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Binary Morphological Shape-Based Interpolation
Applied to 3-D Tooth Reconstruction
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Abstract—In this paper, we propose an interpolation algorithm
using a mathematical morphology morphing approach. The aim
of this algorithm is to reconstruct the -dimensional object from
a group of ( 1)-dimensional sets representing sections of that
object. The morphing transformation modifies pairs of consecutive
sets such that they approach in shape and size. The interpolated
set is achieved when the two consecutive sets are made idempotent
by the morphing transformation. We prove the convergence of the
morphological morphing. The entire object is modeled by succes-
sively interpolating a certain number of intermediary sets between
each two consecutive given sets. We apply the interpolation algo-
rithm for three-dimensional tooth reconstruction.

Index Terms—Mathematical morphology, morphing,
shape-based interpolation.

I. INTRODUCTION

I N MANY tasks, we have to extract object information from
a group of sparse sets. Particularly, in medical applications,

parts of human body are represented by an image sequence of
parallel slices. These slices can be acquired by magnetic reso-
nance imaging (MRI), computer tomography (CT), or by me-
chanical slicing and digitization. Most often, the distance be-
tween adjacent image elements within a slice is smaller than the
distance between adjacent image elements in two neighboring
slices. In such situations, it is necessary to interpolate additional
slices in order to obtain an accurate description of the object for
volume visualization and processing [1]. There are two main
categories of interpolation techniques for reconstructing objects
from sparse sets: grey-level and shape-based interpolation.

Grey-level interpolation methods employ nearest-neighbor,
splines, linear [2], or polynomial interpolation. Other algorithms
employ feature matching [3] or homogeneity similarity [4] for
determining the direction of interpolation.

Shape-based interpolation algorithms are usually employed
on binary images. These interpolation methods consider shape
features extracted from the object sets. A distance function from
each pixel to the object boundary is considered for interpolation
in [5]. In [6], an interpolation–extrapolation algorithm is intro-
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duced which has similarities with that from [5]. Other exten-
sions of the algorithm described in [5] are proposed in [7] and
[8]. Among six different algorithms, the one based on a chamfer
distance and using a modified cubic spline was found to provide
the best results in [7]. An interpolation algorithm which uses the
elastic matching algorithm, spline theory, and surface consis-
tency is considered in [9]. Shape-based interpolation methods
have been shown to outperform other interpolation methods in
[10]. A mixed gray-level and shape-based method is used for
interpolation in [11]. Each slice is represented as a surface by
a “lifting” procedure. The intermediary slices are obtained by
interpolating the resulting surfaces and converting the interpo-
lated surface back to an image by a “collapsing” operation.

Mathematical morphology provides a good theoretical frame-
work for shape modeling and interpolation [12], [13]. Erosion
and dilation are basic morphologic transformation operations.
In [14], each slice is eroded until its number of pixels becomes
half of the sum of its initial number of pixels and those of the
next slice. Morphing based on a distance transform is used for
slice interpolation in [15]. Interpolated sets in [16] are generated
from a succession of skeletons derived from the matching of
two neighboring set skeletons. The skeleton by influence zone
(SKIZ) transform employs dilations of the intersection and of
the complementary of the union of two neighboring sets [17].

In this paper, we propose a new binary morphological mor-
phing approach for interpolation. The morphing transforms two
neighboring sets by combinations of dilations and erosions. The
transformation is iteratively performed in such a way that the re-
sulting sets become more similar to each other with respect to
both shape and dimension. We define a distance measure for
assessing the difference between the original and the morphed
shape. The interpolated set corresponds to the idempotency of
the two morphed sets after a certain number of iterations. Idem-
potency is achieved when the difference of the morphed sets is
zero. The morphing transformation is applied repeatedly on the
new stack of interpolated sets until an appropriate object shape
is achieved. We employ the morphological morphing approach
for reconstructing three-dimensional (3-D) teeth from digitized
slices.

This paper is organized as follows. Section II describes the
morphological morphing transformation and Section III the in-
terpolation algorithm. In Section IV, we provide some experi-
mental results. The conclusions of this study are drawn in Sec-
tion V.

II. M ORPHOLOGICALMORPHING

Let us consider that we are provided with two sets repre-
senting two shapes, denoted byand , in an -dimensional
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space denoted as. Shape morphing is a technique for con-
structing a sequence of sets showing a gradual transition be-
tween the two given shapes. In the following, we describe a mor-
phological morphing transformation.

The simplest morphological operations are the dilation and
erosion [12]. These operations correspond to the Minkowski set
addition and subtraction. The dilation of a setby using the
structuring element is given by

(1)

where denotes dilation and represents a structuring ele-
ment centered onto an element of the set. The erosion of a set

by using the structuring element is given by

(2)

where denotes erosion. The most commonly used structuring
element is the elementary ball of dimension. The dilation with
the elementary ball expands the given set with a uniform layer
of elements while the erosion operator takes out such a layer
from the given set.

The basic mathematical morphology operations defined
above can be used to derive complex processing operations
[12], [13]. Let and be the elements of the sets
and . Let be an alignment transform that aligns
with , such that we have . The
alignment operation is done according to an -dimen-
sional hyperplane [axis for two-dimensional (2-D) sets] using
matching of corresponding features or a centering operation.
We define the complement (background) of the setby

. After alignment, each element will have
a corresponding element which may be a member of the
other set , or may be part of its background .
In [5], algorithms that use distance transforms for morphing
interpolated sets by adding or removing layers of elementary
units have been proposed. In [17], the SKIZ was used for
set and function interpolation. The interpolated set in [17] is
obtained by means of successive dilations of the sets
and , until idempotency is achieved. However,
such an approach does not correspond to a natural morphing of
one set into the other one.

The morphing transformation proposed in this paper ensures
a smooth transition from one shape set to the other one by means
of several sets whose shapes change gradually. First, our trans-
formation influences the elements located on the boundary of
the set

(3)

where denotes the neighborhood of the element, having
the same size and shape as the structuring element. In our
morphing operation, the elements of a boundary setare
changed differently according to their correspondences on the
other given set [18], [19]. These changes are defined in terms
of mathematical morphology basic operations such as dilations
(1) and erosions (2). We can identify three possible correspon-
dence cases for the elements of the two aligned sets. One situ-

ation occurs when the border region of one set corresponds to
the interior of the other set. In this case, we apply the morpho-
logical operation of dilation to the border elements

If

then perform
(4)

where is the structuring element applied on the setand
is the boundary of set . A second case occurs when the border
region of one set corresponds to the background of the other set.
In this situation, we have erosions of the boundary elements

If

then perform
(5)

No modifications are performed when both corresponding ele-
ments are members of their sets boundary

If

then perform no change
(6)

The last situation corresponds to regions where the two sets co-
incide locally and no change is necessary, while (4) and (5) cor-
respond to morphing transformations.

By including all these local changes, we define the following
morphing transformation applied on the setdepending onto
the set and on the structuring element

(7)

A similar morphing operation is defined onto the setde-
pending on the set and on the structuring element

(8)

According to these transformations, the intersection of the two
sets is always retained by the morphing operations
(4)–(6). One set will be eroded in those regions which corre-
spond to the background of the other set while it will dilate
in regions which correspond to the interior of the other set.
The proposed morphing operation creates a new set which is
a subset of .

In the proposed morphing algorithm, a particular situation
occurs when the erosion of the first set includes the dilation of
the second set

(9)

We can easily observe that, in this case, (7) and (8) simplify to

(10)

(11)

This situation is illustrated for 2-D sets in Fig. 1(a). On the other
hand, we have the case when bothand contain subsets
which are not included in the other set, i.e.,

. In this case, the operations defined by (7) and (8)
are illustrated in Fig. 1(b).
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(a) (b)

Fig. 1. Exemplification of mathematical morphology morphing. The result
produced by (8) is represented with dashed lines while the result produced by
(7) is represented with dot-dashed lines. Arrows denote dilation and erosion
directions; (a)(P 	B ) � (Q�B ); (b) P �Q 6= andQ� P 6= .

The result of the morphing operation applied on either set is
a new set. These morphed sets are closer to each other in shape
structure and size. In order to measure their similarity, we define
a shape distance. Let us consider a structuring element as
a ball of radius . Such a structuring element can be obtained
from an elementary ball (ball of unit radius) aftersuccessive
dilations using the elementary ball as the structuring element.
Let us define a shape distance between the original set and the
morphed set as given by the size of the structuring element.
We conventionally assume a positive and a negative direction
of morphing. After morphing the sets and with the same
structuring element , the distance of the morphed sets to
their originating sets is

(12)

where the negative distance has been conventionally assigned.
In the general case, this shape distance is not symmetrical

(13)

For isotropic interpolation, we use identical structuring ele-
ments, , when morphing the two sets. In this
case, each morphed set is equi-distant to its original set. The
distance defined in (12) does not depend on the number of
elements (pixels in a discretized 2-D space) eroded or added,
but on the structural differences between the two shapes that
are morphed and on the structuring element size. In the case
when the elementary ball is used as structuring element, the
shape distance between the original set and its morphing is one.

III. GEOMETRICALLY CONSTRAINEDINTERPOLATION

The morphing operation defined by (7) and (8) is applied it-
eratively onto the sets resulted from the previous morphings.
The succession of morphing operations creates new sets de-
rived from the two initial extremes. With each iteration these
sets are closer in shape and size to each other. Three-dimen-
sional natural exemplifications of this morphological morphing
approach can be found in tree rings and in crystal layer struc-
tures. By employing an alignment operation, we can ensure
that . The morphing interpolation is based on the
following theorem.

Theorem 1: Always we can generate an intermediary set be-
tween two sets and , satisfying , by iterating the
set transformations defined in (7) and (8) onto their previous it-
eration output sets, until idempotency.

Proof: In order to prove the morphing interpolation con-
vergence to idempotency, let us consider a set, representing
the operation for the two given sets

(14)

We assume that the local morphing termination condition (6)
does not occur at the next morphing iteration, which implies
that

(15)

In this case, we observe that by considering (7) and (8) and by
grouping the resulting set components we obtain

(16)

where for the sake of simplification we dropped out the depen-
dency on the elementary structuring element from the expres-
sion of the morphing transformation. The morphing rules out-
lined in (4)–(6) are employed in the successive morphing opera-
tions. We can observe that erosion applies everywhere on the set

, excepting for the points which fulfill the condition (6). Such
points are not eroded. There is a clear interdependence between
the set defined in (14) and the morphological shape distance
defined in (12). While with each iteration the setis eroded
as it is shown by (16), the distance between the resulting sets,
morphed from and , decreases correspondingly

(17)

where we have considered an elementary structuring element.
Let us denote the morphing at iteration, initiated from the
sets and , by and , respectively. As we
have seen above, the morphing transformation corresponds to
the conditional erosion of the set. According to the relation-
ship (17), at each iteration the distance between the morphed
sets decreases. Equation (6) represents a local stopping con-
dition which is likely to extend with each iteration to a larger
amount of elements from the boundary of the morphed sets. We
can observe that this happens simultaneously with the shrinkage
of the set which eventually becomes a closed contour. The in-
terpolation termination condition corresponds to the case when
we fulfill the morphing termination condition of (6) for all the
boundary points of the two morphed sets. In this situation, the
two morphed sets become idempotent. Let us assume that this
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(a) (b)

(c) (d)

Fig. 2. Shape-based interpolation of two sets. (a) fFirst set. (b) Second set. (c)
Difference set. (d) Resulting interpolated set.

happens after iterations. Idempotency after iterations is
shown by a zero distance between the resulting morphed sets

(18)

Let us denote by the set obtained at the idempotency of the
morphing transformation

(19)

This set has similarities to both initial setsand . The set
is equidistant, according to the distance measure defined in (12)
to the original sets

(20)

The existence of a set which is equidistant to the initial sets and
which corresponds to the case when the setbecomes a contour
proves the convergence of the morphingTheorem1.

These results can be easily extended to discrete sets. Elements
in such sets consists of hypervoxels in an-dimensional space
(pixels for 2-D sets). In order to exemplify this result, we con-
sider the 2-D sets from Fig. 2(a) and (b). The initial difference
set is shown in Fig. 2(c). After five iterations (
5) using the structuring element from Fig. 3, we get the inter-
polated set , displayed in Fig. 2(d). In this case, the distance
between the interpolated set and the original sets is

(21)

which is equal to the number of morphing transformations per-
formed by each of these sets until idempotency. The morphing in
this example required mostly rectangular to circular shape trans-
formations. We can observe that, despite certain discretization
errors, the morphing transformations resulted in a good interpo-

Fig. 3. Elementary ball structuring element.

lation result. The interpolated set has similarities to both initial
sets, shown in Fig. 2(a) and (b).

All the above assumptions and derivations rely on the fact
that we have identical structuring elements for morphing both
sets and . In this case, the resulting interpolated set is at
equal distance to the given two sets according to (20). However,
in certain situations, we may want to interpolate a set, which
is at smaller distance to one or another of the given two sets,
by usinga priori knowledge. We can either use a larger struc-
turing element for eroding/dilating the set which should be less
similar to the interpolated set, or repeat the morphing for an ad-
ditional number of times on that set using the same structuring
element. In the case when considering discrete sets, these two
approaches can provide slightly different results due to the dis-
cretization and approximation of the spherical structuring ele-
ment on a discrete grid. Let us assume that we would like an
interpolated set whose shape distance ratio to the initial sets is
given by

(22)

where we assume a structuring elementfor morphing and
for morphing . The ratio between the radii and

of two hyper-spherical structuring elements, is given by

(23)

Let us consider an ordered group of sets ,
representing cross-sections of a certain object, whererep-
resents the total number of sets. The morphing procedure pre-
sented above interpolates a new group of sets between each two
consecutive sets. In the general case, each new set is equi-dis-
tant to the original neighboring sets. The initial and the inter-
polated sets will form a new group of sets which can be used
for a better visualization of the given 3-D object. We repeat the
same procedure on the new pairs of consecutive sets for mod-
eling the entire object to a finer detail. After repetitions, the
number of interpolated sets generated between two initial sets
is . Evidently, there is an upper limit in the number of
distinctly interpolated sets generated between two given con-
secutive sets. For initial sets we obtain
interpolated sets. The number of sets to be inserted depends on
the relationship between the slice spacing and set element size.
In the case of unequally spaced cross-section sets, a different
number of sets must be interpolated between each two consec-
utive slices. Another way to deal with unequally spaced inter-
polation would be to generate all the possible intermediary sets
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Fig. 4. Diagram describing the interpolation algorithm using morphing of consecutive set pairs.

Fig. 5. Set of tooth slices in resin.

and to choose certain sets, according to their desired intraset dis-
tance. In this case, the number of interpolated sets is smaller than

. The intermediate sets, denoted by
for , represent an interpolation between
the two initial sets and . Grey-level interpolation can be
performed together with the shape interpolation [18]. The pro-
cedure of interpolation by successive morphing is exemplified
in Fig. 4.

IV. SIMULATION RESULTS

We have used the proposed morphological morphing interpo-
lation algorithm for reconstructing the external and internal 3-D
morphology of several teeth. Such an application is of interest
in endodontology for representing tooth morphological struc-
ture [20]. The examples used in the experiments described in
this paper represent normal tooth shapes that are reported in the

dental literature. We reconstructed several tooth shapes using
the proposed interpolation algorithm. Three examples are pre-
sented in this paper: an incisor (single root tooth); a premolar
(two-root tooth); and a molar (three-root tooth). These teeth
have been mechanically sliced and digitized. A set of incisor
slices in resin is displayed in Fig. 5. The tooth borders as well
as the root canal in each slice are segmented and the resulting
slices are aligned using a semi-automatic procedure. Aligned
slices are displayed in Fig. 6(a), for the incisor, in Fig. 6(b),
for the premolar and in Fig. 6(c) for the molar, respectively.
We have used the morphological interpolation algorithm de-
scribed in Sections II and III in order to reconstruct the teeth
from the given initial set of slices. In the case of the incisor,
the morphing algorithm is applied iteratively four times. Thus
we eventually produce 337 slices from
only 22 original slices. A set of interpolated frames from the in-
cisor sequence is displayed in Fig. 7. We can observe from this
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(a)

(b)

(c)

Fig. 6. Segmented and aligned tooth slice sets. (a) Incisor. (b) Premolar (two roots). (c) Molar (three roots).

figure that both canal and outer tooth surface are being smoothly
changed from one slice to the next one. A grey-level interpola-
tion algorithm [18] was used together with the proposed shape-
based interpolation algorithm. This result shows a smooth tran-
sition even between slices having large geometrical variations
in shape. Three-dimensional reconstructions from two different
viewing angles are shown in Fig. 8(a) and (b) for the incisor, in
Fig. 8(c) and (d) for the premolar, and in Fig. 8(e) and (f) for the
molar, respectively. These volumes are reconstructed from the
initial slices shown in Fig. 6. In all these figures, we can observe
that the 3-D volumes are well reconstructed. The interpolation
of the premolar and of the molar image sequences show the ca-
pability of morphing between slices with disconnected sets and
those having compact sets. The morphology of the reconstructed
teeth is quite accurate despite the fact that a large number of
slices has been interpolated.

We have compared the mathematical morphological interpo-
lation algorithm with a linear interpolation algorithm. The linear
interpolation algorithm calculates line segments between pixels
on object contours of the two slices, in both horizontal and ver-

tical directions. The midpoints of these segments are considered
as the interpolated slice contour by this algorithm. We have ap-
plied the linear interpolation algorithm on the incisor sequence
displayed in Fig. 6(a). We employ a measure for assessing the
performance provided by various interpolation algorithms in the
following way. Let , and be three original tooth
slices and be the result of interpolating and . Let

denote set cardinality. The ratio
representing the percentage of wrongly estimated pixels can be
used as a performance measure. In Table I, we provide the re-
sults for reconstructing three different slices from the incisor
group of sets as well as the average result for reconstructing any
intermediary slice from the given pair of sets , for
any , where is the number of initial sets. In
order to assess the difference between original slices, we pro-
vide the normalized slice difference between the two slices used
for interpolation. The case when using the tenth and the twelfth
slices for estimating the eleventh slice is displayed in Fig. 9. The
three consecutive slices are shown in Fig. 9(a)–(c), respectively.
The interpolated slice by morphological morphing approach is
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Fig. 7. Set of interpolated slices for an incisor.

(a) (c) (e)

(b) (d) (f)

Fig. 8. Three-dimensional views of different reconstructed teeth. (a), (b) Incisor, (c), (d) Premolar. (e), (f) Molar.

displayed in Fig. 9(d), while in Fig. 9(f) we show the result pro-
vided by the linear interpolation approach. The difference be-
tween the interpolated and the original set are shown in Fig. 9(e)
for the morphological morphing interpolation and in Fig. 9(g)
for the linear interpolation. We can observe that the interpo-

lated slice by morphing is more similar to the original slice than
that interpolated by linear interpolation. The 3-D molar recon-
structed by linear interpolation is displayed in Fig. 10(a), while
in Fig. 10(b) we show the same molar reconstructed by mor-
phological morphing as described in this paper. For comparison
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 9. Slices interpolated by morphological morphing and by linear interpolation from the tenth and twelfth slices of the incisor sequence comparedwith the
real eleventh slice. (a) Tenth slice. (b) Eleventh slice. (c) Twelfth slice. (d) Morphological morphing. (e) Difference set. (f) Linear interpolation. (g) Difference set.

purposes both these volumes are visualized from the same view
angle. We can observe that the shape of the molar is better re-
constructed by the morphological morphing algorithm than by
linear interpolation. These graphical results together with nu-
merical results from Table I show that the proposed morpho-
logical morphing interpolation algorithm provides good experi-
mental results in the case of 3-D tooth reconstruction from dig-
itized slices.

V. CONCLUSION

In this paper, we propose a morphological morphing algo-
rithm. We consider a group of sets representing sampled object

cross sections at various depths. The proposed interpolation al-
gorithm relies on a morphing transformation of each of two sets
into the other one. The interpolated set is obtained for the idem-
potency of the morphed sets from neighboring slices under the
proposed morphological transformation. This set has similari-
ties in shape and size with both initial neighboring slices sets.
The algorithm is iteratively repeated, by considering new pairs
of neighboring slices, until generating an appropriate number of
interpolated sets. After describing the algorithm we provide ex-
perimental results of its application for reconstructing the shape
of various teeth from slices. The purpose of this algorithm is to
create a database of various types of teeth. Such tooth volumes
can be used for a virtual tooth drilling simulator in preclinical
dentistry student training.
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(a) (b)

Fig. 10. Reconstruction of a 3-D molar by (a) linear interpolation and (b) morphological morphing.

TABLE I
OBJECTIVE COMPARISONMEASUREBETWEEN MORPHOLOGICALMORPHING

AND LINEAR INTERPOLATION WHEN RECONSTRUCTING ANINCISOR
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[18] A. G. Borş, L. Kechagias, and I. Pitas, “Virtual drilling in 3-D objects
reconstructed by shape-based interpolation,” inLecture Notes in
Computer Science, C. Arcelli, L. P. Cordella, and G. Sanniti di Baja,
Eds. Capri, Italy, May 2001, vol. 2059, Proc. Int. Workshop Visual
Form, pp. 729–738.

[19] , “Shape-based interpolation using morphological morphing,” in
Proc. IEEE Int. Conf. Image Processing, vol. II, Thessaloniki, Greece,
Oct. 7–10, 2001, pp. 161–164.

[20] K. Lyroudia, O. Pantelidou, G. Mikrogeorgis, N. Nikopoulos, and I.
Pitas, “Three dimensional reconstruction: A new method for the eval-
uation of apical microleakage,”J. Endodont., vol. 26, no. 1, pp. 36–38,
2000.


