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BPSO from various types of inertia weight. The second part is optimizing the cross-
sectional area of steel structures and topology of bracing system under vertical
and lateral load. The structures studied in the research include unbraced frames
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For studying the influence of group, the results of the two examples are
contradictory. One bay, ten stories frame with new group has a minimum weight
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CHAPTER 1
INTRODUCTION

1.1 Background

Optimization applies to many industries for reducing the cost of material, labor,
and construction. Most optimization problems in real life are large and complex,
making solving directly by an exact method is difficult and time-consuming.
According to reason, people search for methods to solve these problems in a shorter
time. One of these methods is a heuristic technique. A Heuristic is a mathematical
technique guaranteeing an optimal point. In some problems, A heuristic technique
may trap local optimum that the best solution is best in some regions, but it is not
the best solution. A higher level of a heuristic technique called a metaheuristic
algorithm technique is developed to solve this problem. The algorithm concept is
nature-inspired and using random search with some method to avoid trapping in a
local optimum. There are many well-known algorithms such as Genetic Algorithm
(GA), Particle swarm optimization (PSO), Binary Particle swarm optimization (BPSO),

and Ant colony optimization (ACO).

f)

Global Optimum

Local Optimum

» X

Figure 1.1 Graph indicates local and global optima
Binary Particle Swarm Optimization (BPSO) was developed from Particle Swarm
Optimization (PSO) to solve a discrete optimization problem by using a binary
system. These algorithms process with the same parameters such as inertia weight,
acceleration coefficient, and velocity. Among these parameters, many PSO authors

found that inertia weight value significantly influences PSO efficiency. Most PSO



articles used linear decreasing inertia weight from 0.9 to 0.4 for optimization. Due to
the same parameters and similar processes, many BPSO authors brought this inertia
weight in their article studies. However, they got bad results in their articles.

A meta-heuristic method is a well-known method for solving an optimization
problem. In the civil engineering field, most of the optimization problems in real life
are structural optimization. The objective of this optimization is to minimize the
structural weight to reduce the cost of construction. In the present, many authors
study the structural optimization problem by using the different meta-heuristic
methods. The benchmark examples they used are unbraced structures. However, the
design of the unbraced structure in a high-rise building under lateral load is not
efficient. This structural design may lead to significant lateral drift and requires a
more extensive cross-sectional area of the structure to carry it. An efficient way to

solve this problem is using a bracing system.

s S TSI FFA7

(a) (b)
Figure 1.2 Framework (a) unbrace structure (b) braced structure

1.2 Research Objectives

(1) At present, not many articles studies about the inertia weight of BPSO. Base
on applying inertia weight value of PSO in BPSO, many BPSO authors found
bad results occurring in their articles. According to this reason, we study
varying inertia weight values by aiming to improve the performance of
BPSO. The inertia weight samples are studied in mathematical benchmarks
and investigated results to find the best inertia weight.

(2) To compare the efficiency of BPSO with other meta-heuristic algorithms, we
apply the best inertia weight from the study in (1) in the structural
optimization problems that have more complexity and larger search space.

BPSO is studied in weight optimization of the unbraced frame due to varying



(3)

(4)

cross-sectional areas. The parameters for comparison are the analysis time of
convergence, the approach to optimize the solution, and the precision of
data when repeated with many numbers of runs.

Unbrace frame is an ineffective structure to withstand a lateral load. So, the
research studies more in the braced frame using X-shape bracing. We
compare the minimum weight of the brace frames and unbraced frames using
the BPSO algorithm.

The structural benchmarks for study refer to previous articles that authors
classified the elements in groups for decreasing search space. Elements in the
same group have the same cross-sectional area. This research studies more
about the influence of search space. We classify the original benchmarks of
the braced frame to the finer group that increases search space and compare

with the initial grouping results.

1.3 Scopes

(1)

(2)

(3)

(@)

The inertia weight samples consist of seven constant inertia weight samples:
0.9, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, and linear decreasing inertia weight from
0.9 to 0.4. We test the samples on six mathematical benchmark functions.
We study three planer frame benchmarks using the inertia weight obtained
from inertia weight study. The available sections for optimization base on the
AISC design section from W6 to W40. We study X-braced frame in only one-
bay, ten stories frame and three-bays, twenty-four stories frame.

The optimization takes place in steel structures. Beam to beam and beam to
column connection is assumed to be rigid. In contrast, the X-braced element
has pinned end designed to resist only the axial load. We optimize only the
cross-sectional area of elements; other properties are constant. In addition,
we consider more for the topology optimization of X-brace elements.

The analysis considers the second-order elastic effects, including P —§& and
P — A effects. The design follows the AISC code considering drift and strength
constrained equations, except two-bays, three-stories frame that s

considered only the strength constraint equation.



(5) AUl processes are coded in MATLAB programming.
1.4 Methodology

All processes of frame optimization are coded in MATLAB to search for the
solution. The data for coding are follows:

(1) BPSO algorithm that is the tool for optimization.

(2)  Samples, range of optimization for weight optimization and geometries,

material properties, load, and available cross-sectional areas for frame

optimization.

(3)  Stiffness analysis, first-order analysis amplification, and design by AISC code

for frame optimization.

(4) The objective function and constrained functions.

(5) An expected result that we need from the study.

For the BPSO process, available solutions or a cross-sectional area of elements
must be transformed into binary space by encoding solutions in real numbers into

BPSO binary bits. The algorithm is run until it reaches to stopping criteria.



CHAPTER 2

LITERATURE REVIEW
2.1 Binary Particle Swarm Optimization (BPSO)

2.1.1 Background of BPSO

ghest,
',

x;4(£)
Figure 2.1 Updating PSO particle

The binary particle swarm optimization algorithm (BPSO) proposed by (Kennedy &
Eberhart, 1997) is a discrete version of the particle swarm optimization algorithm
(PSO) by (Eberhart & Kennedy, 1995). The movement of animals inspires these
algorithms, likes bird flocks for searching the food. All birds move towards the food
that one can find and get closer to the food when time past. PSO technique
assumes each bird as a particle, the flock as a population, and food as the best
solution. Each particle has the position and velocity of itself changed by iteration.
Particle memorizes the position giving the best solution until now of itself as pbest
and population as gbest. The updates of position and velocity are in Eq. (2.1), (2.2).
It should be noted that the number of dimensions equals the number of unknown

variables in the problem.
Viger1 = Vige + Ciri(pbestiq — Xiqe) + cara(gbesty — xiq,) (2.1)
Xigt+1 = Xiat T Vidt+1 (2.2)

Where v;4, and x;5¢ = velocity and position of particle i in dimension d by

iteration t, respectively



c; = cognitive coefficient usually taken as 2.0
¢, = social coefficient usually taken as 2.0
7, and 1, = random number between 0 and 1 for PSO and a random
number of 0 and 1 for BPSO
pbest;; = individual best position of particle [ in dimension d
gbest,; = population best position in dimension d
Eq. (2.1) consists of three parts. The first is the velocity part. The second and the
third parts specify the update of new velocity decided by how far of the position
from pbest and gbest. The first part adjusts how far explosion particle searches in
search space. So, the global search specifies in this part. The second and the third
part indicate the direction of particle search approach the best solution. These parts
specify the local search. To balance the ability of local search and global search, (Shi
& Eberhart, 1998) modified Eq. (2.1) by adding inertia weight W to the first part as in
Eqg. (2.3). This equation is an equation many researchers used to study PSO instead of
Eqg. (2.1).
Viger1 = Woige + cimi(pbestigy — Xiqr) + cor2(gbesta, — Xiqr) (2.3)
BPSO works on the concept of a particle moving in binary space by bit-string. One
bit has only two available solutions, which are 0 and 1. According to the binary
concept, we need many bits to fill all available solutions of each unknown variable.
When the total bit is equal to n bit, all available solutions are 2™. For example, the
total bits for available solutions of four are two bits. The available solutions in the
form of a bit are "00", "01", "10" and "11". For movement of a particle in binary space,
the update of position in Eq. (2.2) is changed to be dependent on the relationship
between random numbers from 0 to 1 or r and sigmoid function of particle's
velocity S(viq) as Eq. (2.4) and (2.5). It should be noted that the number of
dimensions d in Eq. (2.4) and Eqg. (2.5) equals the number of total bits used in the

problem.

1
S(Wig) = Sigmoid(v;q) = P (2.4)



if 7<S(Viges1) then Xjgeq =1

else xijg¢11 =0 (2.5)
1
0.8
0.6
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Figure 2.2 Curve of sigmoid function versus velocity

2.1.2 Previous PSO Articles on Inertia Weight

Besides modifying the updating velocity equation as Eqg. (2.3), (Shi & Eberhart,
1998) studied varying inertia weight. They used constant inertia weight and time-
varying inertia weight as their experiment simple. The constant inertia weight value
they selected is 0, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.2, and 1.4. The time-varying
inertia weight is the linear decreasing inertia weight from 1.4 to 0. They tested these
values on Schaffer's f6 function. The experiment results show that the constant
inertia weights in the range [0.9,1.2] gave a good result on average. They also
suggested the future research try the linear decreasing in different values. From Eg.
(2.3), many PSO researchers recommended the linear decreasing inertia weight from
0.9 to 0.4 to be the inertia weight giving the best result (Poli, Kennedy, & Blackwell,
2007).
2.1.3 Previous BPSO Articles

According to the same parameters between PSO and BPSO, most BPSO articles
refer to PSO articles. However, some parameters giving good performance in the PSO
algorithm did not work well in the BPSO algorithm. According to this reason, the
authors studied improving BPSO performance. The examples of improving BPSO are

using the new function to replace the sigmoid function (Mirjalili & Lewis, 2013) and



(Guo, Wang, & Guo, 2020) and using a hybrid version of BPSO combine with another
algorithm (Mirjalili, Wang, & Coelho, 2014).
2.2 Structural Analysis

2.2.1 General

P P
P A
A A =
’1—/} —H \\ ///
7 \ o ,/

/1 )
,,,L; s 4;H !
i /
! /

-
N ———‘—"‘-‘

I/
A7
\L \s M =P
P P

(a) (b) (c)
Figure 2.3 Second-order effect (a) two effects in element (b) sway condition (c) non-
sway condition

The first order elastic is about the deformation from the applied load. When the
structure is deformed due to applied load, it causes some eccentricity, as shown in
Figure 2.3. When the element has a sway condition, it moves laterally from its
original position due to applied load, especially lateral load. The displacement
structure moves from its original position called A. This eccentricity leads to
additional moments due to P — A effect. When element is under non-sway
condition, it causes delta due to buckling called P — §. From considering these two
effects, the analysis is called second-order elastic analysis.

The stiffness method is one of the popular methods used for structural analysis.
However, the stiffness method is ineffective when the second-order effect, like the P-
delta and P-delta, are interested. This method is time-consuming due to having an
iteration process for the geometric stiffness part. The amplified first-order method by
AISC is replaced for analysis of second-order structural problems.

2.2.2 Stiffness Matrix Analysis

The stiffness matrix analysis (McGuire, Gallagher, & Saunders, 1982) is the concept

of finding unknown displacement from the known force. From Figure 2.4, there are



12 degrees of freedom of the 3D element. However, the planer frame considering
only two-axis reduces the degree of freedom reduce into 6 degrees of freedom

which are  Fyy, Fxp, My, Fxp, Fyp and M,.

$ M_V" 9_\'] $ M_\'Z‘ 6“,2
TF\-I~UI T[’\g.vz

T
M0 Fy,u 5 Fo,u; My, 0,
— > ¢ ——

/ 1 / X
/ F21:W1| Young’s modulus = E / B orm;
/M“‘ 0, Shear modulus = G M.,. 0.,

- L, -

Figure 2.4 Framework element (McGuire et al., 1982)

Maxwell's reciprocal theorem, or a special case of Betti's law, said that the
displacements at point 1 correspond to the unit load at point 2 is the same as the
displacements at point 2 correspond to the unit load at point 1 as Eq. (2.6).

APy = Ay Py (2.6)

From Maxwell's reciprocal theorem, the stiffness matrix k that is described the

relationship of force F and displacement A as Eq. (2.7) can be k;j = k;j;

ATl 2.1
ST ey kel lag

Where f = free degree of freedom
s = support degree of freedom
Where the displacement at support degree of freedom is equal to 0, Eq. (2.7) can
be written as Eq. (2.8).

F, k
L=y 5 = 10y 28)
S sf
The reaction force is equal to the action force from the equilibrium system as Eq.

(2.9).

(K} = [®]{FF} (2.9)
{F} = [@][krr1{Ar} (2.10)
{F} = [kss1{Ar} ; [ksr] = [®][ksr] (2.11)

Correspond to the symmetry property, [Krs] can be explained as Eq. (2.12)
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[krs] = [ksr]™ = [Krr] [@]7 (2.12)
When {F;} = [®]{FFr} as Eq. (2.9), Eq. (2.7) is also explained as the bottom part is
equal to [®] multiply by top past as Eq. (2.13).

hee) = [@1(Kss) = [@][kss] [@]7 219

LA [krr] [@]T 210
[k]‘[[cb][kff] (@] kys] [0]7 214
(kee) = [@1(kss) = [@]lkss] (@] 219

For axial deformation of the element with support in Fig. (2.5a), a relationship
between stress and strain is derived as Eq. (2.6).

vv
I- X o dx
For,us

prss7s73

EA = constant

X
= ;»(, 4
- L - -

(a) (b)

Figure 2.5 Pure axial element (a) support system. (b) free-body diagram (McGuire et

al., 1982)
L Lo LF,, Fy,L
Uy =f edx=f —dx=j —dx = (2.16)
5 OEi o EA EA
Fy2 = o kaauz (2.17)

From the equilibrium equation, Eq. (2.18) can be explained as follows.
Fyi = (—1Fyy; [@] = -1 (1.18)
When we substitute Eq. (2.11), (2.12), (2.15), and (2.18) to Eq. (2.7), the equation
can be written as follows.
Fol=7 1 6 219
The beam element from Figure (2.6) can be explained the relationship between

stress and strain as Eq. (2.20).
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yr777773

1 El, = constant

(a) Support system (b) Free body diagram

Figure 2.6 Beam element (McGuire et al., 1982)

-y d?v
_y__ aw (2.20)
ex p ydxz
Where p radius of curvature. o, = Ee,
d%v
Oy = TEy— (2.21)
d*v d*v
M, = f EWysz = EIZE (2.22)
A
y 2
' Y6,
| .
\11 X

- X > -_— dX

Figure 2.7 Deformation of beam element due to applied load (McGuire et al., 1982)

From Figure 2.7, moment equation M, (x) can be written as Eq. (2.23)
d’v(x)  M,(x) Fy(L—x)+ My

(2.23)
dx? El, El,
From Integrating Eq. (2.23), the new equations are in Eq. (2.24) and (2.25).
2 3 2
d';ix) = 0,(x) = % Fy, (L% - %) + MZ;x l +Cx + G, (2.26)
1 Lx? x3\ M,,x?
v(x) = EL lez (7 — €> +— l + Cx + C, (2.25)

From Boundary Condition, 8(0) = 0 and v(0) = 0, we get C; = 0and C, = 0. Eq.
(2.24) and (2.25) can be written at position x =L as Eqg. (2.26) and (2.27),

respectively.

F L3 M,,I3
= () ==
v =v(l) =3+ Spr

(2.26)
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F,, L% My,L
0., =v(l) == (2.27)
= =v({) =5+ 5T
Eq. (2.26) and (2.27) can be written in matrix form as Eq. (2.28) and (2.29)
> L
{Uz}zi ? E {Fyz} (2.28)
0.2 " EL|L M,,
- 1
2
12 6
El,|72 1
{Fﬂ} =S8 L) (2.29)
Mzz L _9 4 922
L

From equilibrium equations as Eq. (2.30) and (2.31), They can be written into

matrix form as Eq. (2.32).

Eyy = —Fy, (2.30)
le 7/ yZL N MZZ (2.31)
El —
{Fyl}:_z[ 1 0]{Fy2} (2.32)
le L _L _1 MZZ

When we substitute Eq. (2.11), (2.12), (2.15), and (2.32) to Eq. (2.7), the equation

can be written as follows:

- 12E1 6E1 12El1  6EI 1
L3 L? L3 L?
Fyq 6E1 4E1 6El  2EI (21
M _| 12 L L2 L |)0n (233)
Fy, 12E1 6El 12EI 6EI|) V2 '
Mzz B L3 B L2 L3 " 12 022
6E1 2EI 6El  4EI
12 RN Uni# L
Eq. (2.19) and (2.33) can be an assembly for six degrees of freedom matrix as Eq.
(2.34).
r AE AE
A 0 0 T 0 0
12E1 6EI 12EI  6EI
Fyq 13 2 E 2 ([t
Eyy 6EI 4E] 6E1 2EI 121
7 O I 7 Tz T %ezl
F AE AE Uy 2.34
Fiﬁ - 0 o - 0 0 ||, (2.34)
M,; 12EI  6EI 12E1 6E1| \9,,)
=z e Y Em Tz
6E1 2EI 6E1 4E]
=z T Y = 7T
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All equations above describe the degree of freedom in the local coordinate
system. The transformation matrix is used to transform the local coordinate system
into a global coordinate system. From the equilibrium equation, the local coordinate

can be converted to global coordinate as following equations.

I
y2
®
AN r
y N R
A X
P _
s '
yd z2
s
, v
y1 //
*
\\ //
= 6 )
[ ~ X
: KN
Fyq z1

Figure 2.8 Transformation of local coordinate to local coordinate

F, = F/cos6 — F;sinf (2.35)
E, = E/sinf + Fycos0 (2.36)
M, = M, (2.37)
(Fx1)  rcos® —sind 0 0 0 07 fF’fﬂ
Fy1 sin@ cos6 O 0 0 0 y1
Mol 10 T 0 oMl (2.38)
Fy> 0 0 0 cosf —sin@ O0]]| Fy,
Ey, 0 0 0 sind cos® Of]|F),
\MZZJ 0 0 0 0 0 1' \Mézj
{F} = [TH{F'} (2.39)
{F} = [TIIK'{U"}=[T]IK'I[TI{U} (2.40)
[K] = [T][K'][T] (2.41)

2.2.3 Amplified First-Order Elastic Analysis by AISC

The method is approximate to calculate second-order analysis from the first-order
analysis (AISC, 2016). We need to analyze the first-order analysis of the structure for
two situations: frame in non-sway condition and frame in sway condition. The first-
order analysis for the non-sway condition is amplified by moment amplification
factor due to P — A effect B;. The first-order analysis for the sway condition is

amplified by moment amplification factor due to P — § effect B, as Eq. (2.42) and
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(2.43).

P. =P, + B,P, (2.42)
MT = BlMTlt + BZMlt (243)

Where P, and M,,; = required first-order axial strength and bending moment with
no sway condition, respectively
Py and My, = required first-order axial strength and bending moment with
sway condition, respectively
B; = moment amplification factor due to P — A effect calculated from Eq.
(2.44)
B, = moment amplification factor due to P — § effect calculated from Eq.

(2.45)

By~ b (2.44)

1— 2w

Pel
Where C,,, = moment gradient coefficient assuming no translation calculated from
moment at the ends of the element where M; < M, as shown in Eq. (1.45)

P, = the first-order axial strength

P, = elastic critical buckling of the element with no sway condition

C, =06 04M1 (2.45)
m — . . Mz .
5 — 1

z—l_pTry (2.46)
ZPeZ

Where Py, = total vertical loads

Y. P,, = elastic critical buckling strength for the story with sway condition

2.3 Unbraced Frame VS Braced Frame Design against Lateral Load

An unbraced frame is also known as a moment-resisting frame consisting of two
types of elements: beam and column. Column and beam elements connect
perpendicularly with a rigid joint. The moment resisting frame only can withstand the

vertical load. However, this structure is sensitive to lateral loads such as seismic
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loads and wind loads. High-rise moment-resisting structures under lateral load may
cause a significant drift that leads to a lack of serviceability function. The structure
cross-section area needs to design a huge size to avoid drift. It consumes too much
material to construct, which leads to uneconomical design.

A braced frame is a well-known structure design to resist the lateral load. This
structure has a bracing system that the tools to reduce lateral drift of structure. The
bracing system can be from many shapes such as X-shape, V-shape, and K-shape.
Many research experiments confirm that brace frames can reduce the lateral drift,
such as (Haque, Atik, Muhtadi, & Zasiah) and (Jagadish & Doshi, 2013)

2.4 Steel Structural Optimization using Meta-heuristic Algorithm

Many authors studied on moment-resisting planar frame optimization problem
using meta-heuristic algorithms such as GA (Pezeshk, Camp, & Chen, 2000), ACO
(Camp, Bichon, & Stovall, 2005), TLBO (Togan, 2012), and SBO (Farshchin, Maniat,
Camp, & Pezeshk, 2018). They apply algorithms in the unbraced structure under
vertical and lateral load applied on the structure. The design of structures was under
the AISC specification for strength and lateral drift design considering the second-
order effect (P —Aand P — § effects). However, the design for stability by AISC
specification isn’t only considering second-order effect. The specification includes
other requirements such as geometric imperfections, stiffness reductions due to
inelasticity. ESO (Chaiwongnoi, Van Thu, Tangaramvong, & Van, 2020) is research
considered the design for stability using the direct analysis method by AISC

specification.
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CHAPTER 3
BINARY PARTICLE SWARM OPTIMIZATION ALGORITHM

3.1 General

According to the introduction of the BPSO algorithm in section 2.1, this chapter
specifies more detail about the algorithm. The detail includes the process of the
algorithm in step by step, selecting BPSO parameters, and encoding real number
value into binary code.
3.2 BPSO Parameters

Selecting parameters has much influence on the BPSO algorithm. It can upgrade
or downgrade the performance of the algorithm significantly. The parameters set up
in this research are as follows.
3.2.1 Initial Parameters

There are two parameters, velocity and position of particles, are set as the initial
parameters. This research decides to select the initial parameters randomly. The
reason behind this decision is to govern as much as the possibility of searching for
the solution. The initial position is generated with binary values 0 and 1. Initial
velocity is generated randomly in the range of [=Vnax, Vmax]- The formulations to

random initial position and velocity are in Eq. (3.1) and Eq. (3.2), respectively.

if rand;; < 0.5 then Xig =1
else Xig =0 (3.1)
Via = —VUmax + 7rand * 2V, (3.2)
Where x;; = position of particle i at d dimension
v;q = velocity of particle i at d dimension

VUmax = Maximum velocity usually equal to 6 that is the range of sigmoid
curve of sigmoid function versus velocity
rand = random number from 0 to 1
3.2.2 Inertia Weight

(Shi & Eberhart, 1998) found the constant inertia weight in the range of [0.9, 1.2],
giving the best solution in average among their samples. Besides, the result from PSO

research (Poli et al., 2007) found linear decreasing inertia weight from 0.9 to 0.4 gave
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high efficiency to the algorithm. In this BPSO research, we study on constant inertia
weight 0.9, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02 referring to (Shi & Eberhart, 1998) and
linear decreasing inertia weight from 0.9 to 0.4 referring to (Poli et al., 2007).
W.(t) =W, (3.3)
Wip(t) = Winax — Mt (3.4)
tmax
Where W, = Constant Inertia weight
W,p = Linear Decreasing Inertia Weight at iteration
Winax = Maximum inertia weight
Winin = Minimum inertia weight
t = iteration
tmax = Maximum iteration
3.2.3 Stopping Criteria
BPSO algorithm requires repeating the loop many times to reach the optimal
solution. The loop continues with a continuous process if it doesn't have a stop
criteria. So, we must define the maximum iteration to stop the process. We should
select the suitable maximum iteration that can show solution convergence by not
using too long a loop. BPSO algorithm deals with a population of particles that all
have a relationship with others, so the BPSO loop in each iteration can finishes only
when we evaluate all particles. So, the stopping criteria are satisfied if an iteration
reaches the maximum iteration, and all particles are considered as Figure 3.2
3.3 The Transformation between Binary Space and Real Number Space
Sometimes, the number of positions in real number space is not equal to the
number of positions in binary space. Binary space can carry only two available

solutions, as explained in section 2.1.1, so it is necessary to add more bits if the

binary system takes more possible solutions, as shown in Figure 3.1.
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Real Number Space

1
1
1
No. of dimension d,. = n, I
1
1
1

Unknown variables = xff, x&, x§, .., xf

All Possible solutions per unknown variable = 29

I
I
I
Il No. of bits per unknown variable b = g
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! xl xZ x?’lr
N I 0 R ) 3 B B
X1 X3 X3 Xq Xq+1Xqe2 Xqe3 Xaq Xn—3 Xn—2 Xn—1 Xn

Y Carry candidate solution 29 *"r

tlofa]fol1]1 1---0---|0|o|1|---|o|

~

)

\ No. of dimensiond =q Xn, =n ;

Figure 3.1 Encoding general solution to BPSO bits
To calculate the fitness of objective function f(x), positions of the particle or
unknown variables x in binary space are necessary to decode to real number space.
The transformation is explained in Eq. (3.6). The values converted by using this
equation can be formed only as an integer.
X = Xq, X2, X3, e, Xg (3.5)
xR =142% 4+ 2'x,+...+2971x, (3.6)
Where x = Positions of the particle in binary space
xR = position of the particle in real number space

q = No. of bit for one unknown variable
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3.4 BPSO Processes

1)

2)

3)

The detail of BPSO Processes can be explained step by step as follows.

Initialize position x;4 (t = 1) and
velocity v;4(t = 1) randomly.

fitness_pbest; and fitness_gbest

are originally set as infinity.

!

Iteration: t = 1,2,3,...,1

| fd=nandi=m |

____________ : ¥ | fd=nandi#m |
j—— Particle:i=123,..,m
1

Evaluating fitness
Updating P-best & G-best
____________________ R Dimension: d = 1,2,3,...,n
“ \
If fitness; < fitness_pbest; ‘,
Then fitness_pbest; = fitness; : et ~a
N
pbestiq = Xiq (1) : / _ _ \
1 ! Updating velocity \
. . 1
It fitness; < fitness_gbest ! : v (t + 1) = Wriq(t) + o1y (Pbestig—xiq (1)) | |
Then fitness_gbest = fitness; T I + cara(gbesty—x;4 (1)) !
I
gbesty = x;4(t) i ! !
. % P (t+1) > Ve then vt + 1) = Ve '
____________________ : H:vid(t + 1) < “Vmax then Vid (t + 1) = ~Vmax :
Ift = land else 1 1
. 1 !
i=m - —
{ Updating position '
Fmm e \ \ 1
! . | — 1
| Output = fitness_gbest : ' St +1) = T7=0 1
Nemmmmm- [-o ! |1 TS (E+ 1)) then xyu(t+1)=1 i
\ 1
End \\\ else x3(t+1)=0 ,,/
~ - ’

___________________________

Figure 3.2 Flowchart showing the processing of the BPSO algorithm

Initialize position x;4 (t) and velocity v;4(t) randomly as explained in section
3.2.1. fitness_pbest; is the best fitness that particle ifound until now, and
fitness_gbest is the best fitness that the population found until now. These
values are initially set as infinity.

At the first iteration, position x;4; are decoded into positions in real number space
xﬁir and substituted in an objective function f(x) to find the fitness. It should be
noted that the dimension in binary space d and the dimension in real number
space d, sometimes are not the same. The decoding binary space into real
number space is shown in section 3.3.

Update P-best and G-best variables. P-best variables are updated if fitness; is

less than fitness_pbest;. fitness_pbest; is become fitness;, and pbest;, is
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5)

6)
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become x;4. G-best variables are updated if fitness; is less than fitness_gbest.
fitness_gbest is become fitness;, and gbest, is become x;,.

Update velocity and position of each dimension as Eq. (1.3), (1.4) and (1.5). The
updated velocities are restricted not to exceed [—Vmax Vmax] The velocity is
—Vpax If 1T s less than —v, 4. On the other hand, velocity is vy, if it is greater
than vy

After velocity and position are updated for all dimensions of the particle, the
next particle is done in the same process from step 2 to step 4 until all particles
are done.

Repeat step 2 to step 5 for the next iteration until the iteration is reached the
maximum iteration that is stopping criteria. The algorithm is done working, and

we get the best fitness for the output value.
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CHAPTER 4
STRUCTURAL OPTIMIZATION

4.1 General

We study on optimization of steel frame structures under various applied loads.
Two types of frames: the moment-resisting frame and X-braced frame, are studied to
minimize their weight.
4.2 Objective and Constrained Functions

The objective of this optimization is to minimize the weight of the whole
structure, so the objective function is the sum of the weight of all elements shown in

Eqg. (4.1).
Ne

minimize W = Z W;L; (4.1)
i=1

Where W = the weight of the whole structure
W; and L; = cross-sectional weight and length of element [, respectively
N, = number of total elements.
We design the structures with limitations of strength and story drift. These values
shall not exceed the allowable value following the AISC-LRFD code (AISC, 2016). The
relationship between demand and allowable value of story drift and strength is in

Eqg. (4.2) and (4.3).

L
ap;j=|o|-1<0 (4.3)

Where a ; = drift constrained function

A; and A$ = drift from analysis and allowable drift

@ j = interaction equation constrained function

O'.

;= interaction equation following AISC code

Because the BPSO algorithm cannot handle constrained problems, we must
transform the above problem into unconstrained problems. The penalty method
(Feiring, Phillips, & Hogg, 1985) is selected to deal with this situation. The concept of

the penalty method is adding some penalty value to the objective function when
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some constrained function is violated. In this problem, the objective function Eg.

(4.1), (4.2), and (4.3) can be revised as follows.

minimize ¢ = W (1 + cP)® (4.4)
Ns Ne

P= Z max (ag;,0) + Z max (ay ,0) (4.5)
i=1 =1

Where ¢ = new objective function in form of unconstrained function
¢ and € = penalty coefficient
P = penalty equation
Ns
Ne

number of total stories

number of total elements.

4.3 AISC-LRFD Design

4.3.1 Story Drift Design

h h
Base on AISC, the inter-story drift limit varies usage from Too to 500 depending on

structure type and cladding type or partition material. However, the most widely

h h
used are 200 to S00° The inter-story drift on this research follows the previous

h
research that studies structural optimization. They used inter-story drift equal to 200
4.3.2 Strength Design

AISC-LRFD code provides the equation for combining axial and bending moment

equation called "Interaction equations" as follows.

o; = b + M, hu <0.2

/ 2¢0.P,  PppM, lf d:Py (4.6)
P. 8 M, o

g ¢)an 9 ¢an lf ¢an (a.7)

Where P.. and B, =required and available axial strength, respectively

M, and M,, = required and available bending moment, respectively

¢ and ¢, = safety factor of axial strength and bending moment
4.3.2.1 Axial Strength Design

The element under axial load is classified into two types of elements:
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compression element and tension element. This research assumes not to consider
the effect of connection, so available axial strength for tension element is considered
only yielding failure. Available axial strength can be determined as Eq. (4.8) for

compression element and Eq. (4.9) for tension element.
P = Ang (4.8)
b= Achr (4.9)
Where A, = cross-sectional area

E, = yield strength
F., = critical buckling stress calculated as Eq. (13) and (14).

A, KL_,. . [E
F.r = F,0.658F if r = R (4.10)
KL, [E
E.. = 0.877F, if T - E (@.11)
— m?E
2 (ﬁ)z 4.12)
r

Where F, = Euler buckling stress
E = Young's modulus
K = effective length factor can be calculated from Eq. (4.13) for unbraced
frame and Eq. (4.14) for braced frame.

L and r = length and radius of gyration of element, respectively.

_ |1.6G,Gp + 4(G4 + Gg) + 7.5
unb = Gy + Gy +7.5 (4.13)

. _ 3GaGs + 1.4(Gs + Gg) + 0.64
P 3G,Gp +2(G, + Gp) +1.28 (4.14)

Where G4 and Gg = beam-column ratio at the ends of the column shows in Eq.

(4.15)
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_ 2:(I/L)column

= (4.15)
2:(I/L)beam

4.3.2.2 Flexural Strength Design

According to the AISC code, available bending moments of different element
section types are calculated differently because of different behavior. So, the first
step for finding available bending moments is to categorize element types. All
optimized sections in this research are W-section. The equations for calculating
flexural strength are focused only on I|-section. Element categories can be defined
from the width to thickness ratio of the element, as shown in Figure 4.2 and Eq.

(4.16) to (4.18).

if A <A, then Compact section (4.16)
elseif Ap <A< A, then Non-compact section (4.17)
else Slender section (4.18)

Where A = width to thickness ratio of the element as Eq. (4.19) and (4.20)

A, = Limit of width to thickness ratio for compact section as Eg. (4.21) and

p
(4.22)

A, = Limit of width to thickness ratio for non-compact section as Eq. (4.23) and

(4.24)
Mn
A
a —
Mp M‘n - |:Mp (Mp MT) (ﬂ. _ Ap ):|
M,=M, T P
b
M, [ ;
3 M, = F,S
C NC |
| S
: > A,
0 A, Ay

Figure 4.1 Graph of the available bending moment versus width to thickness ratio

by
f
h
Ay = — (4.20)

tw
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Where A = width to thickness ratio of flange
bf = width of flange
ty = thickness of flange
Aw = width to thickness ratio of web
h = height of section
t,, = thickness of web

E
Aps = 0.38 |— (4.21)

E

E
Apw = 3.76 |— (4.22)

E

Where A,f = limiting width to thickness ratio for compact flange of W-section

Apw = limiting width to thickness ratio for compact web of W-section

E

AJo=lp 5 (4.23)
E

Ay = 5.70 |— (4.24)
FJ’

Where 4, = limiting width to thickness ratio for non-compact flange of W-section
Arw = limiting width to thickness ratio for non-compact web of W-section

Considering properties of available sections from section 4.4.2. and unbraced
length from section 5.3., the sections are classified only as compact web sections
with compact and non-compact web sections. So, there are two cases to consider:
compact web and flange section case and compact web and non-compact flange
section case shown in Table 4.1. For compact section, the minimum available
bending moment is considered between yielding available bending moment M, ,,
and lateral-torsional buckling available bending moment M,, ;7. For compact web
and non-compact flange, the minimum available bending moment is considered
between lateral-torsional buckling available bending moment M, ;rp and flange

local buckling available bending moment M, g p.
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Table 4.1 Available bending moment of section

No. Type of Section Available bending moment
1 Compact Section M,, = min (Mn,y: My, 118)
2 Compact web with non-compact flange My, = min (My, 115, My rLB)

A. Compact section

A.1l. Yielding
My, =M, =EZ, (4.25)
Where M,, ,, = available bending moment for yielding

Z, = plastic section modulus about the x axis.

A.2. Lateral Torsional Buckling

There are three cases to consider LTB depended on unbrace length Lj as Figure
4.3.

Mﬂ,
A
No LTB L. — L
b
M, o [Mp - (M, — M) (L — L”)]
T p
M}' _________________________ |
=, M, = F.. S,
| )
0 I L ’

p

=

Figure 4.2 Graph of the available bending moment versus unbraced length

E
L, = 1.7613,\/;3/ (4.26)

Where L,, = limiting unbrace length for elastic analysis that LTB doesn't apply

1, = radius of gyration about y-axis

L. = 1.95 E Je + (jc >2+676(0'7Fy)2
T = TS OTE, Sehy o \Sehy O\TE (4.27)
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Where L, = limiting unbrace length for inelastic LTB
, JHlw
-5
hy = distance between flange centroids = h — t; for W-section

Tts

¢ =1 for W-section
(@) When L, < L, , the limit state of lateral-torsional buckling doesn't apply
(b) When L, < L, < L,

L,—L
My g = Cp (Mp — (M, — 0.7E,S,,) <Lb — Lp>> (4.28)
r— Lp

Where €, = lateral-torsional buckling modification factor calculated as Eq. (4.29)

S, = elastic section modulus taken about x-axis

12.5M gy

Co = 2 BM_ ¥ 3M, + aM, + 30, (4.29)
Where M,y 4, = absolute maximum moment between unbraced length
My, Mg and M, = absolute moment at %,% and % of the length
R,, =1 for doubly symmetric section
(c) When Ly, > L,
My g = FerSx (4.30)
CpmE ¢ (Ly\°
Bt freom i) ws»
ts
B. Compact web with non-compact flange
B.1. Flange local buckling
(4.32)

M, pp = F,Z, — (F,Z, — 0.7F,S A= s
nFLB — ty%x y&x ' yx) Arf_lpf

Where M, g1 p = available bending moment for flange local buckling

B.2. Lateral-torsional Buckling

LTB in B.2. can uses equation the same as section A.2.

4.4 Planer Steel Frame Optimization

4.4.1 Element Connection

For structural optimization problems, the connection between beam to beam and
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column to the beam is designed to have a fixed connection that resists both axial
and moment force. In contrast, X-bracing has pinned end, the element designed to

resist only axial force.

o0—-o0 Pinned Connection

——— Fixed Connection

Figure 4.3 Layout of the frame connection

4.4.2 Available Section for Optimization

The available sections using for optimization are the section with their geometry
base on (AISC, 2011). The section selected from W6 to W40. Total section equal 267
sections as Table 4.2. However, this optimization uses BPSO, a binary system that
carries the available sections for the solution. So, the bit using to carry 267 is 9 bits
with a total of 512 possible solutions. So, it is necessary to create the 245 fake
sections to fill the full blank positions. The cross-sectional area of fake sections is
assumed to be 0. It should be noted that the cross-sectional optimization area of
some elements is not select from all 267 sections. The binary code is regenerated
depending on the size of the available sections in the same way that describes
above.

Table 4.2 Available AISC section data

Index Section Name Cross-sectional area (in?) Binary code
1 W6 x 8.5 2.52 000000000
2 W6 x 9 2.68 000000001
3 W8 x 10 2.96 000000010
265 W14 x 730 215 100001000
266 W36 x 798 236 100001001
267 W14 x808 238 100001010
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4.4.3 Loads

The load observes in this research includes both vertical and lateral load. There is
no factor multiply by load magnitude considering in this research. The vertical load is
the uniform distributed load applied on beams. In contrast, the lateral load is the

point load applied to the left end of each structure floor.
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CHAPTER 5
NUMERICAL EXAMPLES

5.1 General

There are two parts determined in this chapter. The first part is study for the best
inertia weight improving BPSO. The second part is study on structural optimization
problems. The best inertia weight is applied to BPSO for solving these problems.
5.2 Inertia Weight Studies

The samples of inertia weights are constant inertia weight 0.9, 0.92, 0.94, 0.96,
0.98, 1.00 and 1.02, and linear increasing inertia weight from 0.4 to 0.9. This research
applies the samples on six benchmark functions (Tang, Li, Suganthan, Yang, & Weise,
2009) shown in Table 5.1 with 30 runs and 3000 number of analysis for one run. Ten
unknown variables are applied for all benchmark functions, except F5 function
studies on two unknown variables. Each unknown variable requires 15 bits to carry
all possible solutions. The number of particles used in BPSO is 50 particles.

Table 5.1 Benchmark functions with range and optimal value

Function Name Equation Range Finin

F.: Sphere min £(x). = Z X2 [-100,100] | ©

i=1

n-1
F,: Rosenbrock’s min f(x) = Z[lOO(xm —x2)? 4 (x; — 1)7] [-200,200] | O

i=1

Fs: Rastrigin’s min f(x) = 10n + Z[xiz — 10cos (21x,)] [-5.12,5.12] | 0
i=1
Fs: Griewank’s min f() = —— 3 22 = | [cos (22) + 1 [-600,600] | 0
4000; D (\/z)
Fs: Schaffer’s F6 min f£(x) = 0.5 — (sinyxi +x3)* — 0.5 [-100,100] 0

[1+0.001(x? + x2)]?

min f(x) = —20 exp

n
1
—exp (Ez cos (ani)> +20+e

i=1

Fe: Ackley’s [-32,32] 0
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0.4

0.2

100

40 .40
F5 Fé6

Figure 5.1 Benchmark functions with two unknown variables
The best sample of inertia weight is constant inertia weight 0.98. The reason for
selecting this value is inertia weight 0.98 can reach to the lowest solution for all
functions compared with others. The results of this sample for all functions are
almost the optimal solution, except function F2. In addition, the standard deviations
for all functions shown the dispersion of data for all runs are also the lowest value.

In summary, solutions obtained from all runs are close to the others. It can be
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concluded that inertia weight 0.98 is the best value in both accuracy and precision
terms. So, this value is applied in the BPSO algorithm to optimize the structural
optimization problems. The linear decreasing inertia weight from 0.9 to 0.4, the
inertia weight value was suggested by PSO authors, gives the worst value for applying
in BPSO. The results of this inertia weight for all benchmark functions are so far from

the optimum values.

Table 5.2 Minimum fitness of inertia weight on benchmark functions

Inertia Weight F F, Fs Fq Fs Fe
0.90 3.75 7801.85 7.34 0.80 0.00246 1.70
0.92 1.63 477.33 o=l 0.64 0.00246 0.63
0.94 0.12 90.24 1.28 0.27 0.00246 0.25
0.96 0.00434 9.53 0.01 0.11 0.00246 0.03
0.98 9.32E-05 6.96 4.84E-05 | 0.01 0.00246 | 3.96E-03
1.00 9.32E-05 7.34 1.24 0.03 0.00246 | 3.96E-03
1.02 9.32E-05 8.26 2.00 0.01 0.00246 | 3.96E-03

09toc 0.4 113.39 1958397.03 24.41 1.73 0.00246 4.92

Table 5.3 Standard deviation of inertia weight on benchmark functions

Inertia Weight | F1 F2 F3 Fa F5 F6
0.9 459 | 37877.70 2.77 0.08 0.00 0.44

0.92 102 | 8692.70 2.26 0.10 0.00 0.44
0.94 021 | 397595 1.96 0.11 0.00 0.11
0.96 0.01 786.38 1.66 0.09 0.00 0.02
0.98 0.00 | 460.86 1.32 0.05 0.00 0.00

1 0.00 | 419081 3.74 0.06 0.00 0.71

1.02 0.00 | 382398 3,12 0.11 0.00 0.90
0.9t00.4 | 110.80 | 6036157.12 |  4.69 0.69 0.00 1.05
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Figure 5.2 Curve of minimum fitness versus constant inertia weight

5.3 Structural Optimization

In this section, BPSO is applied in three structural optimization problems. There

are two types of structure studied in this section: the unbraced frame and the X-

bracing braced frame. The properties of braced frame are the same as unbraced
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frame. The addition is braced element including in the structure. Only sizing
optimization is applied for column and beam elements while sizing, and topology
optimization is applied for braced elements. The optimization is performed
repeatedly 100 runs with 20,000 numbers of analysis. The number of particles used

for BPSO is 50 particles.
5.3.1 Two-Bays, Three-Stories Frame

The example of a two-bays, three-stories frame consists of 15 elements designed
by (Wood, Beaulieu, & Adams, 1976). Displacement constraint is not considered in
this example. The modulus of elasticity E is 29,000 ksi, and yield stress E, is 36 ksi.
Beam elements are optimized with all 267 available W-shape sections, while column
elements are restricted to W10 sections with 18 sections. No. of bits using for beam
element are 9 bits per element, and No. of bits using for column element are 5 bits
per element. The elements are divided into two groups for optimization that is beam
group, column group. The possible solutions to this problem are 21* solutions. This
example is applied only for moment-resisting frames with an effective length factor
K, is calculated for sway- permitted frame and K, is assumed to be braced out of a
plane is 1.0. Each column is considered unbraced along its length, while each beam
has unbraced length of 1/6 of its span length. BPSO optimized the minimum weight
and compared to other algorithms from previous research GA (Pezeshk et al., 2000),

ACO (Camp et al., 2005), and SBO (Farshchin et al., 2018).

Load on beams = 2.8 kips/ft
2.5 kips
& RPN PR PN PN PN PN AN

5.0 kipg T r C | T 1 5 [ 3 story
@ 10 ft

5.0 Kips
Kt P S P P S PR AN

FAN
36 ft 36 ft

Figure 5.3 Layout and load of two-bays, three-stories frame



Table 5.4 Two-bays, three-stories frame design
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Present
Element Group Optimum GA ACO SBO
Work
Beam W24 x 62 | W24 x 62 | W24 x 62 | W24 x 62 | W24 x 62
Column W10 x 60 | W10 x 60 | W10 x 60 | W10 x 60 | W10 x 60
Weight (Ib) 18,792 18,792 18,792 18,792 18,792
Mean (Ib) - 22,080 19,163 18,792 18,792
Standard Deviation (lb) - 5818 1693 0 0
Number of Analysis - 900 880 502 3
Number of Runs - 30 100 100 100
% Optimal Found - 20% 84% 100% 100%
12 15 D
- W24X62 - W24X62 - 100
™ g 1] g )] g
= 1 = 14 =090
2 W24X62 2 W24X62 3
~ g W '§_ @ é 0.70
= 10 = 13 >
° W24X62 o W24X62 o 050
-x <% ~ X
z = z 0.00
12
R L e TP e R REEEEEE -
o o o
08 o] o o o
2 o ©
T 06
A o]
2 o4 o
(o]
02
0
0 5 10 15

Figure

No. of Element.

5.4 Strength ratio of elements for two-bays, three-stories frame
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Weight of Structure VS No. of Analysis
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Figure 5.5 Convergence curve for two-bays, three-stories frame

The first structure is a two-bay, three-stories frame. The problem is optimized with
only strength constraints. The result from the BPSO algorithm is compared to GA,
ACO, and SBO algorithms. The result shows that all practical algorithms can reach the
optimal value 18,792 |b. When we consider the percent of optimal value found, SBO
and BPSO are the best two algorithms that can reach 100% optimal value found
under 100 runtimes repeating. In addition, we consider more in No. of analysis the
algorithms found the minimum weight. BPSO was found to have the fastest
convergence that is only three iterations done. So, BPSO worked the best for
optimization in the first example. From Figure 5.4, the maximum strength ratio for
minimum weight structure occurs at element No.10 with a strength ratio of 0.9997.

5.3.2 One-bay, Ten-Stories Frame

The example of a one-bay, ten-stories unbraced frame as Figure 5.6 (a) consists of
30 elements. The modulus of elasticity E is 29,000 ksi, and the yield stress F, is 36
ksi. Beam elements are optimized with all 267 available W-shape sections with an
unbraced length of 1/5, while column elements are restricted to W12 to W14
sections with a total of 66 sections and unbraced length along its length. K, is
assumed to be braced out of the plane is 1.0. There are two drift constraint
conditions to consider in this frame: drift at the root and drift at all stories. BPSO
optimized the minimum weight and compared to other algorithms from previous
research GA (Pezeshk et al., 2000), ACO (Camp et al., 2005), TLBO (Togan, 2012), and
SBO (Farshchin et al., 2018).
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The geometry, material properties, grouping, and available sections for a braced
frame are the same as unbraced frame. The additional is considering the bracing
system in terms of topology and sizing cross-sectional area. X-shape bracing with ten
elements follows by no. of stories are divided into one element per group as Figure
5.6 (b). The braced element section is restricted from W6 to the W10 section (33
sections) with an unbraced length of 1/2. The braced frame is optimized under one
drift constraint condition that is drift at all stories. There are two groupings of beam
and column conditions considered for braced frame: grouping the same as the

original unbraced frame and grouping with the finer group as Figure 5.6 (c).

3 kips/ft

5 kips — t e g 5
5 6 kips/ft 5 5 5 10 10

10 kips —sf L L L L1 ” 2
5| & 6kips/ft s 5 5 ? ?

10 kips s T T T L] 188 fz
a| 8 6kips/t 4 4 4 8 8

10 ks oL LT L ol z
il 8 6 kips/ft 4 4 aq 7 7

10 kips —sf L L L L I e 12;
s T 6kips/ft 3 3 ! 3 6 6

10 kips |7 LT 1 1 - 9story 175 fg
3 6kips/ft 3| @12ft 5 3 5 - 5

10 kips —> ~'7f L L Ll 1? .,
2 6 kips/ft 2 2 = 2 4 o 4

10 kips L oL L LD . -
2| ¢ skips/ft 2 2 2 3 3

10 Kips s L T L LT 162 i
1 ¢ 6 kips/ft 1 1 1 2 2

10 kips —sf e L L L I ! z

P 6 11
1 1 15 ft 1 35 1 1 o 1

=5 —= [
30 ft
(a) (b) (@

Figure 5.6 Layout and load of one-bay, ten-stories frame (a) Unbraced frame, (b)
Braced frame with original grouping (c) Braced frame with new grouping

Table 5.5 Types and condition of structure for one-bay, ten-stories frame

No. Types of Structure Grouping Drift constraint
1 Unbraced frame Original At roof
2 Unbraced frame Original All stories
3 Braced frame Original All stories
a4 Braced frame New All stories




Table 5.6 One-bay, ten-stories frame design (No.1)
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Frame 1: Considering story drift at roof

Element Group
ACO TLBO SBO Present Work
1 W14 x 233 W14 x 233 W14 x 233 W14 x 233
2 W14 x 176 W14 x 176 W14 x 176 W14 x 176
3 W14 x 145 W14 x 145 W14 x 145 W14 x 145
4 W14 x 99 W14 x 99 W14 x 99 W14 x 99
5 W12 x 65 W12 x 65 W1d x 61 W14 x 61
6 W30 x 108 W30 x 108 W30 x 108 W30 x 108
7 W30 x 90 W30 x 90 W30 x 90 W30 x 90
8 W27 x 84 W27 x 84 W27 x 84 W27 x 84
9 W21 x 44 W21 x 44 W18 x 46 W18 x 46
Weight (Ib) 62,562 62,562 62,430 62,430
Mean (Ib) 63,308 L 63,244 63,907.14
SD (lb) 684 - 706.84 1,190.45
No. of Analysis 8,300 4,000 11,677 5,408
No. of Runs 100 - 100 100
30
10 20 20 H .
9 78 19 qo0
8 o 18 T 6"0'"0"5'0'55"0; """ ]
; y ;7 090 . 08 o ®, © © OoO
16 & o ¢
6 25 00 £ 05 °
> " 5 °®
04 ° oo
4 23 ) o ©
’ 22 v 02
2 21 1z o 0
1 5 10 15 20 25 30

No. of Element

Figure 5.7 Strength Ratio of elements for one-bay, ten-stories frame (No.1)
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Figure 5.8 Convergence curve for one-bay, ten-stories frame (No.1)

Table 5.7 One-bay, ten-stories frame design (No.2)

Frame No.2: Considering story drift at all stories
Element Group
GA SBO Present Work
1 W14 x 233 W14 x 233 W14 x 233
2 W14 x 176 W14 x 176 W14 x 176
3 W14 x 159 W14 x 159 W14 x 159
a4 W14 x 99 W14 x 99 W14 x 99
5 W12 x 79 W14 x 61 W14 x 61
6 W33 x 118 W33 x 118 W33 x 118
7 W30 x 90 W30 x 90 W30 x 90
8 W27 x 84 W27 x 84 W27 x 84
9 W24 x 55 W18 x 46 W18 x 46
Weight (Ib) 65,136 64,002 64,002
Mean (Ib) - 65,880 65,806.60
SD (lb) - 832.95 1,123.57
No. of Analysis 3,000 12,691 4,647
No. of Runs - 100 100
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Table 5.8 One-bay, ten-stories frame design (No.3)

Element Present Element Present Element Present
Group Work Group Work Group Work
1 W14x211 5 W14dx61 9 W18x46
2 W14x159 6 W27x84 10 w8Xxaa
3 W14x132 7 W24X84 12 W8Xx24
4 W14X99 8 W30x90 14 W10x22
Weight (Ib) 62,224.58
Mean (Ib) 65,228.65
SD (lb) 1,668.340
No. of Analysis 4,852
No. of Runs 100




a1

Table 5.9 One-bay, ten-stories frame design (No.4)

Element Present Element Present Element Present
Group Work Group Work Group Work
1 W14x145 9 W14x68 17 W27x84
2 W14x211 10 W14x53 18 W24x76
3 W12x210 11 W30x90 19 W24x76
4 W14x159 12 W30x116 20 W21x44
5 W12x152 13 W33x118 21 W8x24
6 W14x99 14 W30x99 26 W8x18
7 W12x120 15 W27x84
8 W12x96 16 W24x68
Weight (Ib) 60,805.16
Mean (Ib) 65,028.05
SD (lb) 1,819.48
No. of Analysis 1,7078
No. of Runs 100

The second structure of testing is a one-bay, ten-stories structure. For this
structure, there are two cases of conditions for drift constraint. The first case (Frame
No. 1) is constrained drift at only the roof stories. BPSO algorithm is compared with
ACO, TLBO, and SBO algorithm. With the same 100 runtimes except for TLBO with no
runtime information, SBO and BPSO gave the lowest weight with 62,430 lb. The
standard deviation is considered only for ACO, SBO, and BPSO that have the same
runtimes. It shows that ACO has the lowest SD while BPSO gets the largest standard
deviation. So, the precision term BPSO is the worst. However, BPSO is the best one in
convergence. From the minimum weight structure of BPSO, the maximum strength

ratio is 0.9999 occurring in the 9" stories beam. Story drift ratio at the roof is 0.3125.
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Figure 5.10 Layout and strength ratio of elements for one-bay, ten-stories frame (a)

frame No.2, (b) frame No.3 and (c) frame No.4
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The second case (frame No.2) considers drift for all stories. BPSO is compared with
GA and SBO. BPSO and SBO get the lowest weight, 64,002 b, by using 100 runtimes.
GA with no information of runtimes gives the worse weight than the others. The
standard deviation is considered only for SBO and BPSO that have the same
runtimes. It shows that SBO has the lowest SD while BPSO gets the largest Standard
deviation. For the precision term, BPSO is the worst. However, BPSO is the best one
in convergence. From the minimum weight structure of BPSO, the maximum strength
ratio is 0.9998, which happened in the 9" stories beam. The maximum drift ratio is
0.9999, which happened in the 5" story. The minimum weight of the brace frame
using the original grouping (frame No.3) is 62,224.58 b. This weight is lower than the
unbraced frame with the same grouping, 2.78%. The maximum strength ratio is
0.9970, which happened 6" story beam. The maximum drift ratio is 0.9997, which
happened in the 7™ story. For the braced frame with finer grouping (frame No.4), the
minimum weight is 60,805.16 b that is less than the minimum weight of the braced
frame with the original grouping of 2.28%. The maximum strength ratio is 0.9960,
which happened in the right column of story 9™. The maximum drift ratio is 0.9999,
which happened in 3" story
5.3.3 Three-Bays, Twenty-Four-Stories Frame

The example of three-bays, twenty-four-stories unbraced frame as in Figure 5.13
by (Davison & Adams, 1974). The modulus of elasticity E is 29,732 ksi, and the yield
stress F, is 33.4 ksi. Beam elements are optimized with all 267 available W-shape
sections, while column elements are restricted to W14 sections with 37 sections.
Unbraced length of beams and columns is along their length. K,, is assumed to be
braced out of the plane is 1.0. Drift constraints are considered for all stories. BPSO
optimized the minimum weight and compared to other algorithms from previous
research HS (Degertekin, 2008), TLBO (Togan, 2012), and SBO (Farshchin et al., 2018)
For braced frames, the geometry, material properties, and grouping are the same as

unbraced frames. Braced frame optimizations are the same as section 5.3.2.
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Table 5.10 Types and condition for three-bays, twenty-four-stories frame

No. Types of Structure Grouping Drift constraint
1 Unbraced frame Original All stories
2 Braced frame Original All stories
3 Braced frame New All stories
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Figure 5.13 Layout and Load of three-bays, twenty-four-stories unbraced frame




Table 5.11 Three-bays, twenty-four-stories design (No.1)

ar

Present
Element Group HS TLBO SBO

Work

1 W30 x 90 W30 x 90 W30 x 90 W30X90

2 W10 x22 W8 x 18 W8 x 18 W8x18

3 W18 x 40 W24 x 62 W21 x 48 W21X48

W12 x 16 W6 x 9 W6 x 8.5 W10x12

5 W14 x 176 W14 x 132 W14 x 152 W14x159

6 W14 x176 W14 x120 W14 x 120 W14x120

7 W14 x132 W14 x99 W14 x 109 W14x109

8 W14 x 109 W14 x82 W14 x 74 W14dx61

9 W14 x 82 W14 x74 W14 x 82 W14x48

10 W14 x74 W14 x 53 W14 x 43 W14x48

11 W14 x 34 W14 x 34 W14 x 34 W14x43

12 W14 x 22 W14 x 22 W12 x 19 W14x26

13 W14 x 145 W14 x109 W14 x109 W14x99

14 W14 x 132 W1d x 99 W14 x 109 W14x109

15 W14 x 109 W14 x 99 W14 x 99 W14x99

16 W14 x 82 W14 x90 W14 x 99 W14x120

17 W14 x 61 W14 x 68 W14 x 68 W14x99

18 W14 x 48 W 14 x53 W14 x61 W14x61

19 W14 x 30 W14 x 34 W14 x 34 W14x43

20 W14 x 22 W14 x22 W14 x22 W14x26
Weight (Ib) 214,896 203,124 202,422 205,056
Mean (Ib) 222,620 - 209,560 224,152
SD (b) - - 7,052 15,475
No. of Analysis 14,651 12,000 14,572 6,890

No. of Runs 100 - 100 100
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Fisure 5.15 Layout of braced element for three-bays, twenty-four -tories (a) frame

No.2 (b) frame No.3



Table 5.12 Three-bays, twenty-four-stories frame design (No.2)

50

Element | Present | Element | Present | Element | Present | Element | Present
Group Work Group Work Group Work Group Work
1 W16X36 13 W14x53 34 W8x15 66 W10x15
2 Wex18 14 W14x43 37 W8x15 69 Wex18
3 W10x22 15 W14x43 41 W8x18 2 W8x21
4 W8x10 16 W14x48 45 W10x39 3 W10x30
5 W14x99 17 W14x30 46 W10x30 ” Wex24
6 W14x99 18 W14x30 50 Wex18 81 W10x26
7 W14x61 19 W14x43 53 W10x19 83 W10x22
8 W14x68 20 W14x43 54 W8x28 84 W8x18
9 W14x68 23 W10x22 55 W6x9 87 W8x31
10 W14x43 27 W10x22 58 W8x28
11 W14xa8 28 W8X35 62 W8x13
12 W14x22 32 W10x22 64 W8x10
Weight (Ib) 132,972
Mean (Ib) 176,326
SD (lb) 18,187
No. of Analysis 18,139

No. of Runs

100




Table 5.13 Three-bays, twenty-four-stories frame design (No.3)
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Element | Present | Element | Present | Element | Present | Element | Present
Group Work Group Work Group Work Group Work
1 W12x26 12 W14x43 23 W8x18 64 W10x12
2 W24x62 13 W14x30 27 W10x22 72 W8x31
3 W14x22 14 W14x22 28 W8x21 73 W10x49
4 W12x26 15 W14x43 34 W8x18 75 W10x26
5 W12x16 16 W14x43 50 Wex18 8 W10x26
6 W16x31 17 W14x43 53 W8x13 9 W8x35
7 W14x120 18 W14x43 56 W10x26 81 Wax21
8 W14x82 19 W14x43 60 W8x15 83 W8x18
9 W14x99 20 W14x43 61 W8x15 89 W10x17
10 W14x61 21 W14x30 62 W6x9 90 W10x19
11 W14x48 22 W14x48 63 W10x12
Weight (Ib) 138,050
Mean (Ib) 178,475
SD (lb) 17,873
No. of Analysis 19,595

No. of Runs

100
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Figure 5.16 Story drift for three-bays, twenty-four-stories frame (a) frame No.1, (b)

frame No.2 (c) frame No.3
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Figure 5.18 Element strength ratio for three-bays, twenty-four-stories frame (No.1)

120 144 168
2 a8 72 9
119 143 167
2 a7 71 95
118 142 166
2 a6 02 1o 9]
117 165
2 45 6 93
i 140 164
20 ad 2225 1sg 92
115 16
19 Pt 67 o1
114 138 162
9
® us__ 3 CE 161 i
89
17 G .
16 a0 4 ﬁm 88
111 135
15 w A o e = 87
38 86
14 105 & 157
37 1 85
13 08 132 156
12 36 60 84
107 13 155
35 » qgﬂ
1 o i 59 T
10 105 34 2PH3 B8 153 £
9 - b7 = 81
32 80
8 o 7 P° 151
31 55 79
g 126 150
2
30] 28 4 78
o 101 P 149
248
29, 53
2 100 124 T4 297
a 2 52 76
99 123 147
3 27 51 75
98 122 146
2
26 74
5 9z 2 E 145
1 BT
1 25 “E\JM\Q;Q
= o = [ =

0.90

0.70

0.50

0.00

038

0.6

Strength Ratio

04

02

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

No. of Element

Figure 5.19 Element strength ratio for three-bays, twenty-four-stories frame (No.2)



55

120 144 168
24 a8 72 96
119 143 167
23 a7 7 95
118 142 166
22 a6 70 [
17 141 165
2 45 60 03
116 140 164
20 a s B2 250 o
115 139 209 145 251
19 ) P ] 206 |
114 138 245 160 24
15 21 12
18 420 3137315 66 90
113 137 161
212"210
17 417 2007211 65 160 89
112 136 I T S S S SR -ttt
16 a0| 202067y 38 1.00 ° °° ©
111 el 159 ° J
15 30 g0 63 &7 °e : ° N
110 212 158 08 o —® °
i 4p R0 150 ° °
125 |62 86 g o
109 Sty 157 050 5 ° ; L
204 242 o2 P° o
2 108 7 132 |8 et ysg 203 5 £ 06 Q%QQ e o [ %
on o ° o
12 8 60 84 S ° oo, .8 ° s  °
8107 131 L 0.70 g .o 178 b [5® 0o o
11 35 50 83 v ° o o °© ° o® o
106 130 237 154 239 04 g . ua° % o m," e
195 194 ° ° ™y o0 © a9 o
10 s BRI 153 8 o Tw %, B q e
- 236 234 050 02 o0 P ® °.% %% ° e o o
9 ?
104 128 5T __ 233 15y 235 81 Oig\%oqg ° 3 o% o % ©s
s P o 2L 30— o o8 o | o, S0 ° |
8
103 . A2 229 151 231 , '?,Z ® o o ° ° oo 0,6%, 50 %
7 21 155 9
102 18 150 T 0.00
5 480 1783 54 78 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
7 101 179 125 149
Y6 176 228 226
29
3 s patis T e~ No. of Element
188 186
4 % iseter |2 76
929 23 147
5 P 5 224 227,
98 122 221 146 223
i 2% B Ea
o7 121 217 145 219
1170
1 25
7% 17T B i

Figure 5.20 Element strength ratio for three-bays, twenty-four-stories frame (No.3)

Unbrace frame considers drift for all stories. BPSO is compared with HS, TLBO and
SBO. BPSO gets almost the worst weight, which is 205,056. The weight is greater than
TLBO and SBO and less than HS. It should be noted that TLBO has not any
information of runtimes. The maximum strength ratio is 0.9221, which happened in
the right end column of the 13" story. The maximum drift ratio is 0.9999, which
happened in the 4™ story. The minimum weight of the brace frame using the original
grouping (Frame No.2) is 132,972 b. This weight is lower than the unbraced frame
with the same grouping, 35.15%. The maximum strength ratio is 0.9722, which
happened the right bracing of 1* story. The maximum drift ratio is 0.9999, which
happened in the 23" story. For the braced frame with finer grouping (Frame No.3),
the minimum weight is 138,050 b greater than the braced frame's minimum weight
with the original grouping of 3.82%. The maximum strength ratio is 0.9999, which
happened in the middle beam of story 13™. The maximum drift ratio is 0.9999, which
happened in 21 story.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

This research applies BPSO to solve steel structural weight optimization problems.
The research studies on varying inertia weight of BPSO in value and pattern to find
the best inertia weight improving the algorithm performance. The samples of study
include constant inertia weight 0.9, 0.92, 0.94, 0.96, 0.98, 1.00 and 1.02 and linear
decreasing inertia weight from 0.9 to 0.4. The samples experiment on six benchmark
mathematic optimization functions. The best inertia weight from the sample is
applied in the algorithm for the structural weight optimizations. There are two types
of structures studied under drift and strength constrained function by AISC, unbraced
structure and braced structure. From the experiment, the result can be concluded as
follows:

1) The best inertia weight among the sample is constant inertia weight 0.98. The
inertia weight is the best in both accuracy and precision term. So, this value is
applied in the BPSO algorithm to optimize the structural optimization problem.

2) The first structure is a two-bay, three-stories structure. The result from the BPSO
algorithm is compared to GA, ACO, and SBO algorithms. All practical algorithms
can reach the optimal value. But BPSO is the best one with full percentage

success and using the shortest iteration for getting minimum value.

% Optimal Found No. of Analysis
120 1000
900 880
100 100
100
800
84
80
600
60
400
40
20
20 200
0] 0
EGA WACO @ SRO BPSO EGA mWACO mSBO BPSO
* Use 30 runtimes * Use 30 runtimes
(@) (b)

Figure 6.1 Two-bay, three-stories frame (a) % optimal found from total runtimes (b)

No. of analysis getting minimum weight
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3) The second structure of testing is a one-bay, ten-stories structure. Two unbraced
frames can reach the lowest weight comparing with other algorithms. The
algorithms have the highest standard deviation but the fastest convergence. The
braced frame with initial grouping can get a lower weight than unbrace frame
with the same grouping. The structure weight is decreased when classifying

braced frame with finer grouping.

Minimum Weight of Structure Standard Deviation No. of Analysis
62600 1400 14000
62562 62562 1190.45
1200 12000 Liert
62550
1000 10000
62500 800 8000
600 6000
62450 62430 62430
400 4000
62400
200 2000
62350 0 0
B ACO m TLBO* m SBO m BPSO W ACO mSBO  mBPSO W SBO  m BPSO

* No information about runtimes

(a) (b) ()
Figure 6.2 Unbraced one-bay, three-stories frame considering drift at roof (a)

minimum weight (b) standard deviation of weight for total runtimes (c) No. of analysis

getting minimum weight

Minimum Weight of Structure Standard Deviation No. of Analysis
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Figure 6.3 Unbraced one-bay, three-stories frame considering drift for all stories (a)
minimum weight (b) standard deviation of weight for total runtimes (c) No. of analysis

getting minimum weight
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Figure 6.4 minimum weight for all types of one-bay, twenty-four-stories frame

4) The second structure of testing is a three-bay, twenty-four-stories structure.

Unbraced frame gets the second heavier weight comparing with the other three

algorithms. The braced frame with initial grouping can get a lower weight than

unbrace frame with the same grouping. The structure weight is increased when

classifying braced frame with finer grouping.
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Figure 6.5 Minimum weight of unbraced frame of three-bay, twenty-four-stories

frame
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Minimum Weight of Structure Minimum Weight of Structure Minimum Weight of Structure
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Figure 6.6 Minimum weight for all types of each three-bay, twenty-four-stories frame

5) For comparison three bay, twenty-four stories unbraced frame using BPSO and

other algorithms, BPSO get bad result. When we consider the convergence curve,
BPSO converges so fast with only 6,890 No. of analysis. It can conclude that BPSO
may be stuck in a local optimum. The study of structure types for one-bay with
ten-stories frame and three-bays, twenty-four-stories frames shows the
contradictory result. From example two, BPSO can be found the lower weight
when the elements have more grouping. This is reasonable that when the
grouping is finer divided, the optimization can get the lower weight due to the
independence of element selection. However, the third example cannot reach
this way. When dividing to finer grouping, the weight we got is higher. When we
consider the number of analyses, it is found that the number of analyses is so
close to the maximum iteration. It is possible that BPSO is still not converted and
reaches the optimal value it can find. Another guess is that BPSO stuck with the
local optimum due to seeing the unbraced frame compared to other algorithms.

BPSO almost had the worst result.

6.2 Future Work

From the conclusion part, it is still bad result and contradictory in BPSO study. To

find the cause of problem, it is necessary to test more about the influence of

parameters as following:

1. BPSO algorithm may be stuck in local optimum in some examples. So, a

constant inertia weight of 0.98 cannot find an optimal solution. We suggest
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future work studying the inertia weight with different values and patterns such
as linear increasing inertia weight to find the better inertia weight

Other BPSO parameters such as the number of populations, initial
parameters, maximum velocity, and acceleration coefficient may significantly
influence BPSO performance. Future work may study on varying these
parameters.

From considering three bay, twenty-four stories braced frame, No. of analysis
to get minimum weight is so close to maximum iteration. Future work may
study these frames with larger maximum iteration to see their truly minimum
weight.

According to using a binary system in BPSO, the search space in BPSO is larger
than other algorithms due to fake available solutions for fulfilling available
solutions of the binary system. These fake available solutions may affect the
nonlinearity of function that makes BPSO stuck in a local optimum. Future
work may study on setting the value of fake available solutions.

. This research design structure bases on the effect of the second-order effect.
However, AISC specification has other requirements to design for the stability
of structure. The future study may focus on structural optimization problems,
including the design for stability requirement by AISC using BPSO compare

with  other algorithms such as ESO (Chaiwongnoi et al, 2020).
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