journal proposed a

mobile database synchronization model using Microsoft

Synchronization Framework as server. This platform was

developed by Microsoft which is used to sync multiple

data stores. The Sync Framework merely uses the sync

agent and providers to perform the synchronization

process. Case studies were conducted on employee and

student systems. Employees keep student records on the

server and update student information, such as exam

score and behaviour records. Students get these updates

and see detailed information in their app. Each time the

employee updates the information in the database server,

the student's mobile database is also updated using the

sync technique. With this method the mobile database is

synchronized with the database server and receives

updates from the server [7].

Gudakesa et al., (2014) developed an application to

synchronize the database using the Audit Log approach,

which is Trigger on MySQL. Every table that wants to be

monitored by the system, will be paired with three

triggers, such as “after insert”, “after update”, and “after

delete”. The data changes obtained by the trigger then

recorded into a table called auditlog. The synchronization

system developed in this study uses client-server

architecture using socket messages as communication

medium. Some of the problems encountered include the

failure of the connection between the client to the server

or vice versa, too much history of data changes on one

audit table that affect system performance, the possibility

of endless loop in two-way sync, and message security

issues [4]. Another disadvantage of this method is that the

structure is not dynamic. When there is a new table to be

synchronized, it is necessary to create a new trigger that

specifically handles table with that structure. The binary

log method has more advantages in this case because data

changes are obtained through query parsing, so that it is

more dynamic.

Research on database synchronization design has been

studied by (Surya et al., 2014) which revealed that binary

logs can be used as an approach to synchronize databases.

This is because the activity performed on the database

recorded by the binary log in real time. The advantage of

using binary logs is that configuration can be done easily

for monitoring specific databases and tables, and data can

be accessed via query directly. Data parsing process

allows details of data changes to be obtained properly.

The system developed in this study use the client-server

concept where the server acts as communication mediator

between clients. Some problems encountered in this study

include the failure of the connection between the client

with the server, the security of data sent from the client to

the server or vice versa, and binary log double logging

problem in two-way synchronization [2].

24 Binary Log Design for One-Way Data Replication with ZeroMQ

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Lee et al., (2015) in their journal proposed a ZeroMQ-

based framework to simulate distributed components.

This framework allows a component on the system to

communicate with other components via a ZeroMQ-

based message broker. The proposed structure is able to

perform cooperative simulation among model and code

components, which makes it possible to incrementally

implement the system. The case study used to perform

the simulation is Smart Home with three components

such as model-based Smart Home Model, code-based

Emergency Control System and model-based Lamp

Model. By using this framework, each distributed

component of system can be developed incrementally on

a computer and on computers. The framework can also

applicable in any language and on any platform because

it is ZeroMQ-based [6].

Yang, Ye, Zhang, & Xing, (2014) in their journals

present a decentralized architecture for developing high-

performance distributed messaging systems and great

scalability for message-based distributed jobs and real-

time message processing. High performance means it is

low latency and high throughput. The meaning of

scalability is the messaging system can automatically

reduce or enlarge the scale based on the workload. In

their approach, they combine the high performance of

ZeroMQ libraries and good distribution scalability from

DHT. ZeroMQ here used to handle communication

between sockets. The results show that the system is

capable to scale out and scale in elastically so that it can

adapt to the addition of load while keeping the system

low latency. These advantages make sure the system to

give well user experience in services and web

applications [8].

Malhotra & Chaudhary, (2014) conducted research to

provide a data synchronization algorithm to solve the

problem when there are many clients that rely on a single

server. When the database server can not be accessed due

to server down or other errors on the server, all remote

worker will disconnect its data connection and enter the

offline mode. In offline mode, data that failed to send is

stored on a local client computer. When the connection is

available, the system will return to online mode. Database

check will be perform to ensure if there is an entry in the

local database. If it doesn’t exist, then the data will be

stored on the server. However, if any data exist then the

data will be taken and sorted from the smallest ID and

sent from the client to the server in serial order. Data then

deleted from the local computer [9]. This concept is also

used in the developed binary log synchronization system

in terms of managing messages that failed to be sent to

the server.

Jafarinejad & Amini, (2018) in their journal proposed

an algorithm called BACO that has objectives to reduce

the required processing load on multi-join queries

together with decreasing the total false-positive output

produced in Bucket-based encrypted databases. The

results show that this solution leads to a 75% reduction in

multi-join query processing load and a false-positive

reduction of 74% with better potential than previous

methods [10].

Patro, Suman (2017) in their journal measures and

research middleware resolutions on Message Paradigms-

based. The resolutions such as Apache Qpid, RabbitMQ,

ZeroMQ, YAMI4, and Mosquitto are observed and

compared. The compared parts such as messaging

semantics viz. message serialization, supported

messaging formats, message routing & queuing, load

balancing, priority of the message, latency, memory

footprint, throughput, and so on. Based on test results, the

server scalability, and throughput of message in YAMI4

surpass Apache Qpid, while the latency of every message

in YAMI4 is less if compared to Apache Qpid. YAMI4

also proven to be lightweight if compared with Qpid. For

that reason, YAMI4 is really suitable especially for

Control and Monitoring systems deployment [11].

Shaochao, Sun (2010) has conducted research on data

reconciliation. In their research, a MT-NT-MILP (MNM)

compound method is researched for data reconciliation

and gross error discovery in industrial application. The

MT-NT method that has been improved is offered in

order to produce gross error possibilities before data

correction. Error possibilities are used to increase the

efficiency by decreasing the quantity of binary elements

in the MILP objective function. Examination results

represent that the method is suitable mainly in the

problems that have big-scale [12].

Meng, Zhaozong (2016) in his journal examines the

mechanism of M2M messaging for IoT industrial

applications. This study focuses on the fundamental

issues in the development of distributed systems, which

provide a data-oriented M2M communication procedure

based on industrial system model. The main focus is on

the procedure of messaging between engines for data

sharing, and notification order. According to real-time

data result, the tested microwave sensor module has been

able to operate cross-platform, machine state monitoring,

and fast data sharing, which serves as a fundamental for

referenced industrial system model. The next

development focus is to optimize the ZMQ messaging

mechanism in establishing connections and more suitable

for communication between machines [13].

Gougeaud, Sebastien (2017) in his journal, examines

three problems caused by parallel execution of OGSSim

that can be solved using ZeroMQ. ZeroMQ is used not

only for communication tools, but also for solving

problems created by asynchronism. Consequently, for

both requests creation and pre-read requests processing,

ZeroMQ communication sockets are used as a

synchronization mechanism between the drivers and the

execution module in charge of the performance metrics

calculation as the response time, the device utilization,

etc. Future development will focus on optimization to

reduce execution time of OGSSim by replacing data

structures used to store subrequests of vector type

structures [14].

Estrada, Nicolas (2015) tried to compare the scalability

of ZeroMQ and RabbitMQ. This study discusses the

proposed prototype architecture applied in ZeroMQ and

RabbitMQ, which is used to measure the impact of the

number of messages over performance, and the numbers

 Binary Log Design for One-Way Data Replication with ZeroMQ 25

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

of consuming nodes over scalability. The results show

that for both criteria, the degradation threshold of

ZeroMQ is higher than RabbitMQ, thus more scalable

and faster [15].

IV. RESEARCH SCHEME

The general scheme of the developed system is

shown in Figure 1.

Fig.1. General Scheme

In general, the processes that occur in the developed

system are described as follows. There is a computer that

acts as a server to manage data transfer between clients.

Client here is a computer that wants to sync data with

other client. Each client will be given a series of

synchronization engine along with the database to

support the operation, while the server computer will be

given a different series of synchronization engine and

database to support the work. Additional database on the

client side are used to store incoming message data,

outgoing messages, application settings, binary log

contents, and process records to record the last binary log

position that have been read, while the server-side

database are used to store incoming messages, outgoing

messages, data manipulation query from the client, and

client pair details.

The first stage, the client’s computer must enable the

binary log facility on MySQL. This stage is the

preparation stage, the configuration must be done on the

my.ini file, such as the database that want to be

synchronize, and the maximum binary log size. The client

side synchronization engine along with the

binlog_client_db database handles and saves data

changes history that occur on the client’s existing

database. Data changes history in the database obtained

by parsing data on binary log. The binary log records all

DDL (Data Definition Language) and DML (Data

Manipulation Language) activities performed by the user,

but the synchronization engine will only record the insert,

update, and delete related activities in the specific table

that user want to synchronize.

Any data changes that occur on the client then sent to

the server synchronization engine via ZeroMQ socket in

the form of messages to be processed and sent to the

target client by the server so data synchronization can

work properly.

Socket ZeroMQ here serves as a medium of data

exchange between client synchronization engine and

server synchronization engine. ZeroMQ was chosen

because of its reliability in handling messaging. ZeroMQ

is very fast, capable of sending or receiving messages up

to 4.1 million messages per second. ZeroMQ also

requires only small memory to work optimally [16].

Another reason socket used in this research is because a

web service can be built without the need of the hosting.

V. HOW IT WORKS

A. Client

The Client Sync component is assigned to each client

computer and used to manage the data changes obtained

through the binary log, and send the data in message

format to the server via ZeroMQ socket. The message

will be sent to the destination client by the server sync

component. The architecture of the client components is

shown in Figure 2.

Any data manipulation performed on an existing

database (client’s existing database that want to be

synchronize) will be recorded in the binary log file.

Binlog reader engine is used to read and store the data

manipulation query into the detail log table. The

incoming message processing engine then reads the log

26 Binary Log Design for One-Way Data Replication with ZeroMQ

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

detail table, and converts the query into a message format

and saves it into the outbox table to be sent to the

destination client through the server.

Fig.2. Client Synchronization Architecture

Every incoming message to the client is retrieved and

stored to the inbox table by the message receiving engine.

If the message contains data manipulation query, it will

be executed by the execution_query engine so

synchronization can work properly.

B. Server

The Server Sync component is responsible for

managing the data exchange traffic between the origin

client and the target client. The architecture of the server

components is shown in Figure 3.

Fig.3. Server Synchronization Architecture

Incoming messages to the server are stored in the

inbox table by the message receiving engine. if the

message contains a data manipulation query it will be

parsed and stored into the receive_data table. The next

stage, the engine will find out the original client’s pair or

client target of the query. Destination address, and data

changes query that have been merged and formed in the

message format then stored into the outbox table. The

message sender engine then sends the message in serial

order.

C. Socket Communication

ZeroMQ socket is used as a communication medium

between server to client and vice versa. Inbox outbox

concept is used as communication flow. Each incoming

message will be directly saved to the inbox table by the

message receiving engine.

 Binary Log Design for One-Way Data Replication with ZeroMQ 27

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Fig.3. Receiving Message Flowchart

Messages that have been stored are processed by

different engines so that the job of the message receiving

engine are very concise, clear, and specific just to receive

and store incoming messages.

Fig.4. Sending Message Flowchart

The job of the message sender engine is also very

specific, ie sending messages that exist in outbox table

that have not been sent. Flag is used as a marker to find

out which messages need to be sent.

There are several types of incoming messages based on

their contents. Messages beginning with 1# are messages

containing data manipulation queries from the origin

client, while messages beginning with 3#, and 4# are

messages used for connection testing purposes.

D. Connection Test

Connection testing is performed to ensure that the

message destination (server or client) is ready to receive

messages. Connection testing is always done before the

sending of the message contains query data manipulation.

The used method is to send a dummy message in format

3#id_outbox to the destination computer.

If the destination computer successfully receives this

message, it will respond by sending a message in format

4#id_outbox. The response from the destination computer

indicates that the destination computer is ready to receive

the message. The original message (message containing

the data manipulation query) then sent to the destination

computer.

If the destination computer is not ready to receive the

message, the response will not be received by the sender

computer, so the original message will not be sent. The

connection test will be performed every x second

according to configuration, and the original message will

be sent when the destination computer give response.

E. Reading Binary Log

The algorithm used to read binary logs accurately

utilizes the index file data stored in the binary log. This

index file is required to get the last query executed in the

database, and used to create algorithms for the system to

read only the latest binary log indexes or have not been

read by the binlog reader engine.

Fig.5. Reading Binary Log Flowchart

In general the process begins with reading Binary Log

file index. This binary log file index is an index file that

contains a list of binary log master files that have been

created from data manipulation activities. The index file

that will be used in the process of reading binary log files

is the last recorded file. After getting the last Binary Log

file, then the last position is traced, and the query is

taken, so logically the last query that executed in the

database is the latest query and should be sent to the

destination server. The last position of the file then stored

in the database as a history so the binlog reader engine

will not repeat reading the same binary log.

Binary log contents can be accessed directly via query.

An example of the binary log’s contents is shown in

Figure 7 and Figure 8.

28 Binary Log Design for One-Way Data Replication with ZeroMQ

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Fig.6. Binary Log Content 1

Fig.7. Binary Log Content 2

Only rows that have Intvar and Query event_type will

be loaded by the engine for processing. Intvar contains

the value of the primary key in the tables that have the

auto increment attribute, while the Query event contains

the query that already executed in the database. One

database manipulation activity, recorded in only one row

in the binary log. The end_log_pos field contains the last

position information that will be logged to allow the

engine not to repeat reading logs that have been read.

Fig.8. Process Record

The process_record table is used to store the last binary

log position. When the engine reads binary logs, the

engine will only read the binary log contents starting

from the last log position in the process record so that

only the latest data changes will be processed.

Fig.9. detail log / det_bin table 1

Fig.10. detail log / det_bin table 2

Figure 10 and figure 11 shows the information

obtained from the binary log after parsing the data. This

information is recorded in the det_bin table to be

processed and sent to the destination so that

synchronization can run properly.

The data changes in detail log table or det_bin table are

sequentially processed one by one to be sent in message

form to Synchronization Server. Data processing queue

mechanism is aided by flags. Flag 0 indicates that the

data has not been processed, flag 1 indicates the data is

being processed, and flag 2 indicates that the data has

been completed and successfully converted into a

message format to be sent.

 Binary Log Design for One-Way Data Replication with ZeroMQ 29

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Fig.11. Data Changes Processing Flowchart

VI. RESULTS

Testing is performed by measuring the time needed to

synchronize data. Each host has a table named trx to be

synchronized, which has a structure like in Figure 13.

Fig.12. trx table

The contents of the trx table will be replicated in one

direction from the original host to the target host. The time

required will be recorded before the data is manipulated

until the data is fully synced. The results is shown in

Table 1.

Table 1. Result

DML

Time Consumption (seconds)

100

data

200

data

400

data

600

data

1000

data

Insert 77 154 306 587 758

Update 83 168 349 582 1175

Delete 143 289 664 698 851

Table 1 shows the test results of the synchronization

system that has been developed. Testing is performed in

three stages, such as insert testing, update testing, and

delete testing. Insert testing is done by recording the time

needed to replicate x data at once. The results show that it

takes 77 seconds to replicate 100 data, 154 seconds to

replicate 200 data, 306 seconds for 400 data, 587 seconds

for 600 data, and 758 seconds for 1000 data.

The update test is done by initializing 1000 data first,

the test is then performed by recording the time required

from when the update occurs until the data has been

synchronized. The results show that it takes 83 seconds to

replicate 100 data, 168 seconds for 200 data, 349 seconds

for 400 data, 582 seconds for 600 data, and 1175 seconds

for 1000 data.

Delete test is done with 1000 initial data, the test is then

performed by recording the time required from when

delete occurs until the data on the target host has been

synchronized. The results show that it takes 143 seconds

to replicate 100 data, 289 seconds to replicate 200 data,

664 seconds to replicate 400 data, 698 seconds to replicate

600 data, and 851 seconds to replicate 1000 data. If set in

graphical form it will look like Figure 14.

Fig.13. Result Graph

Figure 14 shows the graph of the synchronization test

results. It is seen that the graph is relatively stable even

though the processed data is getting larger. This indicates

that the application is stable enough to handle continuous

data growth.

VII. CONCLUSION

Binary Log approach can be used in developing a

system for data synchronization with client-server

concept according to user's configuration. The most

important part is how to process information from Binary

Log so that it can be utilized to build synchronization.

Information from binary logs can be accessed via query

commands directly and if combined with certain

algorithms, it can be used for various useful things.

REFERENCES

[1] Margaretha, F., DAMPAK ELECTRONIC BANKING

TERHADAP KINERJA PERBANKAN INDONESIA.

Jurnal Keuangan dan Perbankan, Vol.19, No.3 September

2015, hlm. 514–524, 2015.

[2] Surya, G.H., I.M. Sukarsa, and I.G.M.A. Sasmita, Two-

Ways Database Synchronization In Homogenous

Database Management System With Binary Log

30 Binary Log Design for One-Way Data Replication with ZeroMQ

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 22-30

Approach. Journal of Theoretical and Applied Information

Technology, 2014. 65.

[3] Hanafi, A., I.M. Sukarsa, and A.A.K.A.C. Wiranatha,

Pertukaran Data Antar Database dengan Menggunakan

Teknologi API. LONTAR KOMPUTER, 2017. 8.

[4] Gudakesa, R., I.M. Sukarsa, and I.G.M.A. Sasmita, Two-

Ways Database Synchronization In Homogeneous DBMS

Using Audit Log Approach. Journal of Theoretical and

Applied Information Technology, 2014. 65.

[5] Abhisena, I.G.A., I.M. Sukarsa, and D.P. Githa,

Implementasi Database Auditing dengan Memanfaatkan

Sinkronisasi DBMS. LONTAR KOMPUTER, 2017. 8.

[6] Lee, S., H. Park, and W.J. Lee, Design of ZeroMQ-Based

Cooperative Simulation Framework for Distributed Code

and Model Components. International Journal of Future

Computer and Communication, 2015. 4.

[7] Jothipriya and M.L. Shri, Database Synchronization of

Mobile-build by using Synchronization framework.

International Journal of Engineering and Technology

(IJET), 2013. 5(3).

[8] Yang, F., et al., DZMQ: A Decentralized Distributed

Messaging System for Realtime Web Applications and

Services. 11th Web Information System and Application

Conference, 2014.

[9] Malhotra, N. and A. Chaudhary, Implementation of

Database Synchronization Technique between Client and

Server. International Journal of Engineering Science and

Innovative Technology (IJESIT), 2014. 3(4).

[10] Jafarinejad, M. and M. Amini, Multi-join query

optimization in bucket-based encrypted databases using

an enhanced ant colony optimization algorithm. Springer

US, 2018.

[11] Patro, S., P.M. Potey, and A. Golhani, Comparative Study

of Middleware solutions For Control and Monitoring

systems. IEEE, 2017.

[12] Shaochao, S., H. Dao, and y. Gong, A MT-NT-MILP

Combined Method for Gross Error Detection and Data

Reconciliation. IEEE, 2010.

[13] Meng, Z., et al., A Data-Oriented M2M Messaging

Mechanism for Industrial IoT Applications. IEEE, 2016.

[14] Gougeaud, S., et al., Using ZeroMQ as

communication/synchronization mechanisms for IO

requests simulation. 2017.

[15] Estrada, N. and H. Astudillo, Comparing scalability of

message queue system: ZeroMQ vs RabbitMQ. XLI Latin

American Computing Conference (CLEI), 2015.

[16] Sasongko, Y.A. and W. Suadi, IMPLEMENTASI

KOMUNIKASI ANTAR SERVER PADA BISNIS

PULSA ELEKTRIK MENGGUNAKAN ZEROMQ

Digital Library Institut Teknologi Seputuh Nopember,

2010.

Authors’ Profiles

I Gede John Arissaputra, He graduated

from high school in SMAN 1 Kuta Utara in

2014. He is currently in the process of studies

at the Department of Information Technology,

Udayana University, Bali, Indonesia. He also

has the ability as a web developer and data

management.

I Made Sukarsa, he obtained his Master

Degree in Dept. Of Electrical Engineering at

Gadjah Mada Univ. in 2003 He currently

works as a lecturer in the Department of

Information Technology University of

Udayana. He has conducted almost 12

journal papers in the field of Data

Warehouse, Middleware, and Information Technology

Governance.

Putu Wira Buana, he obtained his Master

Degree in The Science of Applied

Electronics at Brawijaya University in 2007.

He currently works as a lecturer in the

Department of Information Technology

University of Udayana. He has conducted

eight journal publications in the field of

Emerging Technology And Enterprise And Industry

Application.

Ni Wayan Wisswani, She obtained her

Master Degree in Fac. of Electrical

Engineering at Udayana University. She

currently works as a lecturer in the

Department of Informatics Management of

Bali State Polytechnic. She has conducted

three journal publications in the field of

Middleware.

How to cite this paper: I Gede John Arissaputra, I Made Sukarsa, Putu Wira Buana, Ni Wayan Wisswani, " Binary

Log Design for One-Way Data Replication with ZeroMQ", International Journal of Modern Education and Computer

Science(IJMECS), Vol.10, No.10, pp. 22-30, 2018.DOI: 10.5815/ijmecs.2018.10.03

