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Binary Morphological Shape-Based Interpolation
Applied to 3-D Tooth Reconstruction

Adrian G. Borg, Member, IEEELefteris Kechagias, and loannis Pit&enior Member, IEEE

Abstract—in this paper, we propose an interpolation algorithm duced which has similarities with that from [5]. Other exten-
using a mathematical morphology morphing approach. The aim sjons of the algorithm described in [5] are proposed in [7] and
of this algorithm is to reconstruct the n-dimensional object from [8]. Among six different algorithms, the one based on a chamfer

a group of (n — 1)-dimensional sets representing sections of that distance and using a modified cubic spline was found to provide
object. The morphing transformation modifies pairs of consecutive 9 P P

sets such that they approach in shape and size. The interpolated the best results in [7]. An interpolation algorithm which uses the
set is achieved when the two consecutive sets are made idempotenelastic matching algorithm, spline theory, and surface consis-
by the morphing transformation. We prove the convergence of the tency is considered in [9]. Shape-based interpolation methods
morphological morphing. The entire object is modeled by succes- 14y heen shown to outperform other interpolation methods in
sively interpolating a certain number of intermediary sets between . .
each two consecutive given sets. We apply the interpolation algo- [10]' A m!XE‘d, gray-level a”d, Shgpe-based method is used for
rithm for three-dimensional tooth reconstruction. interpolation in [11]. Each slice is represented as a surface by
a "lifting” procedure. The intermediary slices are obtained by
interpolating the resulting surfaces and converting the interpo-
lated surface back to an image by a “collapsing” operation.
Mathematical morphology provides a good theoretical frame-
. INTRODUCTION work for shape modeling and interpolation [12], [13]. Erosion

N MANY tasks, we have to extract object information fromnd dilation are basic morphologic transformation operations.

I a group of sparse sets. Particularly, in medical applicatiorl8,[14], €ach slice is eroded until its number of pixels becomes
parts of human body are represented by an image sequencB%ﬁ‘ of the sum of its initial number of pixels and those of the
parallel slices. These slices can be acquired by magnetic ré3@xt slice. Morphing based on a distance transform is used for
nance imaging (MRI), computer tomography (CT), or by meslice interpolation in [15]. Interpolated sets in [16] are generated
chanical slicing and digitization. Most often, the distance b&0m a succession of skeletons derived from the matching of
tween adjacent image elements within a slice is smaller than {4 neighboring set skeletons. The skeleton by influence zone
distance between adjacent image elements in two neighbor(%'z) transform employs dilations of the intersection and of
slices. In such situations, it is necessary to interpolate additioia§ complementary of the union of two neighboring sets [17].
slices in order to obtain an accurate description of the object for!n this paper, we propose a new binary morphological mor-
volume visualization and processing [1]. There are two maihing approach for interpolation. The morphing transforms two
categories of interpolation techniques for reconstructing obje€t@!ghboring sets by combinations of dilations and erosions. The
from sparse sets: grey-level and shape-based interpolation. transformation is iteratively performed in such a way that the re-

Grey-level interpolation methods employ nearest—neighb&*ﬁ'ti”g sets become more similar to each other with respect to
splines, linear [2], or polynomial interpolation. Other algorithmB0th shape and dimension. We define a distance measure for
employ feature matching [3] or homogeneity similarity [4] foassessing the difference between the original and the morphed
determining the direction of interpolation. shape. The interpolated set corresponds to the idempotency of

Shape-based interpolation algorithms are usually employét two morphed sets after a certain number of iterations. Idem-
on binary images. These interpolation methods consider sh&géency is achieved when the difference of the morphed sets is
features extracted from the object sets. A distance function fré@ro- The morphing transformation is applied repeatedly on the
each pixel to the object boundary is considered for interpolati§W Stack of interpolated sets until an appropriate object shape

in [5]. In [6], an interpolation—extrapolation algorithm is intro4S achieved. We employ the morphological morphing approach
for reconstructing three-dimensional (3-D) teeth from digitized

slices.
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space denoted ak. Shape morphing is a technique for conation occurs when the border region of one set corresponds to
structing a sequence of sets showing a gradual transition bee interior of the other set. In this case, we apply the morpho-
tween the two given shapes. In the following, we describe a mdogical operation of dilation to the border elements
phological morphing transformation.

The simplest morphological operations are the dilation and It pm €CpAgm €Q~Cq (4)
erosion [12]. These operations correspond to the Minkowski set then perforny,, & B
addition and subtraction. The dilation of a getby using the

structuring elemenB is given by whereB; is the structuring element applied on the Be&indCy

is the boundary of sé€p. A second case occurs when the border
P$B= U P, 1) regic_)n o.f one set corresponds .to the background of the other set.
In this situation, we have erosions of the boundary elements

bCB
whered denotes dilation and, represents a structuring ele- If pn€CpAgnm€QF ®)
ment centered onto an element of theRBeThe erosion of a set then  perfornp,, © B;.

P by using the structuring elementis given by o )
No modifications are performed when both corresponding ele-

PoB= ﬂ P, (2) ments are members of their sets boundary

beB
€ If Pm € Cp A dm € CQ

wheres denotes erosion. The most commonly used structuring then perform no change (6)
element is the elementary ball of dimenstarThe dilation with

the elementary ball expands the given set with a uniform lay&he last situation corresponds to regions where the two sets co-
of elements while the erosion operator takes out such a layeeide locally and no change is necessary, while (4) and (5) cor-
from the given set. respond to morphing transformations.

The basic mathematical morphology operations definedBy including all these local changes, we define the following
above can be used to derive complex processing operationgrphing transformation applied on the $&depending onto
[12], [13]. Letp’ € P andq € @ be the elements of the ses  the set? and on the structuring elemesBf
and(@. Letw: p’ — p be an alignment transform that aligfs
with Q, such that we havé3(p,, @m)|pm € P, gm € Q). The [(P1Q, B1)
alignment operation is done according to @n— 1)-dimen- - [(p e B ((PﬂQ> @ Bl):| N (pUQ) )
sional hyperplane [axis for two-dimensional (2-D) sets] using
matching of corresponding features or a centering operatigh.similar morphing operation is defined onto the $gtde-
We define the complement (background) of the getby pending on the seP and on the structuring elemefb
P¢ = E — P. After alignment, each element,, will have
a corresponding element, which may be a member of the f(Q|P, Ba)
other sefy,, € @, or may be part of its backgroung, € Q°. _
In [5], algorithms that use distance transforms for morphing [(Q © Ba) U ((QﬂP) ® BQ)} ﬂ (PU Q) - 6
interpolated sets by adding or removing layers of elementafy.cording to these transformations, the intersection of the two
units have been proposed. In [17], the SKIZ was used feets P N () is always retained by the morphing operations
set and function interpolation. The interpolated set in [17] {g)—(6). One set will be eroded in those regions which corre-
obtained by means of successive dilations of the 883 @  spond to the background of the other set while it will dilate
and £ — (P U @), until idempotency is achieved. Howeverjn regions which correspond to the interior of the other set.
such an approach does not correspond to a natural morphingraé proposed morphing operation creates a new set which is
one set into the other one. a subset of? | J Q.

The morphing transformation proposed in this paper ensuregn the proposed morphing algorithm, a particular situation

asmooth transition from one shape set to the other one by megagurs when the erosion of the first set includes the dilation of
of several sets whose shapes change gradually. First, our trapg-second set

formation influences the elements located on the boundary of

the setP (P& B1) D (@ Bs). 9)

Cp ={c|c€ P, 3c; € P?, c; € Np(c)} (3) We can easily observe that, in this case, (7) and (8) simplify to
whereA/5(c) denotes the neighborhood of the elememhiaving f(PQ, B))=Po B (20)
the same size and shape as the structuring elefeft our f(Q|P, B:) =Q & Bos. (11)

morphing operation, the elements of a boundary(gtare

changed differently according to their correspondences on fhieis situation is illustrated for 2-D sets in Fig. 1(a). On the other
other given se@ [18], [19]. These changes are defined in termsand, we have the case when bdthand @ contain subsets
of mathematical morphology basic operations such as dilatiomkich are not included in the other set, i.€,— Q@ # < A

(1) and erosions (2). We can identify three possible correspad— P # . In this case, the operations defined by (7) and (8)
dence cases for the elements of the two aligned sets. One sitte illustrated in Fig. 1(b).
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Theorem 1: Always we can generate an intermediary set be-
tween two setd’ and@, satisfyingP’ () @ # <, by iterating the
set transformations defined in (7) and (8) onto their previous it-
eration output sets, until idempotency.

Proof: In order to prove the morphing interpolation con-
vergence to idempotency, let us consider a¥setepresenting
the X OR operation for the two given sets

o (@, P) = XOR@Q. P) = (QUJP) - (@NP). 14
Fig. 1. Exemplification of mathematical morphology morphing. The resu . . . -
produced by (8) is represented with dashed lines while the result produced{}y)? assume that the local morphmg termination condition (6)

(7) is represented with dot-dashed lines. Arrows denote dilation and eros@d@es not occur at the next morphing iteration, which implies
directions; (@QYP © B1) D (Q & Bs); (b)) P — Q # @ andQ — P # &. that

The result of the morphing operation applied on either set is [(QU P) S B} ) [(Q ﬂ P) ® B} . (15)
a new set. These morphed sets are closer to each other in shape o
structure and size. In order to measure their similarity, we defiiethis case, we observe that by considering (7) and (8) and by
a shape distance. Let us consider a structuring elegh) as 9rouping the resulting set components we obtain
a ball of radiusR. Such a structuring element can be obtained
from an elementary ball (ball of unit radius) aftRrsuccessive Y(f(P|Q), J(QIF))
dilations using the elementary ball as the structuring element. = [f(P|Q) U f(Q|P)} - [f(PIQ) N f(Q|P)}
Let us define a shape distance between the original set and the
morphed set as given by the size of the structuring elefient = [((Q U P) S B) - ((Q ﬂ P) ® B)} ﬂ (Q U P)
We conventionally assume a positive and a negative direction — Y(Q, P)e B (16)
of morphing. After morphing the se8 and @ with the same
structuring elemenB(R), the distance of the morphed sets tqvhere for the sake of simplification we dropped out the depen-
their originating sets is dency on the elementary structuring element from the expres-
sion of the morphing transformation. The morphing rules out-
d(f(P|Q, B(R)), P) = —d(f(Q|P, B(R)), Q) = R (12) lined in (4)—(6) are employed in the successive morphing opera-
tions. We can observe that erosion applies everywhere on the set
where the negative distance has been conventionally assigrnedexcepting for the points which fulfill the condition (6). Such
In the general case, this shape distance is not symmetrical points are not eroded. There is a clear interdependence between
the seft” defined in (14) and the morphological shape distance
d(P, Q) #d(Q, P). (13) defined in (12). While with each iteration the S¢tis eroded
as it is shown by (16), the distance between the resulting sets,
For isotropic interpolation, we use identical structuring elanorphed fromP and(@, decreases correspondingly
ments,B; = By = B, when morphing the two sets. In this
case, each morphed set is equi-distant to its original set. The d(f(P|Q), f(Q|P))
distance defined in (12) does not depend on the number of =d(P, Q) — d(f(P|Q), P) + d(f(Q|P), Q)
elements (pixels in a discretized 2-D space) eroded or added, —d(P, Q) -2 a7)
but on the structural differences between the two shapes that ’
are morphed and on the structuring element size. In the CASE. e we have considered an elementar .
. . y structuring element.
when the elementary ball is used as structuring element, Let . . LT
shape distance between the original set and its morphing is one us denote the morphing at iterationinitiated from the
tsP and Q, by fi(P|@Q) and f,(Q|P), respectively. As we
have seen above, the morphing transformation corresponds to
the conditional erosion of the skt According to the relation-

The morphing operation defined by (7) and (8) is applied iship (17), at each iteration the distance between the morphed
eratively onto the sets resulted from the previous morphingsets decreases. Equation (6) represents a local stopping con-
The succession of morphing operations creates new sets diéon which is likely to extend with each iteration to a larger
rived from the two initial extremes. With each iteration thesamount of elements from the boundary of the morphed sets. We
sets are closer in shape and size to each other. Three-dinwam observe that this happens simultaneously with the shrinkage
sional natural exemplifications of this morphological morphingf the seft” which eventually becomes a closed contour. The in-
approach can be found in tree rings and in crystal layer struefpolation termination condition corresponds to the case when
tures. By employing an alignment operatien we can ensure we fulfill the morphing termination condition of (6) for all the
that P( Q@ # <. The morphing interpolation is based on théoundary points of the two morphed sets. In this situation, the
following theorem. two morphed sets become idempotent. Let us assume that this

lll. GEOMETRICALLY CONSTRAINED INTERPOLATION
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E E lation result. The interpolated set has similarities to both initial

(®) sets, shown in Fig. 2(a) and (b).

All the above assumptions and derivations rely on the fact
that we have identical structuring elements for morphing both
setsP and@. In this case, the resulting interpolated set is at
equal distance to the given two sets according to (20). However,
in certain situations, we may want to interpolate a set, which
is at smaller distance to one or another of the given two sets,
by usinga priori knowledge. We can either use a larger struc-
turing element for eroding/dilating the set which should be less
similar to the interpolated set, or repeat the morphing for an ad-
ditional number of times on that set using the same structuring
© « element. In the case yvheq considgring discrete sets, these _two

_ , _ . approaches can provide slightly different results due to the dis-
Eli?f.eféncseh:;é_(tc)i?;egsllzllttier:g?Lat‘g?;o?eftttz\a,\élossee;s. (a) fFirst set. (b) Second set (i ation and approximation of the spherical structuring ele-
ment on a discrete grid. Let us assume that we would like an

happens aftet; iterations. ldempotency aftes iterations is interpolated set whose shape distance ratio to the initial sets is
shown by a zero distance between the resulting morphed sefVen by

A(fu (PIQ). fu (Q1P)) = 0. 1) AP BO| 22)

Fig. 3. Elementary ball structuring element.

Let us denote by the set obtained at the idempotency of the |d(Q, M, Ba)| - F2

morphing transformation where we assume a structuring elemBntfor morphing? and
N o= £ (PIOQ) = £,.(Q|P). (19) Bs for morphingQ._The ratio b_etween the ra(_ﬁ?.Bl_ andRp,
_~of two hyper-spherical structuring elements, is given by
This set has similarities to both initial sefsand@. The setM R 2
is equidistant, according to the distance measure defined in (12) B 2, (23)
to the original sets Rp,
Let us consider an ordered group of sB§s P, ..., Py _1,

AP, M) = —d(Q, M). (20) representing cross-sections of a certain object, wiéneep-

The existence of a set which is equidistant to the initial sets arebents the total number of sets. The morphing procedure pre-
which corresponds to the case when th&sbecomes a contour sented above interpolates a new group of sets between each two
proves the convergence of the morphiFlgeoreml. consecutive sets. In the general case, each new set is equi-dis-
These results can be easily extended to discrete sets. Elem&nisto the original neighboring sets. The initial and the inter-
in such sets consists of hypervoxels inradimensional space polated sets will form a new group of sets which can be used
(pixels for 2-D sets). In order to exemplify this result, we corfor a better visualization of the given 3-D object. We repeat the
sider the 2-D sets from Fig. 2(a) and (b). The initial differencgame procedure on the new pairs of consecutive sets for mod-
setY (P, @) is shown in Fig. 2(c). After five iterationg{ = eling the entire object to a finer detail. Aftéf repetitions, the
5) using the structuring element from Fig. 3, we get the interumber of interpolated sets generated between two initial sets
polated sefV/, displayed in Fig. 2(d). In this case, the distancis 2 — 1. Evidently, there is an upper limit in the number of
between the interpolated set and the original sets is distinctly interpolated sets generated between two given con-
o S secutive sets. FaN initial sets we obtaifN — 1)(2% — 1)

AP, M) = —d(Q, M) =5 (1) interpolated sets. The number of sets to be inserted depends on
which is equal to the number of morphing transformations pete relationship between the slice spacing and set element size.
formed by each of these sets until idempotency. The morphingimthe case of unequally spaced cross-section sets, a different
this example required mostly rectangular to circular shape tramsimber of sets must be interpolated between each two consec-
formations. We can observe that, despite certain discretizatiative slices. Another way to deal with unequally spaced inter-
errors, the morphing transformations resulted in a good intergmslation would be to generate all the possible intermediary sets
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Fig. 4. Diagram describing the interpolation algorithm using morphing of consecutive set pairs.

Fig. 5. Set of tooth slices in resin.

and to choose certain sets, according to their desired intraset disatal literature. We reconstructed several tooth shapes using
tance. In this case, the number of interpolated sets is smaller titfaé proposed interpolation algorithm. Three examples are pre-
(N — 1)(2% — 1). The intermediate sets, denotedml/QK sented in this paper: an incisor (single root tooth); a premolar
forl = 1,...,2% — 1, represent an interpolation betweerftwo-root tooth); and a molar (three-root tooth). These teeth
the two initial sets?; and P, ;. Grey-level interpolation can be have been mechanically sliced and digitized. A set of incisor
performed together with the shape interpolation [18]. The prélices in resin is displayed in Fig. 5. The tooth borders as well

cedure of interpolation by successive morphing is exemplifi@$ the root canal in each slice are segmented and the resulting
in Fig. 4. slices are aligned using a semi-automatic procedure. Aligned

slices are displayed in Fig. 6(a), for the incisor, in Fig. 6(b),
for the premolar and in Fig. 6(c) for the molar, respectively.
We have used the morphological interpolation algorithm de-
We have used the proposed morphological morphing interggeribed in Sections Il and Il in order to reconstruct the teeth
lation algorithm for reconstructing the external and internal 3-bom the given initial set of slices. In the case of the incisor,
morphology of several teeth. Such an application is of interebie morphing algorithm is applied iteratively four times. Thus
in endodontology for representing tooth morphological strugve eventually producel * (2* — 1) + 22 = 337 slices from
ture [20]. The examples used in the experiments describedoinly 22 original slices. A set of interpolated frames from the in-
this paper represent normal tooth shapes that are reported indiser sequence is displayed in Fig. 7. We can observe from this

IV. SIMULATION RESULTS
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Fig. 6. Segmented and aligned tooth slice sets. (a) Incisor. (b) Premolar (two roots). (c) Molar (three roots).

figure that both canal and outer tooth surface are being smoottibal directions. The midpoints of these segments are considered
changed from one slice to the next one. A grey-level interpolas the interpolated slice contour by this algorithm. We have ap-
tion algorithm [18] was used together with the proposed shagdied the linear interpolation algorithm on the incisor sequence
based interpolation algorithm. This result shows a smooth tratisplayed in Fig. 6(a). We employ a measure for assessing the
sition even between slices having large geometrical variatiopsrformance provided by various interpolation algorithms in the
in shape. Three-dimensional reconstructions from two differefuilowing way. Let F;, F;4+1 and F,.» be three original tooth
viewing angles are shown in Fig. 8(a) and (b) for the incisor, slices and{:’mL be the result of interpolating; and F,.. Let
Fig. 8(c) and (d) for the premolar, and in Fig. 8(e) and (f) for thg”| denote set cardinality. The ratidf(ﬁ’iﬂ, Py )/ | Pl
molar, respectively. These volumes are reconstructed from tlepresenting the percentage of wrongly estimated pixels can be
initial slices shown in Fig. 6. In all these figures, we can obserused as a performance measure. In Table I, we provide the re-
that the 3-D volumes are well reconstructed. The interpolatieults for reconstructing three different slices from the incisor
of the premolar and of the molar image sequences show the gesup of sets as well as the average result for reconstructing any
pability of morphing between slices with disconnected sets amdermediary slice’;; from the given pair of set&;, F;, for
those having compact sets. The morphology of the reconstructey i € {1, N — 2}, whereXN is the number of initial sets. In
teeth is quite accurate despite the fact that a large numberoodier to assess the difference between original slices, we pro-
slices has been interpolated. vide the normalized slice difference between the two slices used
We have compared the mathematical morphological interpir interpolation. The case when using the tenth and the twelfth
lation algorithm with a linear interpolation algorithm. The lineaslices for estimating the eleventh slice is displayed in Fig. 9. The
interpolation algorithm calculates line segments between pixégee consecutive slices are shown in Fig. 9(a)—(c), respectively.
on object contours of the two slices, in both horizontal and veFhe interpolated slice by morphological morphing approach is
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Fig. 7. Set of interpolated slices for an incisor.

(d)

Fig. 8. Three-dimensional views of different reconstructed teeth. (a), (b) Incisor, (c), (d) Premolar. (e), (f) Molar.

displayed in Fig. 9(d), while in Fig. 9(f) we show the result prolated slice by morphing is more similar to the original slice than
vided by the linear interpolation approach. The difference bthat interpolated by linear interpolation. The 3-D molar recon-
tween the interpolated and the original set are shown in Fig. 9&ucted by linear interpolation is displayed in Fig. 10(a), while
for the morphological morphing interpolation and in Fig. 9(gh Fig. 10(b) we show the same molar reconstructed by mor-
for the linear interpolation. We can observe that the interpphological morphing as described in this paper. For comparison
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@ (b) ©

(d)

(® ()

Fig. 9. Slices interpolated by morphological morphing and by linear interpolation from the tenth and twelfth slices of the incisor sequence wimgieed
real eleventh slice. (a) Tenth slice. (b) Eleventh slice. (c) Twelfth slice. (d) Morphological morphing. (e) Difference set. (f) Linear irdargg)diifference set.

purposes both these volumes are visualized from the same viaass sections at various depths. The proposed interpolation al-
angle. We can observe that the shape of the molar is bettergerithm relies on a morphing transformation of each of two sets
constructed by the morphological morphing algorithm than bgito the other one. The interpolated set is obtained for the idem-
linear interpolation. These graphical results together with npetency of the morphed sets from neighboring slices under the
merical results from Table | show that the proposed morphproposed morphological transformation. This set has similari-
logical morphing interpolation algorithm provides good experties in shape and size with both initial neighboring slices sets.
mental results in the case of 3-D tooth reconstruction from difhe algorithm is iteratively repeated, by considering new pairs
itized slices. of neighboring slices, until generating an appropriate number of

interpolated sets. After describing the algorithm we provide ex-

perimental results of its application for reconstructing the shape

V. CONCLUSION of various teeth from slices. The purpose of this algorithm is to
create a database of various types of teeth. Such tooth volumes
In this paper, we propose a morphological morphing algoan be used for a virtual tooth drilling simulator in preclinical

rithm. We consider a group of sets representing sampled objdentistry student training.
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(b)

Fig. 10. Reconstruction of a 3-D molar by (a) linear interpolation and (b) morphological morphing.

TABLE |

OBJECTIVE COMPARISON MEASURE BETWEEN MORPHOLOGICAL MORPHING

AND LINEAR INTERPOLATION WHEN RECONSTRUCTING ANINCISOR

Frame Morphological Linear
Frames Difference (%) | Morphing (%) | Interpolation (%)
33 5 [Y(Piy2.Pi)| [Y(Piy1.Piy1)l Y (Piy1,Pis1)l
1i+1,i+2 \;;\ ‘;L“ 41 ];‘H‘

4,56 62.9 5.9 11.925
10,11,12 26.8 6.84 9.46
18,19,20 27.2 7.5 14.28

Average results on
the entire volume 51.5 9.25 11.46
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