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ABSTRACT

This paper shows the existance of binary pseudowavelets, bases on the binary
domain that exhibit some of the properties of wavelets, such as multiresolution
reconstruction and compact support. The binary pseudowavelets are defined on � n

(binary vectors of length n) and are operated upon with the binary operators
logical and and exclusive or. The forward transform, or analysis, is the
decomposition of a binary vector into its constituant binary pseudowavelets. Binary
pseudowavelets allow multiresolution, progressive reconstruction of binary vectors
by using progressively more coefficients in the inverse transform. Binary
pseudowavelets bases, being sparse matrices, also provide for fast transforms;
moreover pseudowavelets rely on hardware-friendly operations for efficient
software and hardware implementation.

Introduction

The motivation of this work is to provide a new tool for the compression and
multiresolution analysis of bilevel images. Bilevel images are usually coded by mechanisms
akin to CCITT G4 standard fax encoding [1], where entropy coding is achieved by a
modified Huffman code,  or some other device using context modeling and arithmetic
coding [3,4], or even pattern matching combined with context modeling and arithmetic
coding [5]. These methods compress the image in its original domain. The proposed
method decomposes the image into its constituent binary pseudowavelets and compression
can be done in the transformed domain. It also provides means to lossy compression with
graceful degradation of the image. Binary pseudowavelets exhibit some of the properties
of ordinary wavelets, like localization in space and multiresolution reconstruction. One
major difference between ordinary wavelets and binary pseudowavelets is that binary
pseudowavelets are computed using inherently discrete transforms. Furthermore, binary
pseudowavelets are computed using only logical operations (and and xor) whereas
classical wavelets require more or less complex arithmetic operations to compute the
transforms.

Binary pseudowavelets exhibit properties that are wavelet-like. Localization in
space, or compact support, takes a slightly different meaning with binary pseudowavelets.
Orthogonality of basis vectors relative to integer translates of themselves is also present,
as is the nesting of reconstruction spaces (multiresolution). However, individual binary
pseudowavelets do not integrate to zero, since they only use zeroes and ones (therefore no
negative values). Basis vectors are the rows of the pseudowavelet basis matrix.



Binary pseudowavelets are localized in space: no row in a pseudowavelet basis
matrix (except possibly for the vector associated with zero frequency, associated with the
so-called DC term) is filled with ones. Ideally, all rows will only contain a number of ones
proportional to its associated wavelength (inverse of frequency) and these ones will be
contiguous to one another, surrounded by zeros. Orthogonality of basis vectors of same
associated frequency in relation with their own integer translates must be verified. This
implies in practice that two vectors of same associated frequency do not have any bit set
to one at the same position at the same time. That is, (1,1,0,0) and (0,0,1,1) could be two
vectors of an order 4 pseudowavelet basis, while (1,1,0,0) and (0,1,1,0) could not since
they overlap1. This means that the integer translates requirement in pseudowavelets is
changed in a way that makes the minimal translate proportional to the size of the run of
ones in the basis vectors considered.

The multiresolution property requires that rows in the basis matrix contain less and
less ones as their associated frequency increases. It also requires that a reconstruction of a
transformed vector gets more and more precise with respect to the original as the number
of reconstruction vectors used in the inverse transform increases (thus the nesting of
vector spaces). Essentially, a basis that satisfies all of these conditions is a binary
pseudowavelet.

Section 1. Definition of Binary Pseudowavlets
Let us now give the formal definitions pertaining to binary pseudowavelets. The

basic set � , is the binary alphabet, { }0 1, . Let us first define operations on elements of �
and � n.

Def. 1a. For a b a b, , &∈ � is the logical and of a and b.
Def. 1b. For a b a b, ,∈ ⊕

�
is the logical exclusive or of a and b.

Def. 1c. For v ∈ � n , ( )v = −v v vn0 1 1, , ,� , vi ∈ � , i n= −0 1, ,�  is a binary vector.

Def. 1d. For v ∈ � n , v
1
 is the number of ones in v , v

0
the number of zeroes, and

v v
1 0

+ = n .

Def. 1e. For v ∈ � n , v
T
 is the number of transistions in v . The number of

transistion is the number of times the elements of the vector go from 0 to 1
or vice versa.

Def. 1f. For W n n∈ ×�
, ( )W n= −w w w0 1 1, , ,� , wi

n∈ 	  the ith row of W, i n= −0 1, ,� , is

a binary matrix.
Def. 2a. For a ∈ ∈


 
n b, , ( )a & & , & , , &b a b a b a bn= −0 1 1
� .

For a ∈ ∈

 
n b, , ( )a ⊕ = ⊕ ⊕ ⊕−b a b a b a bn0 1 1, , ,� .

Def. 2b. For a b∈ ∈
 n n, , ( )a b⊕ = ⊕ ⊕ ⊕− −a b a b a bn n0 0 1 1 1 1, , ,� .

For a b∈ ∈
 n n, , ( )a b& & , & , , &= − −a b a b a bn n0 0 1 1 1 1

� .

                                                       

1  These rows, together, might, however, still form a basis.



Def. 3a. For V n n n∈ ∈×� �
, v , ( ) ( ) ( )V V v V v V vn n∗ = ⊕ ⊕ ⊕ − −v 0 0 1 1 1 1& & &� .

Def. 3b. For A Bn n n n∈ ∈× ×� �
, , ( )A B A B A B A Bo n∗ = ∗ ∗ ∗ −, , ,1 1

� .

With these basic operators on single bits and bit vectors, let us show the existence
of binary pseudowavelet bases on � n  under the ∗  operator. We have to show that there
are such bases and that their inverses exist.

Theorem 1. Let ( )V n n
n∈ =×

−

�
v v v0 1 1, , ,� , vi

n∈ � , i n= −0 1 1, , ,� . V  is a basis on � n

under the ∗  operator, iff ∀ ∈ ∃ ′ ∈ ∗ ′ =x x x x� �n n V, ! | .
Theorem 2. If V n n∈ ×	

 is a basis on � n , then its inverse is the binary matrix

( )V n n
n

− × − −
−

−∈ =1
0

1
1

1
1

1

v v v, , ,� , such that, for i n= −0 1 1, , ,� , we have

V i i∗ =−v 1 I  (where Ii is the ith row of the identity matrix), and V −1  is also a
basis on  n  under the ∗  operator. V −1  is the inverse of V , since V V− ∗ =1 I

and ∀ ∈x � n , ( )V V− ∗ ∗ =1 x x .

Corollary 2. V n n∈ ×�
 is a basis iff ∃ ∈− ×V n n1 �  such that V V− ∗ =1 I .

Def 4. Two vectors wi  and w j  of a basis have the same associated frequency iff

w wi j1 1
=  and w wi T j T

= .

Def 5. A binary pseudowavelet basis, W n n∈ ×� , is a basis on  n , such that for its
inverse W −1 :
1) All of W −1  row vectors are localized, except possibly for the zero
frequency basis vector: this means that ∀ ∈− −wi W1 1 , wi T

− ≤1 2 , and the

number of ones in the basis vectors is proportional to the associated
frequencies,  i.e. wi

n
i

− ∝ +
1

1 1 . Therefore w w w0
1

1 1
1

1 1
1

1

− −
−

−≥ ≥ ≥�
n .

2) All basis vectors of same frequency are non-overlapping under the &
operator, that is, if ∀ ∈− − −w wi j W1 1 1, , we have that

( )w w w wi j i j
− − − −= → =1

1

1

1

1 1 0 0 0& , , ,� (all zeroes).

3) The basis exhibits the multiresolution property. Let H( , )v w v w= ⊕
1

be the number of places in which v and w differ, the Hamming distance. Let
li  be the vector that contains i ones and then n-i  zeroes. Let ′ = ∗x xW , the
transform of x. A basis W  is multiresolution iff , ∀ x ,  we have that

( ) ( ) ( )n W W W n≥ ∗ ′ ≥ ∗ ′ ≥ ≥ ∗ ′ =− − −H ( & ), H ( & ), H ( & ),1
1

1
2

1 0x l x x l x x l x� .

Def. 6. A pseudowavelet basis is regular with respect to its inverse if each time we
double the number of coefficients used in the reconstruction, the
reconstruction resolution also doubles: ∀ ′x ,

( ) ( )H ( & ), H ( & ),W Wi i
− −∗ ′ ≥ ∗ ′1 1

22x l x x l x .

The last conditions of Def. 5 and Def. 6 can be modified depending on exactly
what type of progressive reconstruction we want because various types of reconstruction
corresponds to different notions of error. We will use some function F(.) that is more



representative of the error in a given context than H(.), but we will require that the
relation ( ) ( )cn W Wi j≥ ∗ ′ ≥ ∗ ′ ≥− −F ( & ) F ( & )1 1 0x l x l  holds for 0 ≤ ≤ ≤i j n  (right side equality

must hold if j n= ) and for some constant c if we are to say that the basis W exhibits the
multiresolution property. This condition can be further relaxed to become

( )[ ] ( )[ ]cn W Wi j≥ ∗ ′ ≥ ∗ ′ ≥− −E F ( & ) E F ( & )1 1 0x l x l , for 0 ≤ ≤ ≤i j n  and where [ ]E .  stands for

the expectation, assuming a distribution of the vectors x, if multiresolution is needed on
the average rather than on every vector of 

� n .

To compute the inverse of a binary pseudowavelet basis, we usually proceed
backwards. Since it is the characteristics of the multiresolution reconstruction that are the
most important, we choose a set of reconstruction vectors, that is, the inverse. We
construct W −1  so that it computes the type of reconstruction we want, then we inverse it
to get W. The naïf algorithm suggested by the definition of the inverse (see theorem 2) is

( )O n2  which is prohibitively complex except for trivially small n. A modified version of the

classical Gauss-Jordan elimination algorithm for matrix inversion provides an algorithm in
( )O n3 . The modifications to the Gauss-Jordan algorithm are minimal. Subtraction is

replaced by the exclusive or (xor) and the pivot is chosen at time t so that it is the row
with the greatest number of ones but with its first one in position t. If another row has a
one in position t, we xor it against the pivot row (and so with the identity matrix side).
The algorithm stops when the basis side is the identity (or a permutation of it). The side
initialized with the identity is now the inverse. When the algorithm stops, we reorder the
resulting matrix to get the identity properly sorted on the left side. The right side contains
the inverse of  W −1 , i.e., W.

Section 2. Examples of Analysis and Reconstruction using Binary
Pseudowavelets.

Let us present an example of a binary pseudowavelet basis. For a given vector
length, there are numerous possible binary pseudowavelet bases. For the sake of
simplicity, we picked n = 8 as the transform size and a regular basis. As the choice of basis
should depend on its target application, we may have one or the other of the possible
binary pseudowavelet bases. Here is the basis W and its inverse W -1:

W =

































1 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0

              
W − =

































1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

The pseudowavelet basis W and its inverse W -1.

Since it is convenient to think of all the operations involved in the binary
pseudowavelet transforms as operations on binary numbers, the indexing convention is
different from the usual matrix indexing convention, as is shown here:



 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 0 1 0 1 0 0

1 1 1 2 11 1 0

2 1 2 2 2 1 2 0

1 1 1 2 11 1 0

, , , ,

, , , ,

, , , ,

, , , ,

n n

n n

n n n n n n

n n n n n n

− −
− −

− − − − − −
− − − − − −























�

�

� � � � �

�

�

Ordering convention in the pseudowavelet basis matrix

Using W  and W −1 , let us compute the forward transform of the vector
[ ]x = 1 1 1 0 0 0 1 0 . In the vector notation, also, the indexing is reversed, that is,

[ ]w = w w w w w w w w7 6 5 4 3 2 1 0 . To avoid confusion, in the examples, the indexes

are written beside the vectors. To compute the forward transform:

x =

































0

1

0

0

0

1

1

1

0

7

�

�

        
W∗ =

































∗

































=

⊕
⊕

x

1 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0

0

1

0

0

0

1

1

1

0

7

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0

�

�

0 0 1 0 1 0 0

0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0

0

0

1

0

0

1

0

1

0

7

⊕
=

=

































= ′

�

�

x

The forward transform of vector x with transform W.

The inverse transform, or reconstruction is the same operation as the forward
transform, except that we use W −1  instead of W .

′ =

































x

0

0

1

0

0

1

0

1

0

7

�

�

        
W − ∗ ′ =
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=

⊕

1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0

0

1

0

0

1

0

1

0

7

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0

x

�

�

0

0 0 0 0 0 0 1 0

1 1 1 0 0 0 1 0

0

1

0

0

0

1

1

1

0

7

⊕
=

=

































=

�

�

x

The inverse transform of x’ with W -1.

Multiresolution reconstruction is best understood using progression in time.
Suppose we devise an experiment where both sender and receiver have agreed upon a
binary pseudowavelet basis, W . The sender computes the binary pseudowavelet transform
of  x  according to W , giving the vector x′. Starting at time t = 0, the bits of x′ are sent
one by one to the receiver, beginning with ′xo . As the receiver gets the bits, he computes
the inverse transform with W −1 and x t , his approximation of ′x at time t. The vector x t  will
have its first t bits set as the first t bits of x′ (that is, x x lt

t= ′ & , cf. def. 5), and the
remaining bits set to zero. As each new bit gets in, the decoder computes W t t− ∗ =1 x x~ ,
where ~x t  is the approximation of  x at time t. When t reaches n-1, ~x xn = .

The pseudowavelet basis can be chosen to exhibit some special properties, such as,
if we are considering analysis and reconstruction of bilevel images, that the multiresolution
reconstruction is visually pleasant. We used the binary pseudowavelet basis U  for the
analysis and reconstruction of bilevel images. In the case of image processing, we will
need 2D binary pseudowavelet transforms. One way of obtaining 2D transforms is simply
to use separable transforms, that is, to apply the transform on the rows of the image and



then on the (transformed) columns. The other would be to use full 2D binary
pseudowavelets bases (in this case, the basis would be represented by a tensor).

U =

































1 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0

              
U − =

































1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

The separable binary pseudowavelet transform is simply, for a section of a
picture P n n∈ ×�

, given by U U P T∗ ∗( ) . Fig 1. shows the multiresolution reconstruction of
the “vitruvia” image with the separable 2D transform based on the binary pseudowavelet
basis U (shown above). In Figs. 1 and 2, the pictures are, from left to right, reconstructed
with progressively more bits, to simulate a progressive transmission environment (or a
lossy compression scheme where coefficients are discarded).

      

      
Fig 1. “Vitruvia” picture at different resolutions, using basis U8. Top, from left to right, the number
of coefficients used in the inverse transform is increased fourfold for each frame. The first frame
contains only 1/64 of the coefficients, the second 1/16, the third ¼ and the last all of the coefficients.
Below, the same pictures but displayed at corresponding scales.

               
Fig 2. Same as fig. 1, with halftoned picture “basketball”.

Basis U also behaves well on halftoned images, as shown in Fig. 2. Since there are



numerous bases on 
� n  under ∗  that are also binary pseudowavelets, one can choose the

basis that fits best his needs. For halftoning applications, the user must find a wavelet that
matches the pace and scale of the halftone dots [2], so that during the reconstruction
process, it takes relatively few coefficients to approximate the dots with relative accuracy.

Section 3. Generalization and Finding New Binary Pseudowavelet
Bases.

As binary pseudowavelet bases are sparse and regular (for regular binary
pseudowavelets), it is often possible to derive generating functions for bases associated to
different dimensions n. For basis U, for example, we find that one possible expression is:

U f t

n t f n

t f fn

n t n

n n n t n t n t( , )

( ) mod

( mod div ) ( mod )

( )

( , ) ( , ) ( , ) ( , )=
− − < ∧ =

= ∧ =








− +

− − +

1

1

0

1 2

2 2 2 0

2
2

1 1

if

if

otherwise

α α α α

( )( )U f t U p q t

f t

f tn n

n

nq n q
p p

− − += =
= ∧ ≥
≠ ∧ ≤ <









1 1
2

2

1

2

1

1

0

1

1( , ) , ,

( )

( ) ( )

if

if

otherwise

with p and q non-negative integers such that 2 p q f+ = , and p the largest non-negative
integer satisfying the equality, but with the following exceptions: f p q= → = =0 0 0,  and
f p q= → = =1 0 1, . α ( , )n t is

 

α ( , )

lg ( ) ( )

n t

n

t

t

t

t

n

n n

n n

n n
n

n n
n

=

−

≤ <
≤ <
≤ <

≤ <












 − −

0

1

2

1

0 2

2
3
4

3
4

7
8

1
2

1

� �

if

if

if

if 2

This formulation strongly resembles the formulation of Haar wavelets, although it
is not as elegant. It will allow us to construct generalized transforms U  for vectors of
length n = 2m,  not just vectors of length 8.

Another interesting question is: how do we obtain new binary pseudowavelet
bases? One way is to place manually bits in a matrix, and making sure that it has an inverse
(the forward transform) and that it satisfies all of  the criteria of a binary pseudowavelet
basis. This can easily be done with an interactive program that, each time a bit changes
state (by the action of the user), computes the inverse and prompts the user in some way
when a basis is reached, and possibly indicate the column that causes the computation of
the inverse to fail. While with this method one can test if one’ s idea corresponds indeed to
a binary pseudowavelet basis for a small n, one still has to determine the general
generation formulae, which are not always obtained easily.

Another possible approach is to use combinatorial search. While brute force
combinatorial search is practical only for small n, combinatorial search can be restricted by
preselecting a limited number of candidate vectors. One can generate a restricted set of



vectors according to one’s specifications, such as, for example, the number of ones must
be a power of two ( ∀ =v v,

1
2k  for { }k n= 0 1, , , lg� ), the number of transitions is less

than z ( ∀ ≤v v,
T

z ), etc. Let m be the number of the vectors of length n thus selected (or

generated). While an exhaustive search for all bases on all vectors of length n would be

( )( )O n

n2 , the restricted search is now only ( )( )O n
m , and since m is usually much smaller than

2n, we can consider the generation of  all bases using n of the m candidate vectors and the
selection of the ones that fit best our needs. The resulting algorithm is now ( )( )O nn

m 3 , since

it is enough to check for inversibility to validate a set of vectors as a basis. It is possible to
further reduce the complexity of the generation of bases, as we generate the possible
combinations, by pruning those which violate one of the properties of binary
pseudowavelet bases as soon as we can determine that they do. For example, while we are
constructing a candidate basis, we will make sure that two vectors of same associated
frequency do not overlap. Applying diverse pruning techniques will speed up the
combinatorial search significantly. When a combinatorial search has produced a number of
binary pseudowavelet bases, the user picks one, or a subset, that satisfies a set of user- and
target-defined constraints.

This algorithm also suggests a protocol to exchange information about bases
between a sender and a receiver. Suppose that both sender and receiver agree beforehand
on a set of binary pseudowavelet bases. Rather than explicitely store the k  different bases,
as they can be very numerous, both sender and receiver will use a set of m vectors, all the
distinct vectors contained in all agreed upon binary pseudowavelet bases. As mn  can be
small compared to kn2 , it can be more efficient to store only this table. To identify which
basis to use, out of all possible bases, the sender can send m bits to the receiver. The
decoder then builds its own basis for decoding. (Although a more efficient approach
would be to use exactly ( )( )O n

mlg  bits by basis identifier; this encoding would be more

efficient since ( )∀ ∀ ≤ ≤m n m mn
m, , lg .)

Section 4. Efficient Software and Hardware Implementations of
Binary Pseudowavelets Transforms

The sparseness and regularity (for regular binary pseudowavelets) of binary
pseudowavelet bases suggests that fast transform algorithms exist. In software, if the
vectors to transform are not too long, say 16 bits long or less, the forward and inverse
transforms can be implemented as look-up tables, since a table size of 216 entries is
reasonable. If the vectors to transform are not of an amenable length, fast transforms
algorithms can be derived for the chosen binary pseudowavelet basis. While the optimal
fast transform algorithm will ultimately depend on the basis, since a binary pseudowavelet
basis has between ( )O n  and ( )O n nlg  non zero coefficients (this can be shown using

property (1) of def. 5 ), it will be computed by an algorithm with a complexity ranging
from ( )O n  to ( )O n nlg . The multiplicative constant can be made quite small, since

general purpose microprocessors offer binary operations on ‘words’ rather than on
individual bits. So rather than computing and and xor for each individual bit, we can



process 2p bits at the same time (usually  p  ranges from 3 to 6), giving complexities from

( )O np
1

2
to ( )O n np

1
2

lg .

As for hardware implementation, the circuit required for the forward and inverse
transforms have few gates. The fact that we are dealing with binary data instead of
integers, or even floating point numbers, will allow each node in the circuit to be
constructed with only one gate. Moreover, if there are k bits to 1 in a column of the
transform, the number of gates needed to compute the result for this column will be ( )O k

and the depth of the circuit will be ( )O klg  —  a series of the type of

x x x x x xn n0 1 2 3 2 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕− −�  can be evaluated as

( ) ( )( ) ( )( )� � �x x x x x xn n0 1 2 3 2 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕− −  which leads to a ( )O klg depth circuit. As k is

( )O nlg  on the average (cf. property (1) of def. 5), here again, the circuit will have a

complexity of at most ( )O n nlg gates, with an average ( )O nlg lg depth for a transform on

vectors of length n. However, some transforms will reduce to a circuit with ( )O n  gates,

as does basis U, since not all columns contain the same number of ones.  Columns with
only one one are only pass-through wires.

The great simplicity of the circuit will allow realization of many parallel transforms
or of a single but wider transform on a single chip. For example, a fax image has a
horizontal resolution of 1728 pixels [1]. For such a length, we would have a circuit with
about 10000 gates, which is modest by today’s standards. It would be easily feasible to
construct such a chip, or even include the transform circuitry as a part of an extended
ALU of a dedicated processor. In that case it would be even highly likely that the circuitry
needed to feed the transform and to store back the results would be as large, if not larger.

Future work
This paper covers only generation of bases, analysis and reconstruction of binary

vectors using binary pseudowavelets, but applications to data compression and document
analysis are clear. The multiresolution property of binary pseudowavelets allows for
progressive reconstruction, which, in terms of data compression, corresponds to the
possibility of using lossy compression schemes. A document image could be transformed
onto one of the binary pseudowavelet domains, with resulting bits either kept or discarded
(we can hardly speak of quantization in this case) in function of their relative importance
(according to some criterion), and remaining bits coded efficiently using context modeling
and arithmetic coding. This is the spirit of the coders that are found in current wavelet-
based compression schemes [6,7]. Binary pseudowavelet bases also have applications in
bandwidth-constrained reconstruction of bilevel images and documents. Future work
would require exploration of  “quantization” techniques applicable to the transformed
domain, and what types of encoding are sensible.

Conclusion
Binary pseudowavelet are simple bases defined on 

� n  under the ∗  operator, which
is defined with the and and xor logic functions, that exhibit the properties of locality and



multiresolution, as do classical wavelets. Binary pseudowavelet are tools for the
multiresolution analysis of bilevel images, can be used in lossless or lossy compression
schemes of bilevel images, and are computed efficiently either in software by fast
transform algorithms, or in hardware by relatively simple circuitry.
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