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Abstract—Based on binary particle swarm optimisation
(BPSO) and information theory, this paper proposes two new fil-
ter feature selection methods for classification problems. The first
algorithm is based on BPSO and the mutual information of each
pair of features, which determines the relevance and redundancy
of the selected feature subset. The second algorithm is based on
BPSO and the entropy of each group of features, which evaluates
the relevance and redundancy of the selected feature subset.
Different weights for the relevance and redundancy in the fitness
functions of the two proposed algorithms are used to further
improve their performance in terms of the number of features
and the classification accuracy. In the experiments, a decision tree
(DT) is employed to evaluate the classification accuracy of the
selected feature subset on the test sets of four datasets. The results
show that with proper weights, two proposed algorithms can
significantly reduce the number of features and achieve similar
or even higher classification accuracy in almost all cases. The
first algorithm usually selects a smaller feature subset while the
second algorithm can achieve higher classification accuracy.

I. INTRODUCTION

In many problems such as classification, a large number
of features are introduced into the dataset to well describe
the target concepts. However, the large number of features
causes the problem known as “the curse of dimensionality”,
which is a major obstacle in classification. Meanwhile, the
presence of less relevant or highly correlated features often
decrease the classification performance. Feature selection is
an essential and widely used technique to deal with the large
data size problem [1]. For a given classification task, feature
selection can be described as follows: given the original set
G consisting of n available features, find a feature subset
F consisting of m relevant features, where m < n and
F ⊂ G without replacement [2]. Feature selection reduces
the number of features through eliminating irrelevant and
redundant features, and thus results in enhanced efficiency and
increased classification accuracy [1].

A feature selection algorithm explores the search space of
different feature combinations to optimise the classification
performance. Evaluation criterion and search strategy are two
key parts in feature selection. According to the evaluation
criterion, feature selection algorithms can be categorized into
wrapper approaches and filter approaches. In a wrapper ap-
proach, a learning algorithm is used as part of the evalua-
tion function to determine the fitness of the selected feature

subset. Wrappers can usually achieve better results than filter
approaches, but the main drawbacks are their computational
deficiency and loss of generality [3]. In a filter approach,
feature selection is done as a preprocessing procedure and the
search process is independent of a learning algorithm. There-
fore, the performance of a filter approach relies mainly on the
goodness of the evaluation criterion. Many different criteria
have been used in filter approaches, including information
measures [4], dependency measures [5], consistency measures
[6], and distance measures [7]. Compared with wrappers, filter
approaches are argued to be computationally less expensive
and more general [1].

In feature selection, the size of the search space for n
features is 2n. So in most situations, it is impractical to conduct
an exhaustive search for feature selection [3]. Therefore, the
search strategy can significantly influence the results of a
feature selection approach. Many search techniques have been
applied in feature selection such as greedy search, but most
of them usually suffer from the problem of becoming stuck in
local optima and/or high computational cost [8, 9]. Therefore,
a computationally cheap global search technique is needed to
develop a good feature selection algorithm.

Evolutionary computation techniques are well-known for
their global search ability, and have been applied to feature
selection problems. These includes particle swarm optimisa-
tion (PSO) [10, 11], genetic algorithms (GAs) [6] and genetic
programming (GP) [12]. Compared with GAs and GP, PSO
is easier to implement, has fewer parameters, computationally
less expensive, and can converge more quickly [13]. Due to
these advantages, PSO has been used as a promising method
for feature selection problems [10, 11]. However, most of
existing PSO based feature selection algorithms are wrapper
approaches, which may obtain low performance in other learn-
ing algorithms and also sometimes are practically impossible
because of the high computational cost. Few studies have been
conducted on using fuzzy sets and rough sets theories in PSO
based filter feature selection algorithms [14, 15]. Information
theory is one of the most important theories that are capable to
measure the relevance between features and class labels [1].
However, not much work has been conducted to investigate
the use of information theory in a PSO based feature selection
approach.



A. Goals
This paper aims to develop a filter based feature selec-

tion approach using PSO and information theory with the
expectation of selecting a small number of features to achieve
similar or even higher classification accuracy than using all
features. To achieve this goal, we will develop two new
filter feature selection algorithms based on PSO and two
information measurements for finding a subset of features for
classification. The two new feature selection methods will be
examined on four benchmark datasets with different numbers
of features and instances. Specifically, we will

• develop a filter feature selection algorithm based on PSO
and the mutual information of each pair of features,
which is used to evaluate the relevance and redundancy
in the selected feature subset, and investigate whether
this algorithm can select a small number of features to
achieve better performance than using all features and
can outperform conventional approaches;

• develop a filter feature selection algorithm based on PSO
and the entropy of each group of features, which is
applied to evaluate the relevance and redundancy in the
selected feature subset, and investigate whether this al-
gorithm can outperform the method of using all features,
conventional approaches and the first proposed algorithm;

• investigate whether using different weights for relevance
and redundancy in the first algorithm could further reduce
the number of features and improve the classification
performance; and

• investigate whether using different weights for relevance
and redundancy in the second algorithm can further
increase the performance in terms of the number of
features and classification performance.

II. BACKGROUND

This section provides some background information about
PSO, entropy and mutual information in information theory,
and also reviews typical related work on feature selection.

A. Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique proposed
by Kennedy and Eberhart in 1995 [16]. PSO simulates the
social behaviour such as birds flocking and fish schooling. In
PSO, a population, also called a swarm, of candidate solutions
are encoded as particles in the search space. PSO starts with
the random initialisation of a population of particles. The
whole swarm move in the search space to search for the
best solution by updating the position of each particle based
on the experience of its own and its neighbouring particles
[17]. During movement, the current position of particle i is
represented by a vector xi = (xi1, xi2, ..., xiD), where D is
the dimensionality of the search space. The velocity of particle
i is represented as vi = (vi1, vi2, ..., viD), which is limited by a
predefined maximum velocity, vmax and vtid ∈ [−vmax, vmax].
The best previous position of a particle is recorded as the
personal best called pbest and the best position obtained by
the population thus far is called gbest. Based on pbest and

gbest, PSO searches for the optimal solution by updating the
velocity and the position of each particle according to the
following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (pid − xt

id)

+ c2 ∗ r2i ∗ (pgd − xt
id) (2)

where t denotes the tth iteration in the search process. d ∈ D
denotes the dth dimension in the search space. w is inertia
weight. c1 and c2 are acceleration constants. r1i and r2i are
random values uniformly distributed in [0, 1]. pid and pgd
represent the elements of pbest and gbest in the dth dimension.

PSO was originally proposed for solving problems in real-
number search spaces. However, many optimisation problems,
such as feature selection, occur in a discrete search space. For
this reason, Kennedy and Eberhart [18] developed a binary
particle swarm optimisation (BPSO) for discrete problems. In
BPSO, Equation (2) is still applied to update the velocity,
where xid, pid and pgd are restricted to 1 or 0. The velocity in
BPSO indicates the probability of the corresponding element
in the position vector taking value 1. A sigmoid function s(vid)
is introduced to transform vid to the range of (0, 1). BPSO
updates the position of each particle according to the following
formulae:

xid =

{
1, if rand() < s(vid)
0, otherwise

(3)

where
s(vid) =

1

1 + e−vid
(4)

where rand() is a random number selected from a uniform
distribution in [0,1].

B. Entropy and Mutual Information

Information theory developed by Shannon [19] provides a
way to measure the information of the random variables with
entropy and mutual information.

The entropy is a measure of the uncertainty of random
variables. Let X be a random variable with discrete values,
its uncertainty can be measured by entropy H(X), which is
defined as

H(X) = −
∑
x∈X

p(x) log2 p(x) (5)

where p(x) = Pr(X = x) is the probability density function
of X . Note that entropy does not depend on actual values, but
just the probability distribution of the random variable.

For two discrete random variables X and Y with their
probability density function p(x, y), the joint entropy H(X,Y )
is defined as

H(X,Y ) = −
∑

x∈X ,y∈Y

p(x, y) log2 p(x, y) (6)

When a certain variable is known and others are unknown,
the remaining uncertainty is measured by the conditional
entropy. Assume that variable Y is given, the conditional
entropy H(X|Y ) of X with respect to Y is



H(X|Y ) = −
∑

x∈X ,y∈Y

p(x, y) log2 p(x|y) (7)

where p(x|y) is the posterior probabilities of X given Y .
From this definition, if X completely depends on Y , then
H(X|Y ) is zero, which means that no more other information
is required to describe X when Y is known. Otherwise,
H(X|Y ) = H(X) denotes that knowing Y will do nothing
to observe X .

The information shared between two random variables is
defined as mutual information. Given variable X , how much
information one can gain about variable Y , which is mutual
information I(X;Y ).

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= −
∑

x∈X ,y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(8)

According to Equation 8, the mutual information I(X;Y )
will be large if two variables X and Y are closely related.
Otherwise, I(X;Y ) = 0 if X and Y are totally unrelated.

C. Recent Work Related to Feature Selection

Many filter feature selection algorithms have been proposed
and typical algorithms are reviewed in this section.

1) Classical Feature Selection Approaches

The FOCUS algorithm is a classical filter feature selection
algorithm, which starts with an empty feature subset and
exhaustively examines all subsets of features, then selects the
minimal subset of features. However, the FOCUS algorithm
performs an exhaustive search to determine the best feature
subset, which is computationally expensive.

The Relief algorithm is another popular filter feature selec-
tion method that assigns a relevance weight to each feature
[20]. The weight is intended to denote the relevance of the
feature to the target concept. However, Relief does not deal
with redundant features, because it attempts to find all relevant
features regardless of the redundancy between them [21].

Decision trees (DT) use only relevant features that are
required to completely classify the training set and remove
all other features. Cardie [22] proposes a filter based feature
selection algorithm that uses a DT to select a subset of features
for a nearest neighbourhood algorithm. However, the features
that are good (or not good) for DT are not necessarily useful
(or not useful) for the nearest neighbour algorithm, which will
lead to poor feature selection performance.

Sequential forward selection (SFS) [8] and sequential back-
ward selection (SBS) [9] are two popular wrapper feature
selection approaches. A greedy hill-climbing search strategy
is applied in both approaches to search for the best feature
subset. However, both SFS and SBS suffer from the so-called
nesting effect and easily trapped into local optima.

2) BPSO based Feature Selection Approaches

BPSO has recently gained more attention for solving feature
selection problems. Based on BPSO, both filter and wrapper
feature selection approaches have been proposed, but most of
them are wrapper approaches. Some PSO based filter feature
selection are reviewed in this section.

Chakraborty [14] proposes a BPSO based filter feature
selection algorithm with a fuzzy sets based fitness function.
The idea of the fuzzy sets for feature selection is to minimise
the ambiguity associated within the class and maximise the
ambiguity between the classes. The performance of BPSO
is compared with that of GA in two benchmark datasets.
Experimental results show that the BPSO based feature se-
lection algorithm could achieve slightly higher classification
accuracy and computationally less expensive than the GA
based algorithm. However, only using two datasets in the
experiment is not enough to verify the effectiveness of the
proposed algorithm.

Since rough sets can handle imprecision, uncertainty and
vagueness, Wang et al. [15] proposes a filter feature selection
approach based on an improved BPSO (IBPSO) and rough sets
theories. In IBPSO, the velocity is defined as a positive integer
to determine how many bits in the position should be changed.
According to the rough sets theories, the dependency degree
of classes on features is measured and used to evaluate the
fitness of each particle. Experiments show that the proposed
algorithm is computationally less expensive than a GA based
filter feature selection algorithm in terms of both memory and
running time. This work also shows that the computation of
the rough sets consumes most of the running time, which is a
drawback of using rough sets in feature selection problems.

Yang et al. [11] propose a feature selection approach in
which gbest of a particle will be reset after being identical
for three iterations. A Boolean operator ‘and(.)’ will ‘and’
each bit of pbest of all particles in an attempt to create a new
gbest. Experimental results show that the proposed method
usually achieves better classification performance than GA and
standard BPSO based feature selection approaches.

Based on a modified BPSO and a logistic regression model,
Unler et al. [10] propose a wrapper feature selection algorithm.
Social learning is introduced into BPSO to update the velocity
of the particles. An adaptive feature selection strategy is
developed in the proposed algorithm, where the features are
selected not only according to the likelihood calculated by
BPSO, but also according to their contribution to the subset
of features already selected. Compared with tabu search and
scatter search algorithms, the proposed algorithm can achieve
better performance.

3) Other Evolutionary Computation Methods for Feature
Selection

GP, GAs and and ant colony optimisation (ACO) are also
applied to feature selection problems.

Based on GP and a variation of naı̈ve bayes (NB), Neshatian
and Zhang [12] propose a feature selection approach, where
a bit-mask representation is used for feature subsets and
a set of operators are used as primitive functions. GP is



used to combine feature subsets and operators together to
find the optimal subset of features. Experiments show that
the dimensionality and processing time can be significantly
reduced by the proposed algorithm.

Chakraborty [23] proposes a GA with fuzzy sets based
fitness function to build a filter feature selection approach.
This method have the same fitness function with BPSO based
method in [14]. However, the performance of BPSO in [14]
is better than that of this GA based algorithm.

Based on ACO and rough sets theory, He [24] proposes a
filter based feature selection approach. The features included
in the core of the rough sets is the starting point of the pro-
posed method. Forward selection is adopted into the proposed
method search for the best feature subset. Experimental results
show that the proposed approach achieves better classification
performance with fewer features than a C4.5 based feature
selection approach. However, experiments do not compare the
proposed method with other commonly used feature selection
approaches.

BPSO has been shown to be an efficient search technique
for feature selection by many existing studies. However, most
of the existing approaches are wrappers, which are computa-
tionally expensive and less general than filter approaches. A
relatively small number of BPSO based filter feature selection
approaches have been proposed in which rough sets and fuzzy
sets theories are mainly used to evaluate the fitness of the
selected features. However, Wang et al. [15] has already shown
the drawback of using rough sets theories. There are a variety
of other measures that can be used in a filter based feature
selection approach, which may achieve better performance
than using rough sets and fuzzy sets theories. Therefore,
investigation of an effective BPSO based filter feature selection
algorithm is still an open issue and we make an effort in this
paper.

III. PROPOSED FILTER BASED METHODS

In this section, two BPSO based filter feature selection ap-
proaches are proposed, where mutual information and entropy
are applied to evaluate the relevance and the redundancy in
the selected feature subsets.

A. BPSO with Paired Evaluation for Feature Selection

Mutual information is defined as the information shared
between two random variables, which can be used in feature
selection to evaluate the relevance between features and class
labels. However, in feature selection, because of the inter-
actions between features, the combination of m individually
good features may not be the best combination of m features.
Therefore, it is necessary to reduce the redundancy among
features and select a subset of features with minimal redun-
dancy to each other and maximal relevance to class labels. For
this reason, both relevance and redundancy are included in the
fitness function to guide BPSO to search for the best feature
subset, which can be represented by Equation 9.

Fitness1 = D1 −R1 (9)

Algorithm 1: The BPSO based feature selection algorithm
1 begin
2 divide Dataset into a Training set and a Test set;
3 initialise the position and velocity of each particle;
4 while Maximum Iterations or the stopping

criterion is not met do
5 evaluate fitness of each particle according to

Equation 9 on the Training set;
6 for i=1 to P do
7 update the pbest of particle i;
8 update the gbest of particle i;
9 end

10 for i=1 to Population Size do
11 for d=1 to Dimensionality do
12 update the velocity of particle i according

to Equation 2;
13 update the position of particle i according

to Equations 3 and 4;
14 end
15 end
16 end
17 calculate the classification accuracy of the selected

feature subset on the test set;
18 return the position of gbest (the selected feature

subset);
19 return the training and test classification accuracies;
20 end

where
D1 =

∑
x∈X

I(x; c),

R1 =
∑

xi,xj∈X

I(xi, xj).

where X is the set of selected features and c is the class label.
Each selected feature and the class labels are treated as discrete
random variables. D1 uses pair wise calculations to calculate
the mutual information between each feature and the class
labels, which determine the relevance of the selected feature
subset to the class labels. R1 evaluates the mutual information
shared by each pair of selected features, which indicates the
redundancy contained in the selected feature subset. Fitness1
is a maximisation function to maximise the relevance D1 and
simultaneously minimise the redundancy R1 in the selected
feature subset.

Algorithm 1 shows the pseudo-code of using BPSO with
paired evaluation for feature selection. The representation of
a particle in BPSO is a n-bit binary string, where n is
the number of available features in the dataset and also the
dimensionality of the search space. In the binary string, “1”
represents that the feature is selected and “0” otherwise.

B. BPSO with Group Evaluation for Feature Selection

Feature interaction is one of the reasons that make feature
selection a challenging problem. Feature interaction can be



in two-way or multi-way. Therefore, the relevance and redun-
dancy among features can also be in two-way or multi-way.
Fitness1 evaluates the two-way relevance and redundancy
by evaluating mutual information in pairs of features. The
multi-way relevance and redundancy should be evaluated in
groups of features. Therefore, we propose a new BPSO based
filter feature selection algorithm with the fitness function of
evaluating the selected features as a whole rather than a pair
of features. The fitness function is defined in Equation 10.

Fitness2 = D2 −R2 (10)

where
D2 = IG(c|X)

R2 =
1

|S|
∑
x∈X

IG(x|{X/x})

where X and c have the same meaning as in Fitness1
(Equation 9). Each selected feature and the class label are
also treated as discrete random variables. D2 evaluates the
information gain in c given information of the features in X ,
which show the relevance between the selected feature subset
and the class labels. R2 evaluates the joint entropy of all the
features in X , which indicates the redundancy contained in the
selected feature subset. Fitness2 is a maximisation function
to maximise the relevance D2 and simultaneously minimise
the redundancy R2 among selected features.

Both D2 and R2 involve the calculation of a single discrete
feature given information about a set of discrete features.
Taken D2 as the example,

D2 = IG(c|X)

= H(c)−H(c|X)

= H(c)− (H(c ∪X)−H(X))

= H(c) +H(X)−H(c ∪X)

where H(X) is the joint entropy of all the features in X . If
X = W,Y,Z, then

H(W,Y,Z) = −
∑
w∈W

∑
y∈Y

∑
z∈Z

p(wyz) log2 p(wyz).

The representation of a particle in this algorithm is the same
as the n-bit binary string described in Section III-A. Algorithm
1 also can be used to show the pseudo-code of this algorithm
by replacing the Equation 9 with Equation 10 in Line 5.

C. Different Weights for Relevance and Redundancy in Two
Proposed Algorithms

In the two proposed feature selection methods, the relevance
and redundancy are equally important in the two fitness
functions (Equations 9 and 10). In order to investigate whether
using different weights that show the relative importance for
the relevance and redundancy in the two proposed algorithms
can further improve the performance, a parameter is introduced
into each of the fitness function, which can be seen in
Equations 11 and 12.

Fitness1 = α1 ∗D1 − (1− α1) ∗R1 (11)

TABLE I
DATASETS

Dataset Datatype Instances Atributes Classes
Chess Categorical 3196 36 2
Splice Categorical 3190 61 3
Spect Categorical 267 22 2

Lymphography (Lymph) Categorical 148 18 4

Fitness2 = α2 ∗D2 − (1− α2) ∗R2 (12)

where α1 and α2 are constant values and α1, α2 ∈ [0, 1].
α1 and α2 show the relative importance of the relevance
in two fitness functions. (1 − α1) and (1 − α2) show the
relative importance of the reduction of the redundancy. As
the relevance is assumed to be more important than the
redundancy, α1 or α2 is set to be larger than (1 − α1) or
(1 − α2) in two fitness functions. Note that when α1 = 0.5
(1 − α1 = 0.5) and α2 = 0.5 (1 − α2 = 0.5), the algorithms
actually are the same as without any weights (relevance and
redundancy are equally important) in the fitness functions (See
Equations 9 and 10).

IV. EXPERIMENTAL DESIGN

Four benchmark datasets chosen from the UCI machine
learning repository [25] are used in the experiments, which
can be seen in Table I. The four datasets were selected to
have different numbers of features, classes and instances as
the representative samples of the problems that the proposed
approaches can address. As the Chess and Splice datasets
have a large number of instances, their instances are randomly
divided into two sets: 70% as the training set and 30% as
the test set. For the Spect and Lymph datasets with a small
number of instances, 10-fold cross-validation is applied. The
two proposed algorithms firstly run on the training set to select
feature subsets and then the classification performance of the
selected features will be calculated on the test set by a learning
algorithm. There are many learning algorithms that can be
used here, such as K-nearest neighbour (KNN), NB, and DT.
A DT learning algorithm is selected in this study to calculate
the classification accuracy of the selected features according
to Equation 13:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TP, TN, FP and FN stand for true positives, true
negatives, false positives and false negatives, respectively.

The parameters of BPSO are set as follows: inertia weight
w = 0.7298, acceleration constants c1 = c2 = 1.49618,
maximum velocity vmax = 6.0, population size P = 30,
maximum iteration T = 500. The fully connected topology is
used in BPSO. These values are chosen based on the common
settings in the literature [26]. Five different values for α1 and
α2 are used in the experiments, which are 0.9, 0.8, 0.75, 0.6
and 0.5. For each dataset, each approach has been conducted
for 30 independent runs.



TABLE II
EXPERIMENTAL RESULTS OF TWO PROPOSED ALGORITHMS

Dataset Method Ave-Size Ave-Acc (Best-Acc) Std-Acc

Chess
All 36 0.985

BPSO-P 4.7 0.797 (0.902) 0.027
BPSO-G 15.7 0.970 (0.977) 0.011

Splice
All 60 0.920

BPSO-P 8.1 0.781 (0.862) 0.050
BPSO-G 7.4 0.723 (0.877) 0.094

Lymph
All 18 0.755

BPSO-P 3 0.711 (0.711) 0.000
BPSO-G 6.3 0.740 (0.778) 0.017

Spect
All 22 0.809

BPSO-P 3.1 0.783 (0.794) 0.002
BPSO-G 4.5 0.812 (0.828) 0.010

TABLE III
THE FIRST PROPOSED ALGORITHMS WITH DIFFERENT α1

Dataset α1 Ave-Size Ave-Acc (Best-Acc) Std-Acc

Chess

All 36 0.985
0.9 8.2 0.915 (0.940) 0.026
0.8 6.3 0.874 (0.938) 0.055
0.75 5.8 0.852 (0.938) 0.053
0.6 5.3 0.824 (0.938) 0.049
0.5 4.7 0.797 (0.902) 0.027

Splice

All 60 0.920
0.9 19.9 0.927 (0.933) 0.005
0.8 13.4 0.927 (0.935) 0.005
0.75 12.1 0.918 (0.937) 0.013
0.6 9.2 0.841 (0.896) 0.030
0.5 8.1 0.781 (0.862) 0.050

Lymph

All 18 0.755
0.9 8.3 0.755 (0.757) 0.000
0.8 5.5 0.752 (0.758) 0.001
0.75 4.9 0.744 (0.744) 0.000
0.6 3.3 0.751 (0.751) 0.000
0.5 3 0.711 (0.711) 0.000

Spect

All 22 0.809
0.9 7.6 0.818 (0.824) 0.006
0.8 4.4 0.808 (0.817) 0.005
0.75 4.1 0.799 (0.809) 0.005
0.6 3.7 0.798 (0.802) 0.004
0.5 3.1 0.783 (0.794) 0.002

V. RESULTS AND DISCUSSIONS

Experimental results are shown in Tables II, III and IV.
Table II show the results of the proposed two approaches
without weights in the fitness functions. In Table II, “Ave-
Size” represents the average size of the feature subsets evolved
by each algorithm in 30 independent runs. “Ave-Acc” shows
the average test accuracy of the selected feature subsets in
the 30 runs. and “Best-Acc” indicates the best test accuracy.
“Std-Acc” represents the standard deviation of the 30 test
accuracies. “All” means that all of the available features are
used for classification. “BPSO-P” stands for the first algorithm,
BPSO with paired evaluation for feature selection. “BPSO-G”
represents the second proposed algorithm, BPSO with group
evaluation for feature selection. Tables III and IV show the
experimental results of the proposed two approaches with
weights in the fitness functions. In these two tables, “Ave-
Size”, “Ave-Acc”, “Best-Acc”, “Std-Acc” and “All” have the
same meaning as in Table II.

A. Results of BPSO with Paired Evaluation for Feature Selec-
tion

According to the results (“BPSO-P”) shown in Table II, it
can be seen that in almost all the datasets, the feature subset

TABLE IV
THE SECOND PROPOSED ALGORITHMS WITH DIFFERENT α2

Dataset α2 Ave-Size Ave-Acc (Best-Acc) Std-Acc

Chess

All 36 0.985
0.9 24.7 0.986 (0.987) 0.001
0.8 22.6 0.986 (0.986) 0.001

0.75 22.4 0.985 (0.987) 0.002
0.6 19.1 0.977 (0.985) 0.003
0.5 15.7 0.970 (0.977) 0.011

Splice

All 60 0.920
0.9 10.1 0.884 (0.931) 0.034
0.8 8.1 0.833 (0.928) 0.059

0.75 7.1 0.790 (0.916) 0.068
0.6 6.4 0.733 (0.877) 0.092
0.5 7.4 0.723 (0.877) 0.094

Lymph

All 18 0.755
0.9 10.4 0.745 (0.785) 0.016
0.8 9.6 0.746 (0.804) 0.022

0.75 9.2 0.741 (0.785) 0.022
0.6 7.4 0.712 (0.744) 0.017
0.5 6.3 0.740 (0.778) 0.017

Spect

All 22 0.809
0.9 17.2 0.812 (0.817) 0.005
0.8 15.6 0.811 (0.824) 0.004

0.75 14.3 0.807 (0.817) 0.006
0.6 5.2 0.809 (0.835) 0.011
0.5 4.5 0.812 (0.828) 0.010

selected evolved by “BPSO-P” reduces at least 83% of the
available features. With the small selected feature subset, DT
can achieve similar (or slightly worse) classification accuracy
with using all features in the Lymph and Spect datasets. In the
Chess and Splice dataset, the average classification accuracy
drops more, but around 87% of the features are reduced.

As can be seen in Table II, all the standard deviation values
in the four datasets shown by “Std-Acc” are smaller than 0.05,
which shows that the first algorithm is stable.

The results suggest that BPSO with paired evaluation for
feature selection can significantly reduce the number of fea-
tures needed for classification and achieve similar classifica-
tion performance with all features.

B. Results of BPSO with Group Evaluation for Feature Selec-
tion

According to the results (“BPSO-G”) shown in Table II, in
three of the four cases, the feature subsets evolved by “BPSO-
G” contains less than half of the available features. With the
selected feature subset, the DT classifier can achieve similar or
even better classification accuracy than using all features. For
example, in the Spect dataset, the feature subsets resulted from
“BPSO-G” consist of only 20% of the available features and
can achieve average higher classification accuracy than using
all features. Only in the Splice dataset is that the classification
accuracy drops slightly, but around 88% of the features are
reduced. All the standard deviation values in the four datasets
are smaller than 0.1.

Comparing “BPSO-G” with “BPSO-P”, in most cases, the
average size of the feature subsets evolved by “BPSO-G” is
slightly larger than that of “BPSO-P”. However, the average
classification accuracy achieved by the feature subsets resulted
from “BPSO-G” is higher than that of “BPSO-P” in three of
the four datasets (except for around 4% lower in the Splice



dataset). In general, the standard deviation values of “BPSO-
P” are smaller than that of “BPSO-G”, which means the
first algorithm is more stable than the second algorithm. The
reason might be that the second algorithm employs a more
complicated fitness function than the first algorithm, which
makes the search space more complicated.

The results show that “BPSO-G” can significantly reduce
the number of features needed for classification and maintain
the similar or even better classification accuracy than using
all available features. In the Splice dataset, the reduction of
the features is almost 90% in both “BPSO-P” and “BPSO-
G”, but the classification accuracy is slightly worse than using
all features. Therefore, in the following two subsections, we
will investigate whether the classification performance can be
increased and the number of features can be further reduced
by using different weights for the redundancy and relevance
in two fitness functions.

C. Results of BPSO with Paired Evaluation for Feature Selec-
tion Using Different α1

According to Table III, it can be seen that with at least
one of the α1 values, BPSO can evolve a small number of
features and achieve better classification than using all features
in three of the four datasets. In the Chess dataset, where
the classification accuracy using all features is already very
high (0.985), the number of features is significantly reduced
although the classification accuracy is slightly decreased.

In all datasets, BPSO with a large α1 usually evolves a
subset with more features and achieve better classification
performance than with a small α1. This is because when α1

is large, the relevance is more important and the redundancy,
which indirectly influence the number of features, is less
important than when α1 is small. In three of the four cases
(except the Chess dataset), BPSO with α1 = 0.9 and α1 = 0.8
can obtain a feature subset with 20-40% of the available
features and achieve better classification performance than
using all features. All the standard deviation values in the four
datasets are smaller than 0.6.

The results show that different weights for the relevance and
redundancy in the fitness function can effectively influence
the results evolved by BPSO in terms of the number of
features selected and the classification performance. By using
a proper value for α1, BPSO can evolve a feature subset with
a small number of features and achieve better classification
performance than using all features in almost all cases.

D. Results of BPSO with Group Evaluation for Feature Se-
lection Using Different α2

According to the results in Table IV, it can be seen that in
three of the four datasets, with at least one of the α2 values,
BPSO can evolve a small number of features and achieve better
classification than using all features. Only in the Splice dataset,
the classification accuracy is decreased, but the reduction of
the number of features is at least 83%. However, the best
accuracy (“Best-Acc”) is higher than using all features when
α2 = 0.9 and α2 = 0.8.

In all datasets, BPSO with a large α2 usually evolves a
subset with more features and achieve better classification
performance than with a small α2. The reason is the same
as discussed in Section V-C. In almost all cases (except the
Splice dataset), BPSO with α2 = 0.9 and α2 = 0.8 can obtain
a feature subset with a small number of features and achieve
better classification performance than using all features.

Comparing the results in Table IV with in Table III, for
the same value of α, neither of the two proposed algorithms
consistently dominate the other one on four datasets. The first
algorithm usually outperforms the second algorithm in terms
of the number of features while the second algorithm achieve
higher classification accuracy.

The results show that the number of features and classi-
fication accuracy are influenced by the value of α1 and α2

in the fitness functions. By using a proper value for α1 and
α2, BPSO can evolve a feature subset with a small number
of features and achieve better classification performance than
using all features in almost all cases.

E. Further Analysis
Results in Tables II, III and IV show that the first algorithm,

BPSO with paired evaluation, usually selects a smaller number
of features while the second algorithm, BPSO with group
evaluation, achieves better classification performance. In order
to further investigate the difference between two proposed
algorithms, it is necessary to analyse the selected features.

Considering the Chess dataset as an example, “BPSO-P”
and “BPSO-G” share the same parameter settings (except for
the fitness function) and start with the same initialisation in
each of the 30 runs. Fitness function in “BPSO-P” evaluate
the mutual information of pairs of features, which is to
discover the two-way relevance and redundancy caused by
feature interaction. Fitness function in “BPSO-G” evaluate the
entropy of groups of features, which is to discover the multi-
way relevance and redundancy caused by feature interaction.
Therefore, even starting with the same swarm, “BPSO-P” and
“BPSO-G” obtain different solutions. Becuase of the discov-
ery of the complicated multi-way relevance and redundancy,
“BPSO-G” usually select more features and achieve better
classification performance than “BPSO-P”. The averge size
of the feature subsets is 4.7 in “BPSO-P” and 15.7 in “BPSO-
G”. The average classification accuracy is 0.797 in “BPSO-P”
and 0.970 in “BPSO-G”.

Although the averge size 4.7 in “BPSO-P” is much smaller
than 15.7 in “BPSO-G”, in 27 of the 30 runs, not all features
selected by “BPSO-P” are included in the subset resulted
from “BPSO-G”. Specifically, considering the results in a
typical run, the numbers of features selected by “BPSO-P”
and “BPSO-G” are 5 and 18, and the classification accuracies
are 0.808 and 0.977. The features selected by “BPSO-P” are
F9, F10, F16, F21, and F27, where Fi denotes the ith feature
in the dataset. The features selected by “BPSO-G” are F1, F3,
F6, F10, F14, F15, F16, F17, F18, F19, F21, F23, F25, F28,
F29, F32, and F35.

The results suggest that using different measurements, the



relevant features or feature subset can be very different. The
fitness functions will guide BPSO to search for different
feature subsets and lead to various classification accuracies.
It seems that there is a correlation between the number of
features and the classification accuracy. We will investigate
this in the future.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to investigate a filter feature
selection approach based on BPSO and information theory
to select a smaller number of features and achieve similar or
even better classification performance. This goal was achieved
by developing two new feature selection algorithms based on
BPSO and two information measures, namely entropy and
mutual information, In the first algorithm, mutual information
of each pair of features is used to evaluate the relevance
and redundancy of the selected feature subset. In the second
algorithm, entropy of each group of features is employed
to evaluate the relevance and redundancy of the selected
feature subset. Two proposed algorithms were examined and
compared with each other with different weights for relevance
and redundancy on four problems of varying difficulty.

The results suggest that with proper weights, both of the
proposed approaches can significantly reduce the number of
features whilst achieve similar or even better classification
accuracy in almost all cases. The first algorithm usually
selected a smaller feature subset while the second algorithm
can achieve higher classification accuracy. Neither of the two
proposed approaches nominated the other one. Therefore, in
the future, we will investigate a BPSO based evolutionary
multi-objective filter feature selection approach to explore
the Pareto front of non-dominated solutions, which can help
users make a more informed choice to balance the number of
features and the classification performance according to their
requirements.
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