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Abstract— We consider allocating the transmit powers for a
wireless multi-link (N -link) system, in order to maximize the total
system throughput under interference and noise impairments,
and short term power constraints. Employing dynamic spectral
reuse, we allow for centralized control. In the two-link case, the
optimal power allocation then has a remarkably simple nature
termed binary power control: Depending on the noise and channel
gains, assign full power to one link and minimum to the other,
or full power on both.

Binary power control (BPC) has the advantage of leading
towards simpler or even distributed power control algorithms.
For N > 2 we propose a strategy based on checking the corners
of the domain resulting from the power constraints to perform
BPC. We identify scenarios in which binary power allocation
can be proven optimal also for arbitrary N . Furthermore, in
the general setting for N > 2, simulations demonstrate that a
throughput performance with negligible loss, compared to the
best non-binary scheme found by geometric programming, can
be obtained by BPC. Finally, to reduce the complexity of optimal
binary power allocation for large networks, we provide simple
algorithms achieving 99% of the capacity promised by exhaustive
binary search.

Index Terms— Power control, Cellular systems, Information
rates, and Adaptive modulation

I. INTRODUCTION

The need for ever higher spectrum efficiency motivates the
search for system-wide optimization of the wireless resources.
A key example of multi-link resource allocation is that of
power control, which serves as means for both battery savings
at the mobile, and for interference management. Traditional
power control solutions are designed for voice-centric net-
works, hence aiming at guaranteeing a target signal-to-noise-
and-interference ratio (SNIR) level to the users [1]–[3]. In
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modern wireless data networks, adaptive coding and modula-
tion with power control [4], [5] is or will be implemented, and
throughput maximization becomes a more relevant metric.

The simultaneous optimization of transmission rates and
power with the aim of maximizing the multi-link sum capacity
is a difficult problem, which perhaps explains why the problem
has received relatively little attention in the past, although
now it is clearly gaining interest [6], [7]. Considering the
problem of optimally allocating the transmit power for N
concurrent communication links, a common approach is to
use a high SNIR approximation to establish convexity in
the sum-throughput objective function [6], [7]. However, this
approximation by construction prohibits completely turning off
the power of any link at any time. This extra constraint may in
fact cause the resulting power vector to steer away from the
optimum solution in certain cases. Indeed one of the major
points emphasized in the present work is that in the context
of multi-link capacity maximization, the ability of shutting
down one or more links (or transmitting at minimum allowed
power > 0) in certain slots can be instrumental in approaching
maximum network throughput.

By restricting the scenario to interference limited systems,
i.e., neglecting noise sources, in [7] the high SNIR assump-
tion is modified so that links contributing less than a fixed
amount to the total throughput are dropped. For the remaining
links the high SNIR approximation is still used. Although
improvements over the schemes are presented in [6], “the
proposed method is still inferior to maximization of the actual
aggregate throughput” according to [7]. In [8], specializing
to the case of uplink single-cell CDMA, i.e., N transmission
links with a common receiver, and enforcing quality of service
constraints, results on simplifying the power control search
space are derived. However, in this paper we shall consider a
more general system model, for which the uplink single-cell
CDMA setting can be seen as a special case. Thus the results
and conclusions from [8] are not in general applicable to our
model.

Under a sum power constraint, the authors of [9] neglect
noise sources and use waterfilling to maximize the network
capacity, while in [10], under the assumption of symmetric
interference, a two-user power allocation that depends on
the level of interference is derived. Due to the sum power
constraint, the neglection of noise, and the symmetry-of-
interference assumption these results are not applicable to
our cellular system power allocation analysis. In our opinion,
it is more reasonable to instead assume individual power
constraints at every link, and that the received interference in
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general will be different for different users. Further, in [11],
game-theoretic approaches are used to analyze a symmet-
ric one-dimensional two-cell network, assuming the received
power to be a function of the transmitter-receiver distance
only. However, here we model any geometric setup, as well as
allowing for arbitrary signal degradation, e.g., caused by path
loss, multipath fading, or shadowing.

When modelling the transmission rate as a linear function
of the received power, [12] shows that a link when active
should transmit at maximum power for optimality. This result
has the merit of showing potential benefits of an on/off power
control, but in general, the assumed linear relationship between
rate and power is however unfortunately far from the truth
since the rate is known to have a log(·) behavior. The proof
does not extend to arbitrarily increasing rate-power relations,
and the results will not in general yield throughput-optimal
power allocation. Nevertheless, here we show that when using
a low SNIR approximation, the linear relation in [12] is indeed
obtained, and thus the conclusions from that paper holds in
this case, and can be extended to include a minimum power
constraint at each base station.

In this paper we tackle the problem of sum rate maximizing
power allocation in multi-link networks with orthogonal MAC
protocols without resorting to the previously described restrict-
ing assumptions of high SNIR, interference-limited systems,
or interference symmetry. The application we have in mind is a
wireless data access network with best-effort type of quality of
service, and the total aggregate throughput (sum rate) across
the network is the figure of merit. The system is assumed
to be enabled with a perfect link adaptation protocol, so the
user rate is adapted instantaneously as a function of the user’s
signal to noise and interference ratio, thus always achieving
Shannon capacity in any resource slot. Extending [13], our
contributions are as follows: In the two-link case, the opti-
mal power allocation is analytically shown to be remarkably
simple; transmit at full power at link 1, minimum at link 2,
vice versa, or at full power at both links. Next, we consider the
N > 2 case, and show that when either a geometric-arithmetic
mean or low-SNIR approximation is applicable, binary power
control1 is still optimal (as is always true for any SNIR in the
N = 2 case). In the general case for N > 2, we utilize the
mathematical framework of geometric programming [14] (GP)
in order to establish a sum capacity benchmark, to compare
our proposed binary power allocation with, through exhaustive
simulations. Empirically, we demonstrate that the loss associ-
ated with restriction to binary power levels is negligible. On
the other hand, discretizing the optimization space is highly
beneficial: the feedback rate needed to communicate between
network nodes is reduced, transmitter design is simplified, and
finally, limiting the potential solutions to search over better
facilitates distributed resource allocation [15].

For networks with a large number of links, we consider
clustering groups of links as a way of lowering the power
control complexity, as well as reducing the required channel
knowledge. Through clustering significant complexity reduc-

1On/off power control and binary power control are equivalent if the
minimum transmit power is zero.

tion is possible, at the cost of only a small reduction in network
capacity. Finally, we propose a simple greedy approach to
binary power control, and demonstrate that its throughput
performance in a wide range of communication environments
is virtually indistinguishable from that of exhaustive binary
power search.

The remainder of the present paper is organized as follows.
We introduce the wireless system model under investigation
in Section II. In Section III we derive optimal power control
schemes that maximizes the sum throughput. Algorithms for
reducing the complexity of binary power control by clustering
and greedy approaches are presented in Section IV. In Sec-
tion V numerical results are presented, and finally conclusions
are given in Section VI.

II. SYSTEM MODEL

We consider a wireless network featuring a number of
transmitters and receivers, of which there are N active pairs
selected for transmission by a scheduling (MAC) protocol. In
order to focus solely on power control, we do not explicitly
consider scheduling or MAC protocols here. However, note
that the results presented in this paper are valid for any
scheduling algorithm, as the effect of one such algorithm over
another is simply to induce different channel statistics for the
selected links [16]. We also emphasize that our analysis is
valid for any geometry, even for non-cellular systems such as
ad-hoc networks, as long as the sum of link capacities is a
relevant performance metric. To facilitate exposition, we shall
however adopt a cellular terminology from here on; see Fig. 1.

In the network considered, the spectral resource slots are
shared by all cells, leading in general to an interference and
noise impaired system. The communication links are consid-
ered to be downlink, but the results can also be generalized to
an uplink scenario. The data destined for user un is transmitted
with power Pn. Each base station is in general assumed to
operate under both minimum and peak short term (per-slot)
power constraints,

Pmin,n ≤ Pn ≤ Pmax,n, n = 1, 2, . . . , N. (1)

Letting Pmin,n > 0 might be necessary in some scenarios to
ensure that a user un receive a minimum transmission, such
as control information or pilot symbols. Further, the different
cells can be given priorities by assigning individual values of
Pmax,n.

Now, denote by Gn,i(m) the channel power gain to the
selected mobile user un(m) in cell n from the cell i base
station, in resource slot m. We will suppress the slot index
from now on, concentrating on one arbitrary slot. The channel
gains are assumed to be constant over each such resource slot,
i.e., we have a block fading scenario. Note that the gains Gn,n

correspond to the desired communication links, whereas the
Gn,i for n 6= i correspond to the unwanted interference links.
Assuming the transmitted symbols to be independent random
variables with zero mean and a variance of Pn, the signal to
noise-plus-interference ratio (SNIR) for each user is given by

SNIRun =
PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j
, (2)
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Fig. 1. N -cell wireless system model, where N = 7. Base stations are
shown as solid squares. For the user (shown as a circle) in the top cell, the
desired communication link is shown as a solid line, whereas the interference
links are shown as dashed lines.

where σ2
Zn

is the variance of the independent zero-mean
AWGN in cell n. Under the assumption of Gaussian distributed
signal transmission in all cells, the interference terms will be
Gaussian, also after being weighted by the (constant) inter-
ference gains in the current block and subsequently summed.
Then channel experienced by each user within a given time
slot is AWGN, and thus the capacity for each user is given
by the AWGN Shannon capacity, i.e., the achievable rate (in
information bits/s/Hz) for user un is given by

Run = log2(1 + SNIRun). (3)

From (2) and (3) the total achievable throughput (sum rate)
R =

∑N
n=1 Run is then found as

R =
N∑

n=1

log2

(
1 +

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)
. (4)

Finally, we note that our system model with (possibly
different) noise levels {σ2

Zn
}N

n=1 also accommodates the mod-
eling of additional interfering sources disturbing the users
differently, contrary to previous works. As will be discussed
later, one important application of this is when, for complexity
reduction, joint multi-cell power allocation is undertaken over
a subnet (cluster) of neighboring cells only. In this case
σ2

Zi
represents the combined effect of noise and interference

received from out-of-cluster cells by the ith user.

III. TRANSMIT POWER ANALYSIS

This section presents the general optimal power allocation
scheme P∗ = (P ∗1 , . . . , P ∗N ), which has as inputs the channel
gains {Gn,i > 0}, and the AWGN variances {σ2

Zn
> 0}. We

search for the optimal power allocation by approaching the
following optimization problem,

P∗ = arg max
P∈ΩN

R, (5)

where ΩN = {P| Pmin,n ≤ Pn ≤ Pmax,n, n = 1, . . . , N} is
the feasible set and R is given in (4). Since ΩN is a closed
and bounded set and R : ΩN → R is continuous, (5) has a
solution [17, Theorem 0.3]. Before we proceed, we note the
following lemma.

Lemma 1: The optimal transmit power vector will have at
least one component equal to Pmax,n.

Proof: From (4) we have that, for β > 1 and P ∈ ΩN :

R(βP) = log2

( N∏
n=1

(
1 +

PnGn,n

σ2
Zn

β +
∑

j 6=n PjGn,j

))
> R(P).

(6)
Thus, we can increase the sum throughput R, by increasing all
components of P by a factor β, until one component hits the
boundary Pmax,n. Hence, the solution of (5) will have at least
one component equal to Pmax,n. The interpretation of (6) is that
increasing all the transmit powers by a factor β, is equivalent
to reducing the noise in each cell by the same factor.
Note that for one or more Pmin,n = 0, ΩN admits solutions
where some base stations shut down the power completely.
Since one or more of the N base stations may then be
turned off in a resource slot, from a cellular engineering
point of view this scheme can be interpreted as a form of
dynamic channel reuse. Allowing the network to completely
turn off base stations will be sum-throughput optimal, but this
optimality comes at the expense of fairness between the users
in the various cells. Fairness can be restored by increasing
Pmin,n, achieving full fairness at Pmin,n = Pmax,n, ∀n, anal-
ogously to the time horizon parameter in proportional fair
scheduling [18]. Additionally, fairness can be targeted through
introducing appropriate scheduling criteria [16].

A. Trivial Solutions
By inspection of (4) we can identify some trivial (not

necessarily unique) solutions of (5). Firstly, if the system is
noise limited, i.e., the interference can be neglected, then
P∗ = (Pmax,1, . . . , Pmax,N ). Secondly, for the case of an
interference limited system (noise set to zero), we see that
R →∞ if any one of the base stations is turned on with any
power Pmin,n ≤ Pn ≤ Pmax,n. However, in our analysis we
will assume that noise is present, as in all practical systems.

B. The 2-Cell Case
We shall deal with the 2-cell case separately, as it allows

us to derive analytically the optimal power allocation. By
Lemma 1, the optimal power allocation is found among the
following alternatives:
• Extremal points on the boundaries of Ω2: I.e., for P2 =

Pmax,2, P1’s corresponding to ∂R(P1,Pmax,2)
∂P1

= 0, or for
P1 = Pmax, P2’s such that ∂R(Pmax,1,P2)

∂P2
= 0.

• Corner points of Ω2: (Pmax,1, Pmin,2), or (Pmin,1, Pmax,2),
or (Pmax,1, Pmax,2).

Since the logarithm is a monotonically increasing function, we
can look for extreme points on the boundary by considering
the function J(P1, P2) , (1 + SNIRu1)(1 + SNIRu2), i.e.,

J(P1, P2) =
(
1 +

P1G1,1

σ2
Z1

+ P2G1,2

)(
1 +

P2G2,2

σ2
Z2

+ P1G2,1

)
. (7)
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Now, by differentiating J(P1, Pmax,2) with respect to P1 we
find

∂J

∂P1
=

CP 2
1 + 2DP1 + E

F
, (8)

where

C = G1,1G
2
2,1 > 0, D = G1,1G2,1σ

2
Z2

> 0, (9a)

E = −Pmax,2G2,1G2,2(σ2
Z1

+ Pmax,2G1,2)

+ G1,1σ
2
Z2

(σ2
Z2

+ Pmax,2G2,2), (9b)

F = (σ2
Z1

+ Pmax,2G1,2)(σ2
Z2

+ P1G2,1)2 > 0. (9c)

Since F is always strictly positive, a P1 such that ∂J
∂P1

=
0 can be found as the solution to CP 2

1 + 2DP1 + E =
0. Now, since also C,D > 0, this quadratic equation ei-
ther has no zero for P1 ∈ [Pmin,1, Pmax,1], or has one
zero there, and changes sign from − to +. In either case
it is clear that the maximum is attained at a boundary
point Pmin,1 or Pmax,1. Due to symmetry, the above analysis
also hold for P2. Thus, we can conclude that (P ∗1 , P ∗2 ) is
found in the set of corner points of the feasible domain,
∆Ω2 = {(Pmax,1, Pmin,2), (Pmin,1, Pmax,2), (Pmax,1, Pmax,2).}.
Hence, we have the following theorem.

Theorem 1: For the two-cell case, the sum throughput max-
imizing power allocation is binary2. Mathematically,

arg max
(P1,P2)∈∆Ω2

R(P1, P2) = arg max
(P1,P2)∈Ω2

R(P1, P2). (10)

Proof: See above.
Inspecting (10) we see that, for zero minimum powers, of the
two users in question, the user with the highest signal to noise
ratio (SNR), defined as Pmax,nGn,n

σ2
Zn

, will always receive trans-
mission at full power Pmax,n. For (P1, P2) = (Pmax,1, Pmax,2)
this is trivially true. Furthermore, from (4), the decision of
(P1, P2) = (Pmax,1, 0) or (0, Pmax,2) is decided by each user’s
SNR alone, since there will be no interference for these power
allocations.

C. Binary Power Control in the N -Cell Case

For N > 2, analytical treatment of the optimization prob-
lem (5) proves to be challenging, because of the lack of
convexity and the fact that the above analysis from the two-
cell case does not generalize to N cells. However, motivated
by the optimality of binary power allocation for the two-cell
case, reduced feedback requirements, and as well as by its
potential as the key simplification in design of simple or even
distributed algorithms, we will investigate the properties of
binary power control also in the N -cell case.

Binary power control for N cells is done by evaluating
R(P) at the corners of ΩN , and picking the maximum value.
Mathematically formulated,

Pbin = arg max
P∈∆ΩN

R(P), (11)

where ∆ΩN is the set of 2N−1 corner points of Ω, excluding
the all-Pmin,n point.

2For the case of Pmin,n = 0, ∀n, this result was independently reported
both by the authors in [13], and in [19], [20].

Unfortunately, a seemingly pessimistic theoretical result is
obtained there: It can be shown that binary power allocation
is no longer optimal for N > 2. However, as we shall see
it appears to still be very well approximating the capacity
obtained by the optimal solution resulting from continuous
power control, as indicated by the example below.

Example 1: We simulated a N = 3 cell network with the
following parameters. Common peak and minimum power
constraints of Pmax = 10−3, and Pmin = 0, respectively,
assuming identical noise figures for the different receivers,
the AWGN power is found as kT0B, where k is Boltzmann’s
constant, T0 = 290 Kelvin is the ambient temperature, and
B = 1 MHz is the equivalent noise bandwidth, i.e., σ2

Z1
=

σ2
Z2

= σ2
Z3

= 4.0039×10−15. As an example of the randomly
generated channel gain matrix, based on path loss, shadowing
and multipath effects we have

G = 10−9 ×



0.0432 0.0106 0.0012
0.0004 0.2770 0.0043
0.0045 0.0137 0.1050


 .

Then, by the best binary power allocation (P1, P2, P3) =
(1, 1, 1)Pmax, a sum throughput of 9.4555 bits/s/Hz is ob-
tained, while by assigning the optimal powers (P1, P2, P3) =
(1, 0.8595, 1)Pmax we get a throughput of 9.4590 bits/s/Hz.
As we will see later, this example is quite typical in the
sense that binary power control, though suboptimal, very
often yields a throughput close to that obtained by optimally
allocating the powers. While achieving only marginally higher
sum throughput under the given power constraints, optimal
continuous control can however offer some savings in terms
of sum transmit power.

We shall now consider binary power control for N cells
in three cases, 1) approximation by the arithmetic-geometric
means inequality, 2) the low-SNIR regime, and 3) the general
case.

1) Arithmetic mean-geometric mean approximation: From
the arithmetic - geometric means inequality we have, for
positive numbers x1, · · · , xN [21],

GN =

(
N∏

n=1

xn

) 1
N

≤ 1
N

N∑
n=1

xn = AN , (12)

where GN and AN are the geometric mean (GM) and arith-
metic mean (AM) of x1, · · · , xN , respectively. Equality in (12)
can be obtained if and only if x1 = · · · = xN . Writing (4)
as a log of products, and letting xn = (1 + SNIRn), we can
apply the above inequality to obtain

R(P) = log2

(
N∏

n=1

1 +
PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)

≤ N log2

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)
.

(13)

Now, in scenarios where the right hand side of the above
inequality can be used as an approximation of R(P), i.e.,
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R(P) ≈ N log2

(
1 + 1

N

∑N
n=1

PnGn,n

σ2
Zn

+
P

j 6=n PjGn,j

)
, the opti-

mization problem (5) simplifies to

P∗ = arg max
P∈ΩN

N log2

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)
,

(14)
and we can analytically find a closed form solution. As is
always true in the two-cell case, the optimal power control in
the N -cell case is binary when the AM-GM approximation is
accurate.

Theorem 2: The solution P∗ from (14) is binary, i.e., P∗ ∈
∆ΩN .

Proof: Due to the monotonicity of the log-function,
we establish the result by showing that the argument of the
logarithm in the cost function of (14) is convex in each variable
Pk.

∂2

∂P 2
k

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)

=
1
N

∑

n6=k

2PnGn,nG2
n,k

(σ2
Zn

+
∑

j 6=n PjGn,j)3
≥ 0.

(15)

Now, for any P where at least one of its components is not an
endpoint of its interval, there is another point P′ with R(P′) ≥
R(P) such that one more component is at an endpoint of its
interval.

An obvious question is for which scenarios the sum through-
put is well approximated using the AM-GM inequality. The
quality of the approximation can in general be quantified by
inspecting the difference between the right hand and left hand
side of (13), which can be written as

N log2

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)

− log2

(
N∏

n=1

1 +
PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j

)

= N log2

(
AN

GN

)
.

(16)

From (12), log2

(
AN

GN

)
≥ 0, and using Specht’s ratio S(h) [22]

we find

AN

GN
≤ S(h) , (h− 1)h

1
h−1

e ln h
, (17)

where h , max1≤j,k≤N
xk

xj
. Using these bounds together we

have the following result:

0 ≤ log2

(
AN

GN

)
≤ log2

(
(h− 1)h

1
h−1

e ln h

)
. (18)

Inspecting (18), we see that the quality of the approximation
largely depends on the spread of the xn values; indeed the
more concentrated the (1 + SNIRn) factors are, the better
the approximation is, reaching equality between the arithmetic
and geometric mean with all SNIRs equal. As an example
application, consider the case of low SNIR. Then, by default
the SNIR is low in all cells, providing concentrated values of

{xn}N
n=1, and the optimal power control in this scenario is

binary.
2) Low-SNIR regime: The optimality of binary power con-

trol in the low-SNIR case can also be derived using another
argument as we now investigate. In the low-SNIR regime we
can apply an approximation of the achievable rate of each
user, thus simplifying the problem. Specifically, when the
SNIR is low, the following approximation obtained by Taylor
expansion holds [23]: log2(1 + SNIR) ≈ SNIR

ln 2 . Thus, we have

R(P) =
N∑

n=1

log2(1 + SNIRun)

≈ 1
ln 2

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j 6=n PjGn,j
,

(19)

and again find that binary power control is optimal, which is
easily seen from the proof of Theorem 23. In fact, the objective
function obtained by both the low-SNIR approximation and
the arithmetic-geometric means approximation is maximized
by the same binary power values.

In the low-SNIR case the binary power allocation is
also optimal for a weighted sum rate criterion, Rw =∑N

n=1 wnRn, wn ≥ 0, which we state as a corollary.
Corollary 1: In the low-SNIR regime, for a weighted sum

rate criterion, the sum throughput maximizing power control
is binary.

Proof: The result follows by the rules of differentiation.

3) General case: In general, when none of the above
approximations hold, unfortunately we have not found mathe-
matical relations establishing the performance of binary power
control, and hence we resort to exhaustive numerical simula-
tions, trying to cover typical settings for cellular networks.
To evaluate the performance of our proposed binary power
control against a non-binary benchmark we capitalize on
recent developments in geometric programming [14], [24], as
discussed in the next subsection.

Independent of whether any of the above approximations
hold, we still have to solve the discrete maximization (11),
which has a worst-case complexity of O(2N ) for exhaustive
search. For small to moderate values of N , the globally
optimal solution to (11) can easily be found by simply
checking the corner points. For large N , since the cost function
is non-linear and the optimization search space is spanned
by binary variables, (11) may be approached using 0 − 1
nonlinear programming [25], clustering, or greedy approaches.
We discuss clustering and greedy approaches in Section IV.

Currently, there is also ongoing research on finding simple,
distributed solutions to the present power control problem (also
including scheduling) [15]. Finally, we note that the previously
mentioned and more general case where the objective function

3For the case of Pmin,n = 0, ∀n, and identical peak power constraints,
this was independently reported also by the authors in [19], [20]. Further,
in [12], also with Pmin,n = 0, ∀n, the optimization problem (5) with R as
a linear function of the received power, similar to (19), is considered and an
alternative proof for on/off power control is given.
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to be maximized is a sum of weighted rates is also an
interesting problem, but this is a subject for future research4.

D. Geometric Programming Power Control for N Cells

As mentioned above, to evaluate the performance of binary
power control, we will use power control by geometric pro-
gramming as the yardstick5. First, we therefore provide a brief
background on geometric programming [14]. A monomial is
a function f : Rn

++ → R: g(P) = cP a(1)

1 P a(2)

2 · · ·P a(n)

n ,
where Rn

++ is the strictly positive quadrant of Rn, c > 0 is
a constant, and a(i) ∈ R, i = 1, . . . , n. A sum of monomials
is called a posynomial:

f(P) =
K∑

k=1

ckP
a
(1)
k

1 P
a
(2)
k

2 · · ·P a
(n)
k

n . (20)

Then, a geometric program (GP) in standard form is written
as:

minimize f0(P),
subject to fi(P) ≤ 1, i = 1, . . . , I

gm(P) = 1, m = 1, . . . ,M,

(21)

where fi, i = 0, . . . , I are posynomials and gm, m = 1 . . .M
are monomials.

Using the results in [24], the optimization problem in (5)
can be written as follows6:

minimize
N∏

n=1

1
1 + SNIRun

,

subject to
Pn

Pmax,n
≤ 1, n = 1, . . . , N,

Pmin,n

Pn
≤ 1, n = 1, . . . , N.

(22)

Inspecting (22), we see that the constraints are monomials
(and hence posynomials), but the objective function is a ratio
of posynomials, as shown by

N∏
n=1

1
1 + SNIRun

=
N∏

n=1

σ2
Zn

+
∑

j 6=n Gn,jPj

σ2
Zn

+
∑N

j=1 Gn,jPj

, (23)

and the fact that posynomials are closed under multiplication.
Hence, (22) is not a GP in standard form, but a signomial
programming (SP) problem [14]. Following the iterative pro-
cedure from [24], (22) is solved by constructing a series of
GPs, each of which can easily be solved. The GP in iteration l
of the series is constructed by approximating the denominator
posynomial (23) by a monomial, using the value of P from
the previous iteration, while the series is initialized by any
feasible P. Specifically, denote the denominator posynomial
of (23) as g(P). Since a posynomial is a sum of monomials,

4The weighted sum solution presented in [24] is only valid in the high-SNIR
regime.

5The content in this section is largely based on [24], [26], where geometric
power control for wireless networks is given a formal mathematical treatment.

6For Pmin,n = 0, in theory the strictly positive quadrant assumption can
be violated. However, numerically this is not a problem in practice as the
geometric programs are solved using interior-point methods, searching inside
the feasible domain [26].

write g(P) =
∑

i ui(P) where ui(P) is a monomial. Then,
in iteration l, g(P) is approximated by a monomial g̃l(P) as
follows [24]:

g(P) ≥ g̃l(P) =
∏

i

(ui(P)
αl

i

)αl
i

, (24)

where αl
i = ui(Pl−1)/g(Pl−1), and Pl is the value of

P in iteration l. By using (24), (23) is now a ratio of a
posynomial and a monomial. This ratio is again a posynomial,
and hence (22) is approximated and transformed to standard
form, and can be solved using GP techniques. The iteration
is terminated at the l’th loop if ||Pl − Pl−1|| < ε, where ε
is the error tolerance. This procedure is provably convergent
and empirically almost always computes the optimal power
allocation [24], and thus represents an upper bound against
which we can measure the performance of binary power
control.

IV. LOW-COMPLEXITY POWER CONTROL ALGORITHMS

Despite the promise of binary power control in terms of near
throughput optimality and key implementation simplifications,
solving the exhaustive binary power allocation problem (11)
for large networks presents the system designer with an
exponentially complex task. In this section we study two
approaches towards reducing the search complexity.

The underlying idea behind lowering the complexity in both
approaches is to split the original problem into smaller sub-
problems, each of which can easily be solved. However, since
the problem does not exhibit an optimal substructure property,
i.e., an optimal solution to the problem does not contain within
it optimal solutions to subproblems [27], in general, we will
not be able to derive simple algorithms for finding the globally
optimal binary solution. As such, our algorithms seek to a
achieve a good performance versus complexity compromise,
rather than obtaining a global performance optimum.

A. Grouping Clusters of Cells

We now investigate a setting where the total number of N
cells in the network are clustered into groups of K << N
cells, and each cell either transmits with full or minimum
power. For a given cluster Q, the interference from the
remaining N − K cells will simply contribute as noise, i.e.
the sum throughput of the cells in Q is given as

Rcluster, Q =
∑

q∈Q

log2

(
1 +

PqGq,q

σ2
Zq

+ σ2
Iq +

∑
j∈Q

j 6=q
PjGq,j

)
, (25)

where σ2
Iq =

∑
j /∈Q PjGq,j is the interference from cells in

the network which are not part of the cluster. Assuming that
this interference term can be estimated or averaged from the
knowledge of the power activity in other clusters, the idea is
to do power control only locally within each cluster. Hence,
the following problem is solved for each cluster Q,

PQ = arg max
P∈∆ΩK

Rcluster, Q. (26)

To solve the cluster based maximization problem, we have to
investigate N

K subproblems each with maximally 2K evalua-
tions, hence yielding a complexity in N and K of O(N 2K),
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while keeping K fixed, the complexity is O(N). Also, since
we only need to know the sum of the out-of-cluster interfer-
ence, not its terms, compared to the exhaustive binary search
problem (11), the required channel knowledge is reduced.

B. A Greedy Approach to Power Control

Now, consider approaching the binary power control prob-
lem by a greedy method, i.e., we are looking for a simple and
efficient algorithm which in each step makes the choice that
appears best at the moment. This greedy algorithm belongs
to the class of “local search” methods, popular due to its
wide range of applications in non-linear integer programming
problems [25], an example being allocating traffic channels in
OFDMA systems [28].

A key point in a greedy algorithm is the selection function
which chooses the best candidate to be added to the solution.
Here, we start with all cells assigned minimum power Pmin,n,
and look for candidate cells which should have maximum
power Pmax,n. Inspecting (4), and denoting the set of cells
assigned maximum power as S, we note that at each stage,
in deciding whether a cell n /∈ S should be operated at
maximum power, an obvious selection function is the capacity
that would be obtained by letting cell n transmit at maximum
power Pmax,n, while keeping the transmit powers obtained in
the previous stages fixed.

Summarizing, we arrive at Algorithm 1 looping once over
N cells, where Rl and (Pl)j respectively denote the sum
throughput and the j’th component of the power allocation
vector Pl, at step l. After traversing the N cells, the power
allocation vector is found by inspecting at which step the sum
rate achieved its maximum. Complexitywise, the proposed

Algorithm 1 Greedy power control

1: P0 = Pmin , R0 = R(P0), S = ∅
2: for l = 1 to N do
3: Pl = Pl−1

4: n∗ = arg max
n/∈S

R
(
(Pl)n = Pmax,n, (Pl)j 6=n = (Pl)j

)

5: (Pl)n∗ = Pmax,n

6: S = S + {n∗}
7: Rl = R(Pl)
8: end for
9: P∗ = Parg max Rl

1≤l≤N

greedy algorithm makes N choices, and needs to solve the
optimization problem in line 4, with complexity O(N). Thus,
it runs in O(N2) time, achieving a significant reduction
compared to the exhaustive search.

V. NUMERICAL RESULTS

In this section we present numerical results on the achiev-
able sum network capacities for an N -cell wireless system
utilizing the various schemes of power control we have ana-
lyzed.

TABLE I
CELLULAR SYSTEM PARAMETERS

Parameter Suburban Macro Urban Macro Urban Micro LOS

Cell layout Hexagonal Hexagonal Hexagonal
Carrier frequency 1900 MHz 1900 MHz 1900 MHz

Pmax,n, ∀n 10 W 10W 1 W
Pmin,n, ∀n 0 W 0 W 0 W

BS to BS distance 3000 m 3000 m 1000 m
Exclusion disc radius 35 m 35 m 20 m
Operating temperature 290 Kelvin 290 Kelvin 290 Kelvin

Shadowing st. dev. 8 dB 8 dB 4 dB
Equiv. noise BW 1 MHz 1 MHz 1 MHz

A. Simulation Model

Based on the system model described in Section II, we
will now evaluate a cellular system through Monte Carlo
simulations, assuming that the user distribution is uniform
in each cell. To most accurately model a typical cellular
system we follow the spatial channel models for use in system
level simulations developed by the 3GPP-3GPP2 working
group [29]. Specifically the following environments are con-
sidered: the suburban macrocell, the urban macrocell, and
the urban microcell line of sight (LOS). In the macrocell
environments the base station antennas are above rooftop
height, while for the urban microcell setting it is at rooftop
height. Depending on the model, BS-to-user distances should
exceed 20 − 35 meters, thus we exclude users from being
located in a circular disk of radius 20−35 m around each base
station. Further simulation details can be found in Table I.

B. Description of Transmission Schemes

We consider two link adaptation schemes; adaptive coded
modulation using capacity-achieving codes with, and without,
power control. Without power control, the power at all base
stations is held constant at Pmax,n, ∀n. Based on the current
received SNIR level the modulation and coding rates are then
selected. Allowing for power control, adaptive coded modu-
lation is used to transmit at power levels that are optimized
respectively according to GP power control (5), binary power
control (11), the clustering approach (26), and greedy power
control.

C. Network Capacity Statistics

To obtain the system throughput statistics for an average
user in each cell, we ran 10000 independent trials, in each
trial drawing user locations and path gain matrices from their
corresponding distributions. Table II depicts the average per-
cell capacity, defined as R

N , for the three simulation settings,
in bits/s/Hz versus the number of cells N . It is clear that in-
troducing power control improves the throughput performance
for N ≥ 2, in particular for the urban microcell environment.
However, note the only marginal improvement in going from
binary power control to optimal GP power control based on
geometric programming. As seen from the table, the average
per cell capacity decreases as the number of cells increase.
This is to be expected since all cells share the same spectral
resources. As an example of how instrumental it is to be able
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TABLE II
NETWORK CAPACITY STATISTICS

Average pr. cell capacity R
N (bits/s/Hz/cell)

shown in (GP, Binary, Full) triplets

N Suburban Macro Urban Macro Urban Micro

1 (6.02, 6.02, 6.02) (5.13, 5.13, 5.13) (11.96, 11.96, 11.96)

2 (4.93, 4.93, 4.74) (4.40, 4.40, 4.27) (6.64, 6.64, 4.54)

3 (4.41, 4.40, 4.02) (4.03, 4.03, 3.75) (6.03, 6.03, 3.39)

4 (4.03, 4.01, 3.53) (3.70, 3.69, 3.33) (4.66, 4.65, 2.91)

5 (3.98, 3.95, 3.45) (3.68, 3.67, 3.28) (3.88, 3.85, 2.75)

6 (3.81, 3.78, 3.25) (3.54, 3.53, 3.11) (3.41, 3.36, 2.58)

7 (3.67, 3.64, 3.08) (3.42, 3.41, 2.97) (3.06, 3.00, 2.40)
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Fig. 2. Frequency of optimality of binary power allocation, relative to optimal
(GP) power allocation, plotted versus the number of cells N for all three
simulation environments.

to operate some cells at minimum power, we see that the
system capacity in the urban microcell environment is less for
two cells than for one cell when using full power. However,
using binary and GP power control, we observe an increase
in system capacity when going from one to two cells, due to
better management of interference.

In Fig. 2 we have plotted the frequency of optimality of
binary power control, i.e., the percentage of simulations where
binary power control is still optimal. It is seen that for one
and two cells, binary power control is indeed always optimal,
while for more than two cells it is optimal only in a certain
fraction of the cases. When the number of cells increases,
binary power allocation is more seldom optimal. However,
as shown in Table II, the gap between the optimal (GP)
power control and the suboptimal binary power control is still
marginal. This demonstrated near-optimality of binary power
control has several potential implications in the design and
analysis of wireless networks. Firstly, the complexity of the
transmitter design is reduced, since only a two-level power
control is required. Secondly, binary power control provides
a key simplification of the problem by enabling distributed
control of the power allocation [15].

D. Average transmit power

To improve further our understanding of the power control
problem, in Fig. 3 we have plotted the average transmit
power for the suburban macrocell and the urban microcell
environments, as a function of the number of cells. In the
macrocell setup, we see that the average transmit power of
binary and GP power allocation are approximately the same,
and that on average for a 7-cell network, 4 cells should be on.
On the other hand, for the LOS microcell setup, significantly
fewer cells should be turned on. This is due to the fact that
the cells are much smaller, combined with a lower path loss
due to a line of sight environment, hence the interference
caused by turning on a cell dominate more. Also, we note
that for increasing N , the GP power control uses less transmit
power than binary control. Hence, even though there are no
significant throughput gains in using continuous power control
in these settings, it is possible to reduce the average transmit
power, while achieving the same network capacity.

E. Reducing Complexity by Clustering Cells and Greedy
Power Control

Now, we consider the results obtained by grouping the
total number of cells in a large system into smaller clusters
of neighboring cells7. In Table III the normalized capacity
from (26), i.e., the capacity obtained by using binary power
allocation in clusters of size K relative to a binary exhaustive
search over the total network of 19 cells, is plotted versus
the number of cells in the clusters. It is seen that even with
small clusters of 3 cells more than 90% of the capacity can be
achieved. Increasing the cluster size K yields improvements
in sum throughput. Although not shown here, it is clear that
as K → N , the clustering scheme will be identical to that of
the binary exhaustive search.

Finally, we evaluate the results of the greedy power control
scheme. As seen from Table III, the greedy scheme performs
extremely well, achieving more than 99% of the capacity
from binary exhaustive search in all simulation environments.
Using the previously derived running time expressions, we see
that the complexity is reduced by a factor of N2

2N = 192

219 , or
equivalently 99.99% complexity reduction, while sacrificing
less than 1% of the network capacity. Comparing the cluster-
ing approach to the greedy approach, it is clear the greedy
algorithm yields better results, which is to be expected, and
can be explained as follows. While the greedy approach is a
fully centralized scheme, the clustering based power control
operates locally in clusters using an interference average from
the other clusters, and has also for a fixed cluster size lower
complexity. Also, from Table IV we see the average number of
cells turned on by the clustering, greedy, and binary exhaustive
schemes. We see as the number of cells in a cluster K
increases, the fraction of cells turned on decreases. For the
greedy and binary exhaustive search less cells are on, which
helps explain their strong performance. Nonetheless, we see

7Clustering by grouping neighboring cells is not claimed to be optimal;
indeed optimal clustering is a research problem in itself, beyond the scope of
this paper.
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TABLE III
NETWORK CAPACITY STATISTICS FOR COMPLEXITY REDUCED SCHEMES, N = 19

Normalized capacity relative to binary exhaustive search

Clusters of K cells Binary
1 2 3 4 5 6 7

Greedy
exhaustive

Suburban Macro 0.82 0.88 0.91 0.93 0.95 0.96 0.95 0.997 1

Urban Macro 0.84 0.89 0.92 0.94 0.95 0.96 0.96 0.998 1

Urban Micro 0.84 0.87 0.9 0.92 0.93 0.95 0.94 0.994 1

TABLE IV
AVERAGE NUMBER OF CELLS TURNED ON FOR COMPLEXITY REDUCED SCHEMES, N = 19

Average number of cells turned on

Clusters of K cells Binary
1 2 3 4 5 6 7

Greedy
exhaustive

Suburban Macro 19 16.88 15.19 14.55 13.99 13.47 13.5 11.3 11.3

Urban Macro 19 16.98 15.38 14.79 14.21 13.75 13.75 11.7 11.7

Urban Micro 19 17.93 16.45 15.72 15.1 14.23 14.26 10.7 10.5

that the promised benefits of discretizing the power levels can
be achieved at a low complexity.

VI. CONCLUSIONS

We have analyzed transmit power allocation for an N -cell
wireless system under a sum-capacity maximization criterion
and minimum and peak power constraints at each base station.
Assuming perfect channel gain information to be available, we
have investigated the system capacity without power control,
with binary power control, and with GP-based power control.
We show that the optimal power control is binary for two cells,
as well as when the network throughput can be approximated
either by a geometric-arithmetic means inequality or by a
low-SNIR assumption. In the general case when N > 2,
it was demonstrated by extensive computer simulations that
a restriction to binary power levels yields only a negligible
capacity loss.

To reduce the complexity of exhaustively searching for the
optimal binary power allocation for large networks, simple
algorithms based on clustering and greedy approaches were
derived. Using these algorithms a significant complexity re-
duction is possible at only a small penalty in network capacity.
For practical systems, these results are of importance since the
transmitter design is simplified, overhead feedback signalling
is reduced, and the search for distributed algorithms becomes
more manageable. Finally, we note that power control should
complemented with scheduling to further improve the perfor-
mance of the system. In certain scenarios this has previously
been explored in [15], [30].
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