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A synthetic aperture radar (SAR) target recognition method is proposed in this study based on the dominant scattering area
(DSA). DSA is a binary image recording the positions of the dominant scattering centers in the original SAR image. It can reflect
the distribution of the scattering centers as well as the preliminary shape of the target, thus providing discriminative information
for SAR target recognition. By subtracting the DSA of the test image with those of its corresponding templates from different
classes, the DSA residues represent the differences between the test image and various classes. To further enhance the differences,
the DSA residues are subject to the binary morphological filtering, i.e., the opening operation. Afterwards, a similarity measure is
defined based on the filtered DSA residues after the binary opening operation. Considering the possible variations of the
constructed DSA, several different structuring elements are used during the binary morphological filtering. And a score-level
fusion is performed afterwards to obtain a robust similarity. By comparing the similarities between the test image and various
template classes, the target label is determined to be the one with the maximum similarity. To validate the effectiveness and
robustness of the proposed method, experiments are conducted on the moving and stationary target acquisition and recognition

(MSTAR) dataset and compared with several state-of-the-art SAR target recognition methods.

1. Introduction

As a microwave sensor, the synthetic aperture radar (SAR)
could operate under all-day and all-weather conditions with
the capability to penetrate the shelters such as clouds and
trees. Therefore, it is widely used in both military and civilian
fields. With the fast development of SAR sensors, the in-
terpretation of high-resolution SAR images has been an
urgent task. As one branch of SAR image interpretation,
automatic target recognition (ATR) aims to decide the target
class of an unknown region of interest (ROI) obtained by
target detection [1]. Since the 1990s, SAR ATR has been
studied intensively with a rich set of effective methods.
Generally, the SAR ATR methods can be categorized into
two types: template-based ones [2, 3] and model-based ones
[4, 5]. The two categories differ in the ways of describing the
characteristics of the targets. The template-based systems
store the SAR images from different conditions such as

different view angles and backgrounds to describe the
characteristics of the targets. In contrast, the model-based
methods use the physical or conceptual models to describe
the targets, such as CAD models [4, 5] or 3D scattering
center models [6, 7]. For a concrete SAR ATR algorithm,
both the template-based and model-based methods involve
two steps: feature extraction and classification. The former
step is performed to obtain discriminative representations
for the original SAR images. In the field of SAR ATR,
different kinds of features are used including the geometrical
features [8-13], transformation features [14-18], and scat-
tering center features [19-25]. The geometrical features are
extracted to describe the geometrical properties of the target.
In [9, 10], the Zernike and Krawtchouk moments are
adopted to describe the binary target regions, respectively.
Afterwards, the resulted feature vectors are classified by
support vector machines (SVMs). The outline points of the
target are extracted and approached by the elliptical Fourier
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series (EFS) in [12]. Similarly, the extracted descriptors are
classified by SVM to determine the target label. As the
product of the target and background, the shadow reflects
the target’s profile indirectly. Hence, Papson and Narayanan
model the shadow outline using the hidden Markov model
(HMM) with application to target recognition [13]. The
transformation features are also frequently used in SAR
ATR. These features can be extracted with notably high
efficiency by using methods such as principal component
analysis (PCA) [14], linear discriminant analysis (LDA) [14],
and nonnegative matrix factorization (NMF) [15]. After-
wards, the feature vectors with unified forms can be effi-
ciently classified by the advanced classifiers like SVM and
sparse representation-based classification (SRC). In [14],
PCA and LDA are used for SAR feature extraction, which are
classified by K-nearest neighbor (KNN). In [15], NMF is
introduced into SAR ATR, which achieves superior per-
formance than LDA and PCA according to the experimental
results. Inspired by the manifold learning, some other
transformation features are designed to improve the ATR
performance [16-18]. The scattering center features mainly
describe the electromagnetic scattering phenomenon of the
target. As a typical representative, the attributed scattering
center has been applied to SAR ATR with good performance.
In [21-24], several matching schemes are proposed to build
one-to-one correspondences between two attributed scat-
tering center sets. Afterwards, similarity measures are de-
fined for target recognition. In [6], the scattering centers are
used in a model-based way, where the predicted scattering
centers by 3D scattering centers are matched with the
extracted target region or scattering centers. In the classi-
fication stage, the classifier is designed according to the
properties of the features. Owing to the fast development in
the field of computer vision, many advanced classifiers have
been successfully applied to SAR target recognition with
good performance including SVM [9, 12, 26, 27], adaptive
boosting (AdaBoost) [28], SRC [27, 29, 30], and discrimi-
native graphical models [31]. Recently, the deep learning
method, i.e., convolutional neural network (CNN), is
demonstrated to be effective for SAR ATR [32-36]. CNN
learns hierarchical features by the convolution layers and
performs target classification via a softmax layer (i.e., a
multiclass regression analysis) [37, 38]. However, for fea-
tures with no unified forms, e.g., unordered scattering
centers, the traditional nearest neighbor is often adopted. In
detail, a similarity (distance) measure is first designed for the
features, and the target label is decided to be the template
class (model) with the maximum similarity (minimum
distance) [21-24].

In this paper, an SAR ATR method is proposed based on
the dominant scattering area (DSA) [39]. DSA is generated
by selecting several dominant scattering points with the
highest intensities in the original SAR images. In this way,
DSA reflects the spatial distribution of the dominant scat-
tering centers. Meanwhile, the preliminarily geometrical
shape of the target can also be described. Therefore, DSA
could provide rich discriminability for SAR ATR. In the
classification stage, the DSA of the test sample is matched
with the DSAs of its corresponding templates from different
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classes. The DSA residues between the test sample and its
correct template are small patches. In contrast, when the
template is from the incorrect classes, the residues are
usually bulkily shaped with large areas. In this case, the target
label can be correctly determined based on the areas of the
DSA residues with high probabilities. However, the test
image may be corrupted severely by the extended operating
conditions (EOCs) like noise corruption and partial oc-
clusion. As a result, its DSA may be partially deformed. To
handle these situations, the binary morphological filtering,
i.e., the opening operation [40], is performed on the DSA
residues to further enhance their discriminability in this
study. After the opening operation, the filtered DSA residues
between the intraclass samples are largely narrowed, whereas
the majority of the between-class residues are retained. So, it
is easier to distinguish different targets based on the filtered
DSA residues. A similarity measure is defined based on the
filtered DSA residues after the opening operation, which
comprehensively considers the distribution properties of the
DSA residues and possible deformations of DSA. Moreover,
to handle unpredictable deformations of the test sample,
several structuring elements are jointly used during the
morphological filtering. Afterwards, a score-level fusion is
performed to combine the results at different structuring
elements to improve the robustness of the similarity mea-
sure. Finally, the target class of the test sample is decided
according to the fused similarities.

The remainder of this paper is organized as follows:
Section 2 introduces the fundamentals of the binary mor-
phological filtering. In Section 3, the target recognition
method based on the DSA is presented. Experiments are
conducted on the moving and stationary target acquisition
and recognition (MSTAR) dataset in Section 4. Conclusions
are drawn in Section 5 with some discussions.

2. Binary Morphological Filtering

The binary morphological filtering [40] processes the binary
images with the structuring elements, which can modify the
distributions and shapes of the binary regions. As key to
binary morphological filtering, the structuring element
greatly influences the filtered results. During the filtering, the
structuring element slides on the binary image and returns a
binary result based on set theory.

Erosion and dilation are two basic operations in binary
morphological filtering. For a binary image I, its corre-
sponding results after the erosion and dilation operations are
obtained as follows:

E=IeS={xyl|S, cB},
1
D=IeS=},y|S,nB=0}, W

where the symbols © and & represent the erosion and di-
lation operations, respectively; S denotes the structuring
element; and E and D are the results after the erosion and
dilation, respectively. The erosion operation can effectively
remove the regions with smaller sizes than the structuring
element. In contrast, the dilation operation can enlarge the
binary regions according to the structuring element.
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According to the properties, the other two binary
morphological filtering methods, i.e., opening and closing
operations, are designed as follows:

I-S=(IeS)aS,

(2)
TeS=(I®S)eS,

where the symbols o and e represent the opening and closing
operations, respectively. In the opening operation, the bi-
nary region is first filtered using the erosion operation and
the dilation operation afterwards. The closing operation
works in the opposite order. According to the properties of
the erosion and dilation operations, the opening operation
is capable of breaking the narrow connections and
smoothing the region outlines. Differently, the closing
operation can eliminate the holes to connect the whole
binary region.

3. DSA Matching Using
Morphological Operations

3.1. Generation of Dominant Scattering Area (DSA). SAR
images reflect the backscattering of the target. The pixels
with higher intensities in SAR images indicate they have
stronger scatterings. By selecting a certain number of the
strongest scattering points, a binary DSA image can be
generated. The procedure of generating DSA is as follows:

Step 1. Sort the intensities of the original image in the
descending manner

Step 2. Decide the threshold for segmentation based on the
number of desired dominant scattering points

Step 3. Convert the original SAR image to a binary image
according to the threshold in Step 2.

The generation of DSA is notably simple and convenient
compared with the traditional target segmentation algo-
rithms. Figures 1(b)-1(d) show the DSAs of the original
image in Figure 1(a) by selecting different numbers of
scattering points at 100, 150, and 200, respectively. It is
visible that the DSAs can reflect the distribution of the
scattering centers as well as the preliminary target shape. The
number of selected scattering points is also crucial. Too few
selections will deform the target shape, while a large number
of scattering points will bring too many false alarms from the
background clutters. According to the observations of many
MSTAR images, the choice of selecting 150 dominant
scattering points is relatively robust for this special dataset.
In comparison with the binary target region, the generated
DSAs have the following advantages: first, it is much easier to
generate the DSA than the binary target region. As illus-
trated above, the steps for generating the DSA are very
simple and efficient. The main reason is that the dominant
scattering centers have much higher intensities than the
background pixels. However, for the binary target region,
some weak scattering centers on the target may have
approaching intensities with the background pixels, which
makes it difficult for the precise target segmentation. Second,

as shown in Figure 1, the DSA can not only describe the
distribution of the scattering centers but also reflect the
geometrical shape of the target. Therefore, the DSA can
provide more discriminative information than the binary
target region, which mainly depicts the geometrical shape of
the target. Third, in this study, the multilevel DSAs are
jointly used. As shown in Figure 1, they provide coarse-to-
fine descriptions of the target characteristics. Therefore, it is
promising that their joint classification can promote the
recognition performance.

3.2. DSA Matching Using Binary Morphological Filtering

3.2.1. Similarity Measure Based on DSA Residue. DSA re-
flects the distribution of the scattering centers as well as the
preliminary target shape. Therefore, the DSA residues ac-
tually reflect the differences in the two images. From this
aspect, the DSA residues can be effectively used to distin-
guish different classes of targets. Denote the DSAs generated
from the test image and its corresponding template image as
F and G, respectively; the DSA residues R are obtained by a
simple subtraction as follows:

R=|F-G| (3)

Figure 2 shows the DSA residues between a BMP2 image
and its corresponding images at the same azimuth in the
template database comprised by BMP2, BTR70, and T72 (the
detailed descriptions of these targets are presented in Section
4). Clearly, the DSA residues with the correct class have
much less nonzero elements than those with the incorrect
classes. Denote the areas of the nonzero regions (i.e., the
numbers of nonzero pixels) in F, G, and R as N, N, and
Ny, respectively; the similarity between F and G is defined as
follows:

N
Crg=1 N, +Ng (4)

Equation (4) gives a normalized similarity. When the
DSAs of two images totally overlap, the similarity is 1, and the
similarity equals 0 when the two DSAs have no overlaps.
Ideally, for a test image, the largest similarity is obtained with
its corresponding template from the same class. And the
similarities with the incorrect classes are relatively lower.
Then, the test image can be recognized correctly. However,
due to the possible corruptions of the DSAs caused by
EOC:s like noise contamination and occlusion, it is inadequate
to make reliable judgments just using the original DSA
residues. Therefore, the discriminability in the DSA residues
should be further exploited to improve the ATR performance.

3.2.2. Binary Morphological Filtering of DSA Residue.
The designed similarity measure in equation (4) mainly
considers the area of the DSA residues but ignores the
distributions of the residues. As shown in Figure 2, the
residues within the same class are distributed in small
patches. In contrast, the DSA residues between different
classes gather together and are bulkily shaped. Therefore, the
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FIGURE 1: The DSAs generated at different numbers of dominant scattering points: (a) original image; (b) DSA at 100 dominant scattering
points; (c) DSA at 150 dominant scattering points; (d) DSA at 200 dominant scattering points.

morphological opening operation is adopted to process the
DSA residues to further enhance the differences in different
classes. The opening operation using the structuring element
of S is performed on the DSA residue R to eliminate the
small patches as follows:

RR = Ro S, (5)

where RR represents the filtered DSA residues after the
opening operation. We set the structuring element as S =

[ i } ] and then apply the opening operation to the DSA

residues in Figure 2. The filtered DSA residues are shown in
Figure 3. It is clear that the residues between same classes are
significantly reduced, but the residues between different
classes just shrink slightly. Compared with the results in
Figure 2 intuitively, the opening operation makes it much
easier to distinguish different targets.

The similarity measure in equation (4) is further imposed
on the filtered residues. As showcased in Table 1, the

similarities of the original DSA residues and filtered residues
are calculated based on the results in Figures 2 and 3, re-
spectively. The differences of the similarity sets before and
after the opening operation are calculated to be 0.45 and
0.56, respectively. It indicates that the differences in the DSA
residues are enhanced after the opening operation, which is
beneficial for correctly classifying different classes of targets.
Therefore, the similarities based on the filtered DSA residues
can better distinguish different kinds of classes to improve
the ATR performance.

3.3. Score-Level Fusion. The choice of the structuring ele-
ment has important influences on the filtered results. With
little prior information about the distribution of DSA res-
idues, this study uses several different structuring elements
during the opening operation to handle the possible de-
formations of DSAs. Afterwards, a score-level fusion is
employed to combine the similarities from different struc-
turing elements.
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FIGURE 2: DSA residues between a BMP2 image and its corresponding template images from different classes: (a) BMP2 (Sn_9563);
(b) BMP2 (Sn_9566); (c) BMP2 (Sn_c21); (d) BTR70; (e) T72 (Sn_132); (f) T72 (Sn_812); (g) T72 (Sn_s7).
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FiGure 3: Filtered DSA residues between a BMP2 image and its corresponding templates from different classes: (a) BMP2 (Sn_9563);
(b) BMP2 (Sn_9566); (c) BMP2 (Sn_c21); (d) BTR70; (e) T72 (Sn_132); (f) T72 (Sn_812); (g) T72 (Sn_s7).
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TaBLE 1: Similarities based on the original DSA residues and filtered residues.

Target class BMP2 Sn_9563 BMP2 Sn_9566 BMP2 Sn_c21 BTR70 T72 Sn_132 T72 Sn_812 T72 Sn_s7

Original residues 0.66 0.39 0.59 0.35 0.41 0.21 0.22

Filtered residues 0.91 0.60 0.83 0.57 0.64 0.35 0.40

Assume there are M different structuring elements S; (i =
1,2,...,M) and their corresponding similarity sets are
fm(m=1,2,...,M). For each f,, f,(@H({=12,...,C)
represents the similarity between the test image and the ith
template class. A linear score-level fusion is performed as
follows:

fs@) =w fr1D)+w, fr@)+ - +wufu@ (G=12,...,0),
(6)
where w,,(m=1,2,...,M) denotes the weight corre-

sponding to the mth structuring element and fs(i) is the
fused similarity between the test sample and ith template
class. When different weight vectors are used, different
structuring elements are assigned with different importance.
With little prior information, all the weights are set to be
equal, i.e., 1/M, in this study. After the fused similarities are
calculated, the target label of the test image is decided to be
the class with the highest similarity.

Figure 4 shows the general procedure of the proposed
method. The azimuth of the test image is first estimated
[28, 41] to obtain the corresponding template images from C
target classes. Afterwards, the DSAs of the test image and the
template images are generated at the scattering center
number of 150. The DSAs are matched using the proposed
method, and the score-level fusion is used to produce the
final similarity. Finally, the target type of the test sample is
assigned to the template class with the maximum similarity.
The MSTAR images are well aligned, so the proposed
method can be directly implemented on them. However, for
images which are not aligned, some processing steps can be
used to align them before the classification, such as target
centralization [9].

4. Experiment

4.1. Data Preparation. The MSTAR dataset is used to
evaluate the performance of the proposed method, which
includes SAR images of ten classes of ground targets: BMP2,
BTR70, T72, T62, BDRM2, BTR60, ZSU23/4, D7, ZIL131,
and 2S1. The optical images and exemplar SAR images of
these targets are shown in Figure 5. Table 2 showcases the
detailed descriptions of the template and test sets. The
template samples are collected at the 17° depression angle,
whereas the test samples are at 15°. For quantitative eval-
uation, several state-of-the-art SAR ATR algorithms are used
for comparison as described in Table 3. For simplicity, each
of these methods is given an abbreviation according to the
used feature or classifier. The Zernike and EFS methods both
perform on the binary target regions, which first extract
features from the binary target regions and employ SVM for
classification afterwards. For SVM and SRC, they are
adopted to classify the 80-dimension feature vectors from

the original images extracted by PCA. CNN is directly
trained by the intensity values of the original images. In the
following sections, we first examine the proposed method
under the standard operating condition (SOC) including the
3-class recognition problem and 10-class recognition
problem. Afterwards, several typical EOCs are used to
comprehensively evaluate the proposed method.

4.2. Experiments under SOC

4.2.1. 3-Class Problem. A 3-class problem is first considered
under SOC. The samples of BMP2, BTR70, and T72 at the
17° depression angle are used as the templates, and the
samples at 15° are classified in Table 2. The structuring el-

ement is first set as S = i ]
ognition results of the proposed method for 3-class
recognition. Each of the configurations of three targets can
be with a PCC (probability of correct classification) over
96%, and the average PCC is calculated to be 97.88%. The
results indicate the high effectiveness of the proposed
method in this condition.

The structuring element directly influences the filtered
DSA residues. Therefore, the recognition performance is
closely related to the choice of the structuring elements. As a
further validation, we use several different structuring ele-
ments for filtering the DSA residues, which are listed as

. ] Table 4 presents the rec-

follows:

10
812_01]’
11
522_1 1]’
11
S,=[0 0|,

1y (7)
1101
84__1 0 1]’
111
Ss=[111]
(111

The average PCCs at different structuring elements are
showcased in Table 5. When the structuring element is null,
i.e., no opening operation is performed, the PCC is the
lowest. The PCC at S; is lower than those at S;, S,, S5, and S,
mainly because S5 is a very large structuring element, so it
removes too many pixels in the DSA residues from the
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FI1GURE 4: Procedure of the proposed target recognition method.

ZSU23/4 ZIL131
(b)

F1GURE 5: Types of military targets: (a) optical images versus (b) SAR images.

TaBLE 2: Details of template and test sets of the ten classes of targets.

Class BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7  ZIL131 251

Template set (17) 233 (Sn_9563) 233 232 (Sn_132) 299 298 256 299 299 299 299
195 (Sn_9563) 196 (Sn_132)

Test set (15) 196 (Sn_9566) 196 195 (Sn_812) 273 274 195 274 274 274 274

196 (Sn_c21) 191 (Sn_s7)
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TaBLE 3: Methods for comparison.

Abbreviation Classifier Feature Reference

Zernike SVM Zernike moments [9]

EFS SVM Elliptical F01.1r1er series [2]
coefficients

SVM SVM PCA features [26]

SRC SRC PCA features [30]

CNN CNN Intensity values [33]

TaBLE 4: Recognition results of the proposed method on 3-class
data.

Results
Test samples PCC (%)
BMP2 BTR70 T72

BMP2Sn_9563 (195) 193 1 2 98.97
BMP2Sn_9566 (196) 189 4 3 96.43
BMP2Sn_c21 (196) 190 2 4 96.94
BTR70 (196) 0 195 1 99.49
T72Sn_132 (196) 2 0 194 98.98
T72Sn_812 (195) 2 3 191 97.45
T72Sn_s7 (191) 2 3 186 97.38
Average PCC (%) 98.02

TaBLE 5: Average PCCs achieved by different structuring elements.

Structuring element & S S, S5 Sy Ss
PCC (%) 95.34 97.88 98.02 97.87 97.64 97.02

incorrect classes. As a result, the differences in filtered DSA
residues would not be notable enough for the high-
performance target recognition.

To further enhance the effectiveness and robustness of
the proposed method, the results of different structuring
elements are fused by the score-level fusion. The fused re-
sults at different combinations of the structuring elements
are compared in Table 6. The best performance of the score-
level fusion is achieved at the combination of S, S,, S5, S,
with the average PCC of 98.42%. Accordingly, this com-
bination is used for target recognition in the following
experiments.

The proposed method is compared with other methods
in Table 7. The proposed method achieves the highest PCC.
Compared with the Zernike and EFS methods, where the
binary target regions are used as the baseline features, the
proposed method outperforms them significantly. More-
over, the proposed method does not need further feature
extraction from the binary target regions. CNN achieves an
approaching PCC with the proposed method. The classifi-
cation capability of CNN is closely related to the com-
pleteness and coverage of the training set. In this
experimental setup, there are some configuration differences
between the training and test samples of BMP2 and T72. As a
result, the average PCC of CNN is slightly lower than the
proposed method.

4.2.2. 10-Class Problem. A more challenging task, i.e., the
10-class recognition problem, is conducted in this part. All

TaBLE 6: The performance of the fusion of different structuring
elements.

Combination of structuring elements Average PCC (%)

S, S, 98.12
S, S5, S, 98.34
Si» Sy S50 S, 98.83
Si» Spr S50 Sy» Ss 97.94

TaBLE 7: Recognition performance for the 3-class problem.

Method
PCC (%)

Proposed Zernike EFS
98.83 95.48

SVM  SRC CNN
96.46 96.87 95.66 98.36

the 10-class samples listed in Table 2 are utilized in this
experiment. Table 8 showcases the detailed recognition
results of the proposed method for the 10-class recognition.
BMP2 and T72 suffer the lowest PCCs due to the config-
uration variances between their test and template sets.
Figure 6 shows the confusion matrices of the reference
methods for detailed comparison. The average PCCs of
different methods are compared in Table 9. All the methods
experience some degradations in this case because the
classification of 10 classes of targets is more difficult than the
3-class recognition problem. With the highest PCC of
97.24%, the proposed method still outperforms the others
under 10-class recognition.

4.3. Experiments under EOC. The main obstacles to SAR
ATR are the various EOCs caused by the variations of the
target, SAR sensors, background environments, etc.
Therefore, it is desired that the proposed method could
achieve good robustness under different types of EOCs.

4.3.1. Configuration Variance. For a certain target, it may
have several configurations for different applications. In this
case, it is desired that the ATR methods could keep ro-
bustness under configuration variance. Table 10 lists the
template and test sets in this experiment, in which the test
configurations of BMP2 and T72 are different from those of
their template samples. Table 11 compares the average PCCs
of different methods. With the highest PCC, the proposed
method is validated to be the most robust to configuration
variance. Under configuration variance, some local struc-
tures of the target are modified, whereas the whole target
shape remains stable. As a result, the intensity distribution of
the whole image may change greatly due to the local dif-
ferences. The methods based on the image intensities in-
cluding SVM, SRC, and CNN degrade significantly. In
comparison, the methods using the binary target regions like
Zernike and EFS achieve relatively better performance be-
cause the target shape remains stable. For the proposed
method, the preliminary target shape is reflected by DSA. In
addition, the small modifications in the local scattering
centers can also be handled by the morphological opening
operations with different structuring elements. Therefore,
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TaBLE 8: Confusion matrix of the proposed method under SOC.
Class BMP2 BTR70 172 T62 BDRM2 BTR60 Z58U23/4 D7 ZIL131 251 PCC (%)
BMP2 563 8 15 0 0 4 5 0 3 0 95.91
BTR70 0 196 0 0 0 0 0 0 0 0 100
T72 8 4 549 0 6 0 4 4 1 5 94.49
T62 0 0 0 273 0 0 0 0 0 0 100
BDRM2 0 0 0 1 271 0 1 0 1 0 98.91
BTR60 0 1 0 1 0 190 0 3 0 0 97.44
Z8U23/4 0 1 0 0 1 0 269 0 0 3 98.18
D7 0 0 0 0 0 0 0 274 0 0 100
ZIL131 3 1 1 0 0 0 1 0 268 0 97.81
281 0 0 0 1 0 1 0 0 0 272 99.27
Average 97.38

the proposed method can maintain its good performance
under configuration variance.

4.3.2. Large Depression Angle Variance. The SAR platforms
may operate at different heights from the ground. As a result,
the depression angles of the real-measured images may be
quite different [42]. Actually, the template samples may be
collected at only one or few depression angles. So, it is
important that the proposed method could work robustly
when the test and template images have large depression
angle variance. Three targets are used in this experiment as
showcased in Table 12, i.e,, 25§51, BDRM2, and ZSU23/4.
Their images at the 17° depression angle are used as the
template set, whereas images at 30" and 45° are classified.
Figure 7 illustrates the differences in the SAR images at
different depression angles with the images of 251 at 17°, 30°,
and 45°, respectively. The figures show that both the target
shape and scattering pattern vary when the depression angle
changes. The recognition results of different methods are
compared in Table 13. At the depression angle of 30°, the
average PCCs of all the methods still remain at high levels.
However, when the depression angle changes to 45°, the
performance of different methods decreases sharply because
the targets” appearances are notably different on comparing
Figures 7(a) and 7(c). The proposed method can better cope
with the nonlinear deformations of the DSA caused by large
depression angle variance than the Zernike and EFS
methods, which directly extract features from the binary
target regions. For SVM, SRC, and CNN, their performance
degrades most severely due to the drastic variation of the
image intensity distribution. With the highest PCCs at both
30° and 45°, the proposed method is demonstrated to be the
most robust to large depression angle variance.

4.3.3. Noise Corruption. The original SAR images in the
MSTAR dataset are collected at high SNRs (signal-to-noise
ratios), which is assumed to be an important reason for the
excellent performance of different SAR ATR methods under
SOC [43]. However, in practical applications, the real-
measured SAR images may be contaminated by the noises
from the background environment or radar system [43-45].
Then, it is probable that the test samples have much lower
SNRs than the template ones, which are usually collected

under some cooperative conditions. In this study, the noisy
test samples are simulated by adding different levels of
Gaussian noises to the original 10-class test samples in
Table 2. In detail, the original SAR image is first transformed
into the frequency domain using the inverse fast Fourier
transform (IFFT). Afterwards, the additive Gaussian noises
are added to the frequency spectrum according to the de-
sired SNR. Finally, the noise-contaminated frequency data
are transformed back into the image domain to obtain the
noisy samples. Figure 8 shows the performance of different
methods at different noise levels. Clearly, the proposed
method remains to be the most robust under noise cor-
ruption with the highest PCC at each SNR. Although the
whole image intensity distribution is corrupted by noises,
the dominant scattering centers with the higher intensities
can still remain relatively stable. Therefore, the DSAs can still
be constructed with good precision, so the proposed method
can work robustly under noise corruption. Similarly, the
binary target region is more robust than the whole image
intensities or PCAs features. Therefore, the Zernike and EFS
methods outperform the remaining ones.

4.3.4. Partial Occlusion. It is common that the ground
targets are occluded by the natural or man-made obstacles,
e.g., trees and buildings. As a result, some of the target
characteristics cannot be collected by the sensors. For ex-
perimental evaluation, the partially occluded SAR images are
first constructed according to the occlusion model in
[46, 47]. In detail, a proportion of the original target regions
is replaced by the background pixels from different di-
rections. Afterwards, the occluded samples are classified by
different methods. Figure 9 plots the performance of all the
methods at different occlusion levels. When the target is
partially occluded, the extracted target shape probably de-
forms greatly. As a result, the methods solely depending on
the binary target regions, i.e., Zernike and EFS, degrade
significantly. For the proposed method, the highest PCC
remains at each occlusion level because of the following
reasons: on the one hand, the distribution of the dominant
scattering centers is still discriminative although some
scattering centers are occluded. On the other hand, the
morphological opening operations using different struc-
turing elements can effectively handle the possible de-
formations of DSA caused by partial occlusion.
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FiGure 6: Confusion matrices of different methods under SOC: (a) proposed method; (b) Zernike; (c) EES; (d) SVM; (e) SRC; (f) CNN.

5. Conclusion

An SAR ATR method is proposed via binary morphological
filtering of the DSA residues. The DSA residues between

the test image and its corresponding template images are
processed by the binary morphological opening operation.
Afterwards, a similarity measure is designed based on
the filtered DSA residues for target recognition. To further
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TaBLE 9: Average PCCs of different methods for the 10-class problem.

Method Proposed Zernike EES SVM SRC CNN
PCC (%) 97.38 94.41 93.97 94.22 93.66 97.24

TaBLE 10: Template and test datasets with configuration variance.

BMP2 T72 BTR60 T62

Template set (17°) 233 (Sn_9563) 232 (Sn_132) 256 299
o 196 (Sn_9566) 195 (Sn_812)

Test set (157) 196 (Sn_c21) 191 (Sn_s7) 195 273

TaBLE 11: Recognition performance on configuration variance.

Method Proposed Zernike EES SVM SRC CNN
PCC (%) 95.25 93.24 92.92 89.72 90.14 92.66

TaBLE 12: Template and test sets with large depression angle variance.

Depression 281 BDRM2 ZSU23/4
Template set 17° 299 298 299
Test set 30° 288 287 288
oSt se 45° 303 303 303

Range (m)
Range (m)

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Cross range (m) Cross range (m)

(a) (b)

Range (m)

-6 -4 -2 0 2 4 6

Cross range (m)

(c)

FIGURE 7: SAR images at depression angles of (a) 17 (b) 30% (c) 45".
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TaBLE 13: PCCs of different methods under different depression
angles (%).

Proposed  Zernike = EFS SVM  SRC CNN
30° 96.24 94.17 93.15 9257  91.92 94.88
45° 73.54 63.23 61.16 5696 60.27 63.14

PCC (%)

30 : : '
10 5 0 -5 -10
SNR (dB)
-©- Proposed —— SVM
)~ Zernike —a— SRC
.- EFS -A- CNN

F1GURE 8: Performance of different methods under different levels
of noise corruption.
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0= Zernike —=— SRC
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F1GURE 9: Performance of different methods under different levels
of partial occlusion.

improve the effectiveness and robustness of the proposed
method, the morphological opening operations are con-
ducted at different structuring elements, whose results are
combined by a score-level fusion. Finally, the target label of
the test sample is decided to be the class with the highest
fused similarity. According to the experimental results on

13

the MSTAR dataset, several conclusions can be drawn as
follows: (1) under SOC, the proposed method achieves very
high PCCs of 98.83% and 97.38% for 3-class and 10-class
problems, respectively. Therefore, the proposed method can
be used to distinguish many types of ground targets with
good performance. (2) The proposed method remains the
most robust under EOCs. (3) In comparison with several
state-of-the-art SAR ATR methods, the proposed method
outperforms them on both the effectiveness and robustness.
So, it has much potential in the practical applications of SAR
ATR.

Some future works are as follows: on the one hand, the
numbers of the dominant scattering points should be de-
cided adaptively for different types of targets such as ground
targets, ships, and airplanes. On the other hand, more ef-
fective decision fusion strategies can be adopted or designed
to combine the results from different structuring elements to
further enhance the ATR performance.

Data Availability

The MSTAR dataset used to support the findings of this
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