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Abstract

We consider estimating binary response models on an unbalanced panel, where the
outcome of the dependent variable may be missing due to non-random selection, or there
is self selection into a treatment. In the present paper, we first consider estimation of
sample selection models and treatment effects using a fully parametric approach, where
the error distribution is assumed to be normal in both primary and selection equations.
Arbitrary time dependence in errors is permitted. Estimation of both coefficients and
partial effects, as well as tests for selection bias are discussed. Furthermore, we consider
a semiparametric estimator of binary response panel data models with sample selection
that is robust to a variety of error distributions. The estimator employs a control function
approach to account for endogenous selection and permits consistent estimation of scaled
coefficients and relative effects.
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1 Introduction

Empirical researchers have shown growing interest in estimating binary response panel

data models where sample selection and self-selection issues arise. A sample selection

problem is a possibility whenever a panel data set is unbalanced. For example, binary

response models with unbalanced panels arise in labor economics when studying the prob-

ability of worker being employed in a job with benefits with selection occuring due to non-

random self-selection into the labor force. In studies that focus on estimating treatment

effects, complications arise if self-selection into the treatment is not random. Estimation

methods that address the selection problem can be helpful to empirical researchers who

do policy evaluation with binary responses.

The problem of nonrandom selection has received substantial attention in the theo-

retical econometrics literature. Several new methods have been proposed for estimating

selection models using panel data. However, the focus of that literature has been on

linear or partially linear panel data models. For example, Kyriazidou (1997) derives semi-

parametric estimators for the linear panel data model under sample selection when the

explanatory variables are strictly exogenous. Semykina and Wooldridge (2010) show how

to estimate linear unobserved effects panel data models with endogenous explanatory

variables and nonrandom sample selection. In this paper, we consider estimating binary

response panel data models in the presence of nonrandom selection.

We consider two types of selection rules: (i) the selection variable is binary, and (ii) the

selection variable is a corner solution or censored response.1 In the binary selection case

we show how to use the Mundlak (1978) device along with pooled maximum likelihood

estimation to obtain simple estimators robust to general forms of dynamic misspecifica-

1In most applications, the selection variable is a corner solution, where some segment of the population
chooses zero. Good examples are hours worked and quantity purchased of a good. In some cases, the
variable is truly censored, especially when observability of y depends on whether an event occurs before
a certain duration. If the duration is censored then the selection variable is properly viewed as censored.
The statistical framework is essentially the same. For brevity, we refer to this case as the censored case.
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tion. The setup is easily modified to allow estimation of treatment effects with a binary

treatment.

When the selection variable is censored, we derive both parametric and semiparamet-

ric estimators using a control function approach. In the parametric case, we draw on the

literature that considers estimating binary response models with endogenous explanatory

variables using cross-section data (Blundell and Smith, 1986, Rivers and Vuong, 1986).

In particular, we use a control function approach on the selected sample. The result is an

extension of Wooldridge (1995), who studied linear models, to the binary response case.

Our semiparametric approach is based on the semiparametric control function methods

proposed by Blundell and Powell (2004), extended here to the missing data problem.

In addition to discussing consistent estimation of selection models, we propose the

Lagrange Multiplier test and simple variable addition tests for the selection bias.

2 General Setup

Consider a binary response model

y∗it = xitβ + ci1 + uit1, (1)

yit = 1[y∗it > 0], t = 1, . . . , T,

where y∗it is a latent variable, yit is the observed variable, 1[·] is an indicator function that

takes on a value of one if the expression in brackets is true and is zero otherwise, xit is

a 1 ×M vector of time-varying explanatory variables, ci1 is the unobserved effect, and

uit1 is the idiosyncratic error. In what follows, the observed covariates are assumed to

be strictly exogenous conditional on ci1. Specifically, for xi ≡ (xi1, xi2, . . ., xiT ), assume

that D(yit|xi, ci1) = D(yit|xit, ci1), where D(·) denotes the distribution. Note that this

assumption does not impose restrictions on how xi and ci1 may be related.
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In addition to estimating the vector of parameters, β, one is often interested in esti-

mating partial effects, where the partial effect is defined as a ceteris paribus effect of an

increase in explanatory variable xitk on the expected value of yit. In panel data models,

ci1 is an unobserved variable that affects yit, but cannot be consistently estimated on a

usual panel where T is fixed. Therefore, as is common in nonlinear panel data models,

we consider average partial effects (APEs), where an APE is the effect of an increase in

an explanatory variable on the expected value of yit averaged over the population distri-

bution of the unobserved heterogeneity, ci1. The discussion below covers the estimation

of both parameters and APEs.

We introduce incidental truncation by modeling the selection process as

s∗it = zitδ + ci2 + uit2, (2)

sit = 1[s∗it > 0], t = 1, . . . , T,

where zit = (xit, zit2) has dimension 1 × L (L > M), s∗it is a latent variable, and sit is a

selection indicator that equals one when yit is observed and is zero otherwise. Thus, the

vector of covariates in the selection equation contains xit and at least one more variable.

Similar to equation (1), assume that D(sit|zi, ci2) = D(yit|zit, ci2), where zi ≡ (zi1, zi2, . . .,

ziT ). Moreover, assume D(yit|xi, zi, ci1) = D(yit|xi, ci1) = D(yit|xit, ci1). A key assumption

is that zit is observed for all i and t, even though yit is observed only when sit = 1.

In some cases, s∗it may be partially observable. In particular, in addition to the sign of

s∗it, the value of s∗it may be known when yit is observed. Examples include hours of work

for a person who selects to be in the labor force (yit may be an indicator for whether the

work contract includes retirement benefits) and the amount of medical expenses borne by

an individual who requires medical treatment (yit may be an indicator equal to one if the

5



treatment included a particular medical procedure). In such an event, we have

s∗it = zitδ + ci2 + uit2, (3)

sit = max{0, s∗it}, t = 1, . . . , T.

Partial observability of s∗it makes it possible to estimate β and the APEs under fewer

assumptions, as we have more information in a range of strictly positive values for sit. In

this paper, we discuss two cases: (i) when the selection rule follows equation (3), and (ii)

when the selection rule is binary, as specified in equation (2).

Apart from the selection problem, additional complications result from the presence

of unobserved heterogeneity. Within a random effects framework, where the unobserved

effect is assumed to be independent of zi, leaving it in the error leads to rescaling of

parameters, but relative effects are preserved, as are average partial effects. The problem

arises when zi is not independent of ci1 and ci2. Because independence of zi and unobserved

heterogeneity is rarely a realistic assumption, we employ the correlated random effects

approach proposed by Chamberlain (1980). Specifically, let

ci1 = η1 + z̄iξ1 + ai1, (4)

ci2 = η2 + z̄iξ2 + ai2,

where z̄i = T−1
∑T

t=1 zit, and ai1 and ai2 are independent of zi. Chamberlain (1980)

proposed this assumption for binary response models with normally distributed errors.

The normality assumption makes the model in (4) particularly attractive, but this model

may also be useful for more general error distributions.
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Under (4), the primary and selection equations can be rewritten as

yit = 1[η1 + xitβ + z̄iξ1 + vit1 > 0], (5)

sit = 1[η2 + zitδ + z̄iξ2 + vit2 > 0], t = 1, . . . , T,

where vit1 = ai1 + uit1 and vit2 = ai2 + uit2. Alternatively, if selection follows a censored

(or corner solution) response, the system becomes

yit = 1[η1 + xitβ + z̄iξ1 + vit1 > 0], (6)

sit = max{0, η2 + zitδ + z̄iξ2 + vit2], t = 1, . . . , T.

By construction, zi and vit1 are independent, which implies that in the case when there

is no selection (yit is always observed) or selection is random with respect to (ai1, uit1),

familiar parametric and semiparametric methods can be used to estimate β and the APEs.

Before discussing the different scenarios, it is useful to obtain the APEs based on

the equation (1). It is convenient to obtain the APEs using the notion of the average

structural function (ASF), introduced by Blundell and Powell (2004). For the binary-

response models considered in this paper we will only be able to estimate the ASF and

APEs in the case of the parametric model, which assumes normality. Therefore, the

discussion of the ASF below is for the model where errors are assumed to have a joint

normal distribution. The “structural” equation that underlies the estimation is

P(yit = 1|xit, ci1) = Φ(xitβ + ci1)

and the ASF is a function of the argument xt:

ASF(xt) = Eci1 [Φ(xtβ + ci1)] ,
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so we average out over the distribution of ci1. Now, we are not directly modeling the dis-

tribution of ci1, but rather the conditional distribution D(ci1|zi). Therefore, the following

expression based on iterated expectations is useful:

ASF(xt) = Ezi {E [Φ(xtβ + ci1)|zi]}

= Ezi [Φ(ηa1 + xtβa + z̄iξa1)] , (7)

where βa = β/
√
1 + σ2

a1
and similarly for the other parameters with an a subscript. This

expression is derived in Papke and Wooldridge (2008).

Equation (7) is the basis for estimating average partial effects. In particular, we can

take derivatives or changes with respect to the elements of xt and then average out the

zi. Note that the scaled parameters provide the directions of the effects and ratios of

the scaled parameters are the same as ratios of the orginal parameters. Because it is the

scaled parameters that appear in the ASF, those are actually more interesting for our

purposes. As it turns out, the unscaled coefficients are not generally identified, anyway,

unless we were to make strong serial independence assumptions and then use a much more

complicated estimation method. Thus, in the next subsection we will drop the a subscript

with the understanding that the coefficients have been implicitly scaled by the variance

of ai1 + uit1.

A major impediment in estimating βa and the APEs is that vit1 and vit2 are likely to

be correlated, which means that selection is related to unobservables affecting yit. One

way to solve the selection problem is to make parametric assumptions about the joint

distribution of (vit1, vit2) and use the maximum likelihood estimation. Another possibility

is to use a semiparametric estimator that imposes a linear index restriction as in (5),

but remains agnostic about the specific form of the error distribution. We consider both

approaches.
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3 Parametric Model and Estimation

3.1 General Parametric Model

We start by assuming that (vit1, vit2) have a zero mean bivariate normal distribution.

Because of the discussion in the previous section, we normalize the variance of vit1 as

Var(vit1) = 1, so we are actually estimating the scaled coefficients in (7). Generally,

Var(vit2) = σ2, although when sit is binary there is no loss of generality in setting σ2 = 1

(and we could not identify σ2, anyway). Under normality, vit1 and vit2 are linked as

vit1 = γvit2 + eit1, t = 1, . . . , T, (8)

where γ = ρ/σ, ρ = Corr(vit1, vit2), and eit1 is independent of zi and vit2 with a normal

distribution. Therefore, we can write

yit = 1[η1 + xitβ + z̄iξ1 + γvit2 + eit1 > 0], (9)

eit1|zi, vit2 ∼ Normal(0, 1− ρ2), t = 1, . . . , T.

The equations in (9) demonstrate that conditioning on vit2 is irrelevant if selection is

random, that is, ρ = 0. It is a nonzero correlation between vit1 and vit2 that makes the

selection non-ignorable.

A basic but important fact is that because sit is a deterministic function of zi and

vit2, it follows that

yit = 1[η1 + xitβ + z̄iξ1 + γvit2 + eit1 > 0], (10)

eit1|zi, vit2, sit ∼ Normal(0, 1− ρ2), t = 1, . . . , T.

Therefore, by including vit2 in (10), we can solve the non-random selection problem. This
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is an example of the “control function” approach proposed by Blundell and Smith (1986)

and Rivers and Vuong (1988) for the case of endogenous explanatory variables. Here, we

use the control function to account for the factors responsible for selection.

Due to normality of eit1, it is also true that

P(yit = 1|zi, vit2, sit) = P(yit = 1|zi, vit2) = Φ

(
η1 + xitβ + z̄iξ1 + γvit2√

1− ρ2

)
, (11)

which is a probit model with parameters rescaled by a common factor (
√

1− ρ2)−1. Thus,

if vit2 were known, one could estimate β/
√
1− ρ2 rather easily. Of course, vit2 is never

known; however, in some cases it can be estimated whenever sit = 1, and that suffices

to consistently estimate the parameters. Because estimation of (10) is performed on the

selected sample, one only needs to know vit2 when yit is observed, which can be estimated

when selection follows, say, a Tobit model.

3.2 Estimation When Selection Variable Is Censored

We first consider the case where selection follows a Tobit model and all assumptions that

were used for deriving (10) hold. Specifically, make the following assumption:

ASSUMPTION 3.2. (i) yit is determined by equation (1), (ii) sit is determined by

equation (3), (iii) ci1 and ci2 follow (4), (iv) (vit1, vit2) are independent of zi and have a zero

mean bivariate normal distribution, where vit1 = ai1 + uit1, vit2 = ai2 + uit2, Var(vit1) = 1,

and Var(vit2) = σ2.

Under Assumption 3.2, the scaled parameters

η1ρ ≡
η1√
1− ρ2

, βρ ≡
β√

1− ρ2
, ξ1ρ ≡

ξ1√
1− ρ2

, and γρ ≡
γ√

1− ρ2

can be consistently estimated in two steps:
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1. Use pooled Tobit to estimate equation

sit = max{0, η2 + zitδ + z̄iξ2 + vit2}.

For sit > 0, obtain v̂it2 = yit − η̂2 − zitδ̂ − z̄iξ̂2.

2. For sit > 0, estimate (10) by pooled probit, where use v̂it2 in place of vit2.

Notice that neither step one nor step two imposes restrictions on the form of serial

dependence in the error terms. The estimator at each step is the partial MLE (either

pooled Tobit or pooled probit), which does not require specifying the full likelihood func-

tion. Hence, the errors in each equation may be arbitrarily serially correlated, and, in

fact, are expected to be serially correlated because, by construction, part of the unob-

served effect remains in the error. Consequently, the estimator of the asymptotic variance

of the second-step estimator should be made robust to serial dependence. Moreover,

standard errors should account for the first-step estimation. A time-specific intercept is

accommodated by including time indicators in the set of covariates at each step.

The two-step estimation procedure focuses on obtaining consistent estimators of η1ρ,

βρ, ξ1ρ, and γρ, rather than original parameters in the population model. The estimators

of the original parameters can be obtained as

ρ̂ = γ̂ρσ̂ · (1 + γ̂2ρ σ̂
2)−1/2, β̂ = β̂ρ(1− ρ̂2)−1/2 = β̂ρ(1 + γ̂2ρ σ̂

2)−1/2, (12)

and so on, where σ̂ =
√
σ̂2, and σ̂2 is the estimated variance of vit2 from the Tobit

regression. A consistent estimator of a relative effect for two continous covariates is easily

obtained as β̂ρ,j/β̂ρ,k.

Given the estimates β̂ in (12), with similar expressions for η̂1 and ξ̂1, the APEs are

easily obtained. For a single value – that is, not as a function of xt – we can average a

derivative across (xit, zi).

11



Because zit is observed for all t, this APE can be consistently estimated as

ÂPEk =

[
1

NT

N∑

i=1

T∑

t=1

ϕ(η̂1 + xitβ̂ + z̄iξ̂1)

]
β̂k.

To obtain APEs at different values of xt, we use

ÂPEk(xt) =

[
1

NT

N∑

i=1

T∑

t=1

ϕ(η̂1 + xtβ̂ + z̄iξ̂1)

]
β̂k.

The APE of a discrete explanatory variable, say xitm, can be estimated by evaluating

the response probability at the two different values, x
(1)
tm and x

(0)
tm, and computing the

average difference in probabilities:

1

NT

N∑

i=1

T∑

t=1

[
Φ(η̂1 + x

(1)
it β̂ + z̄iξ̂1)− Φ(η̂1 + x

(0)
it β̂ + z̄iξ̂1)

]

x
(0)
it ≡ (xit1, . . . , xit,m−1, x

(0)
tm, xit,m+1, . . . , xitM),

x
(1)
it ≡ (xit1, . . . , xit,m−1, x

(1)
tm, xit,m+1, . . . , xitM).

In the leading case, xitm is a dummy variable and x
(1)
tm = 1, x

(0)
tm = 0.

Standard errors of β̂ and APEs can be obtained using the delta method. However,

because the corresponding variance formulas will be rather complicated, panel bootstrap

can serve as a convenient alternative.

Rather than using a two-step estimation procedure, it is possible to estimate the

parameters in one step by specifying the joint distribution of (yit, sit) given zi for each t,

and employing the partial maximum likelihood estimator (partial MLE). Specifically, for

each t, the joint density function is

f(yit, sit|zi) =
{
[Φ(rit)]

yit [1− Φ(rit)]
1−yit

1

σ
ϕ
(qit
σ

)}1[sit>0] {
1− Φ

(qit
σ

)}1[sit=0]

, (13)
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where

rit ≡ η1 + xitβ + z̄iξ1 +
ρ
σ
(sit − η2t − zitδt − z̄iξ2t)√
1− ρ2

, (14)

qit ≡ η2t + zitδt + z̄iξ2t. (15)

The MLE estimates are obtained by taking the logarithm of the conditional joint density,

summing it up over all i and t, and maximizing with respect to parameters. Notice that it

is not necessary to specify the full likelihood function, f(yi1, . . . , yiT , si1, . . . , siT |zi), which

would be very complicated because of the serial dependence in errors. Within the partial

MLE framework, it is sufficient to specify f(yit, sit|zi), t = 1, . . . , T . When we used partial

MLE the estimator of the asymptotic variance should be made robust to serial correlation

in the score functions. The advantage of partial MLE over the two-step estimator is that

the variance that accounts for serial dependence is correct and no further adjustments are

needed to obtain valid standard errors for the parameters, and the estimated parameters

would not be scaled by (1− ρ̂2)−1/2. Nevertheless, the asymptotic variances for the APEs

would still be rather complicated, and one might still want to use the panel boostrap to

obtain valid standard errors.

3.3 Estimation When Selection Variable Is Binary

In this section, we consider estimation when the selection rule is binary. It is also assumed

that Var(vit2) = 1 and all assumptions used for deriving (10) hold. More formally,

ASSUMPTION 3.3. (i) yit is determined by equation (1), (ii) sit is determined by

equation (2), (iii) ci1 and ci2 follow (4), (iv) (vit1, vit2) are independent of zi and have

a zero mean bivariate normal distribution, where vit1 = ai1 + uit1, vit2 = ai2 + uit2,

Var(vit1) = Var(vit2) = 1.

Under Assumption 3.3, parameters in the model can be consistently estimated by
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MLE. For each t, the joint density function of (yit, sit) conditional on zi is

f(yit, sit|zi) = [P (yit = 1|sit = 1, zi)P (sit = 1, zi)]
yitsit

× [P (yit = 0|sit = 1, zi)P (sit = 1|zi)](1−yit)sit [P (sit = 0|zi)](1−sit), (16)

where

P (yit = 1|sit = 1, zi) = E(yit = 1|sit = 1, zi) = E[E(yit = 1|vit2, zi)|sit = 1, zi]

= E[Φ(rit)|sit = 1, zi] =
1

Φ(qit)

∫ qit

−∞

Φ(rit)ϕ(ν)dν, (17)

P (yit = 0|sit = 1, zi) =
1

Φ(qit)

∫ qit

−∞

[1− Φ(rit)]ϕ(ν)dν, (18)

P (sit = 1|zi) = Φ(qit), (19)

P (sit = 0|zi) = 1− Φ(qit), (20)

where rit = (η1 + xitβ + z̄iξ1 + ρν) (1− ρ2)
−1/2

and qit is defined in (15). Thus, the con-

ditional joint likelihood function for unit i in period t is given by

Lit ≡ f(yit, sit|zi) =

[∫ qit

−∞

Φ(rit)ϕ(ν)dν

]yitsit

×
[∫ qit

−∞

[1− Φ(rit)]ϕ(ν)dν

](1−yit)sit

[1− Φ(qit))]
(1−sit) . (21)

Similar to the Tobit case, the partial MLE estimates are obtained by taking the log-

arithm of the conditional joint density function, summing it up over all i and t, and

maximizing the resulting sum with respect to parameters. The variance-covariance ma-

trix should be made robust to serial correlation. Some statistical software have built-in

commands that allow to easily implement this estimator in practice.2

Note that equation (7) still holds. Thus, the estimation of APEs discussed in Section

2For example, in Stata this estimation approach can be implemented by pooling the data and esti-
mating the augmented equation that includes time means using “heckprob” command.
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3.2 is directly applicable here.

The maximum likelihood estimators discussed in this and previous sections can be

made robust to heteroskedasticity by appropriately modifying the joint likelihood func-

tion. This requires specifying error variances and the covariance as functions of (xit, z̄i).

In practice, it is common to use an exponential function (see, for example, Wooldridge

2010). Accounting for heteroskedasticity makes parametric estimators more reliable when

the normality assumption is violated.

3.4 Estimating Treatment Effects

The joint MLE discussed in Section 3.3 can also be used for cases when yit is always

observed, and sit is a binary treatment indicator, so that there is no sample selection

problem, but usual self-selection into the treatment is present. In this case, sit appears

as an additional explanatory variable:

yit = 1[η1 + xitβ + z̄iξ1 + ψsit + γvit2 + eit1 > 0], (22)

eit1|zi, vit2, sit ∼ Normal(0, 1− ρ2), t = 1, . . . , T.

Because sit is endogenous, its individual time means should not be included in z̄i.

The conditional joint likelihood function for unit i in period t becomes

Lit ≡ f(yit, sit|zi) =

[∫ qit

−∞

Φ(rit)ϕ(ν)dν

]yitsit

×
[∫ qit

−∞

[1− Φ(rit)]ϕ(ν)dν

](1−yit)sit

×
[
1−

∫ qit

−∞

Φ(rit)ϕ(ν)dν

]yit(1−sit)

×
[
1−

∫ qit

−∞

[1− Φ(rit)]ϕ(ν)dν

](1−yit)(1−sit)

, (23)
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where rit = (η1 + xitβ + z̄iξ1 + ψsit + ρν) (1− ρ2)
−1/2

. Similar to Section 3.3, the estima-

tor is partial MLE. Statistical inference should generally account for serial correlation in

the score functions.3 Similar to the discussion above, the estimator can be made robust

to heteroskedasticity.

In most cases where sit is a policy indicator, or “treatment” indicator, the main

interest is in the average treatment effect. This is easily obtained once the pooled MLEs

η̂1, β̂, ξ̂1, and ψ̂ are obtained:

ÂTE = (NT )−1

N∑

i=1

T∑

t=1

[
Φ
(
η̂1 + xitβ̂ + z̄iξ̂1 + ψ̂

)
− Φ

(
η̂1 + xitβ̂ + z̄iξ̂1

)]
. (24)

We can also obtain ATEs for different subpopulations by fixing xt at different values

(which means dropping the i subscript in (24)).

Many embellishments are possible. For example, the coefficient on sit can be allowed

to change with t in an arbitrary way (by including interactions between time period

dummies and sit), and then one could estimate an ATE for different time periods.

3.5 Testing for Selection Bias

Even when the model is parametric, correcting for selection bias may be somewhat chal-

lenging. As discussed in Section 3.2, the two-step estimation under the tobit-type selection

mechanism involves obtaining standard errors that account for the first-stage estimation.

For both censored and binary section models, when parameters are estimated by joint

partial MLE, computational problems may arise. Therefore, it is useful to have a simple

test for selection bias, which would help to identify cases when correction is necessary.

3Some statistical software packages have built-in commands that perform such estimation. For ex-
ample, in Stata estimating treatment effects can be implemented by pooling the data and estimating
the augmented equation (with time averages) using the “biprobit” command. Standard errors robust to
serial dependence can be obtained using “cluster” option.
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When the selection variable is censored, a simple test for selection bias can be per-

formed by testing H0 : γ = 0 after estimating equation (10) using the two-step procedure

outlined in Section 3.2. An attractive feature of the test is that there is no need to cor-

rect for the first-step estimation when computing the test statistic. A standard t-statistic

(Wald statistic) that uses a standard error robust to serial correlation is valid.

When the selection variable is binary, the Lagrange multiplier (score) test can be

used. Let θ = (η1, β
′, ξ′1)

′ and wit = (1, xit, z̄i). Let r̃it be rit evaluated at ρ = 0 and

parameter estimates θ̃, which are obtained from the restricted model. The restricted

model is simply a Chamberlain pooled probit estimation using the unbalanced panel. Let

q̂it be qit evaluated at the parameters in the probit estimation at time t, (η̂2t, δ̂t, ξ̂2t), where

qit is given in (15). Using the likelihood function in equation (21) as a starting point, the

Lagrange multiplier (LM) statistic for testing H0 : ρ = 0 is given by4

LM =

(
N∑

i=1

T∑

t=1

S̃it,ρ

)′

Ã22
[
Ṽ22

]
−1

Ã22

(
N∑

i=1

T∑

t=1

S̃it,ρ

)
/N, (25)

4See Wooldridge (2010), Section 12.6.2 for the detailed derivation of equation (25).
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where

S̃it,ρ ≡
∂ lnLit

∂ρ
|θ=θ̃,ρ=0 = sit

yit − Φ(r̃it)

Φ(r̃it)[1− Φ(r̃it)]
ϕ(r̃it)λ̂it, (26)

Ã = − 1

N



∑N

i=1

∑T
t=1 E

(
∂ lnLit

∂θ∂θ′
|sit, zi

)
|θ=θ̃,ρ=0

∑N
i=1

∑T
t=1 E

(
∂ lnLit

∂ρ∂θ
|sit, zi

)
|θ=θ̃,ρ=0

∑N
i=1

∑T
t=1 E

(
∂ lnLit

∂θ∂ρ
|sit, zi

)
|θ=θ̃,ρ=0

∑N
i=1

∑T
t=1 E

(
∂ lnLit

∂ρ∂ρ
|sit, zi

)
|θ=θ̃,ρ=0


 ,

=
1

N



∑N

i=1

∑T
t=1 sit

ϕ(r̃it)
2

Φ(r̃it)[1−Φ(r̃it)]
ω′

itωit

∑N
i=1

∑T
t=1 sit

ϕ(r̃it)
2

Φ(r̃it)[1−Φ(r̃it)]
ω′

itλ̂it
∑N

i=1

∑T
t=1 sit

ϕ(r̃it)
2

Φ(r̃it)[1−Φ(r̃it)]
λ̂itωit

∑N
i=1

∑T
t=1 sit

ϕ(r̃it)
2

Φ(r̃it)[1−Φ(r̃it)]
λ̂2it


 ,

Ã−1 =




Ã11 Ã12

Ã21 Ã22


 , (27)

Ṽ = Ã−1B̃Ã−1 =




Ṽ11 Ṽ12

Ṽ21 Ṽ22


 , (28)

B̃ =
1

N

N∑

i=1

(
T∑

t=1

S̃it,ρ

T∑

t=1

S̃ ′

it,ρ

)
, (29)

λ̂it ≡
ϕ(q̂it)

Φ(q̂it)
. (30)

Matrix Ã above is an estimator of the expected value of the negative Hessian matrix

that uses the expected Hessian form. Alternatively, the outer product of scores or usual

Hessian form of the matrix could be used.

Another simple test, which is asymptotically equivalent to the LM test, is a variable

addition test. The test can be performed as follows:

(i) Use probit to estimate the selection equation for each t. For each i and t, compute

the inverse Mills ratio, λ̂it. Alternatively, one can use pooled probit to estimate one

set of parameters (although separate time intercepts is usually a must).

(ii) For sit = 1, augment the primary probit equation by λ̂it and estimate by pooled

probit. Use the t-test (robust to serial correlation) to test statistical significance of
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λ̂it.

Under the null hypothesis the coefficient on λ̂it is zero, and so estimation of the

parameters in λ̂it does not affect the
√
N -asymptotic distribution of the test statistic. In

other words, there is no need to account for the first-step estimation when performing the

test, but there is a need to account for serial correlation.

To show that the variable addition test is asymptotically equivalent to the LM test,

first write the second-step likelihood function for unit i in period t as

Lit = sitΦ(η1 + xitβ + z̄iξ1 + γλit)
yit [1− Φ(η1 + xitβ + z̄iξ1 + γλit]

(1−yit), (31)

where, to simplify notation, we ignore the fact that λit is estimated at the first step. As

mentioned above, replacing λit with its consistent estimator will not affect the asymptotic

distribution of the test statistic when the null is true.

Based on (31), the score vector is

Sit = sit
yit − Φ(witθ + γλit)

Φ(witθ + γλit)[1− Φ(witθ + γλit)]
ϕ(witθ + γλit)




wit

λit


 . (32)

Summing the score vector over all i and t and using a mean-value expansion about the

true parameter vector gives

1√
N

N∑

i=1

T∑

t=1

Ŝit =
1√
N

N∑

i=1

T∑

t=1

Sit − A
√
N




θ̂ − θ

γ̂ − γ


+ op(1), (33)

where Ŝit is the score vector evaluated at the estimated parameter values, (θ̂′, γ̂)′, and A

is the expected value of the negative Hessian matrix.
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From (33), it follows that

√
N




θ̂ − θ

γ̂ − γ


 = −A−1 1√

N

N∑

i=1

T∑

t=1

(Ŝit−Sit)+op(1) = A−1 1√
N

N∑

i=1

T∑

t=1

Sit+op(1). (34)

When testing H0 : γ = 0, the robust Wald test statistic, is given by

W = (γ̂ − γ)′(V̂22/N)−1(γ̂ − γ) =
√
N(γ̂ − γ)′V̂ −1

22

√
N(γ̂ − γ), (35)

where

V̂ = Â−1B̂Â−1 =




V̂11 V̂12

V̂21 V̂22


 , (36)

B̂ =
1

N

N∑

i=1

(
T∑

t=1

Ŝit,γ

T∑

t=1

Ŝ ′

it,γ

)
, (37)

Â =
1

N




∑N
i=1

∑T
t=1 sit

ϕ(p̂it)
2

Φ(p̂it)[1−Φ(p̂it)]
ω′

itωit

∑N
i=1

∑T
t=1 sit

ϕ(p̂it)
2

Φ(p̂it)[1−Φ(p̂it)]
ω′

itλ(q̂it)
∑N

i=1

∑T
t=1 sit

ϕ(p̂it)
2

Φ(p̂it)[1−Φ(p̂it)]
λ(q̂it)ωit

∑N
i=1

∑T
t=1 sit

ϕ(p̂it)
2

Φ(p̂it)[1−Φ(p̂it)]
λ(q̂it)

2


 ,

p̂it = witθ̂ + γ̂λ(q̂it), (38)

Â−1 p−→ A−1 =




A11 A12

A21 A22


 . (39)

From (34), we can also write the Wald statistic as

W =

(
N∑

i=1

T∑

t=1

Sit,γ

)′

A22V̂ −1
22 A

22

(
N∑

i=1

T∑

t=1

Sit,γ

)
/N, (40)

which is asymptotically distributed as χ2
1. It is easily seen that under the null of no

selection bias (ρ = 0, γ = 0), the scores and Hessian matrices used in (25) and (40) are the

same when evaluated at true parameter values. Moreover, when the null is true, γ̂
p−→ 0,

and
√
N(θ̃ − θ) and

√
N(θ̂ − θ) converge in distribution. Therefore, LM −W

p−→ 0, so
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that the tests are asymptotically equivalent.

4 Semiparametric Estimation When Selection Vari-

able Is Censored

In this section, we consider a semiparametric binary dependent variable model with non-

random selection. The discussion is limited to the case when the selection variable is

censored, as stated in equation (3), so that sit = s∗it whenever yit is observed. The

unobserved effect is still modeled using the Chamberlain’s device, i.e. (4) is assumed to

hold. A key distinction between the approach of this section and the estimators discussed

in the previous section is that the assumption of joint normality of the error terms in

the selection and primary equations is dropped. Instead, we employ the control function

approach of Blundell and Powell (2004) and derive a consistent estimator of parameters

under relatively weak distributional assumptions.

Assume that the following condition holds:

vit1|zi, sit ∼ vit1|zi, vit2 ∼ vit1|vit2, t = 1, . . . , T. (41)

That is, for each given t, the conditional distribution of vit1 given the exogenous and

selection variables is completely described by error vit2. Additionally, we need to change

the notation from the previous sections. Let wit = (xit, z̄i) and where we now drop the

time effects in defining wit. Now, θ = (β′, ξ′1)
′. Then, under condition (41) the conditional

expectation of yit is given by

E(yit|zi, sit) = P(yit = 1|zi, vit2) = P(−vit1 ≤ witθ|zi, vit2) = F (witθ, vit2). (42)

where F (·, vit2) is the cumulative distribution function of −vit1 conditional on vit2.
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Similar to the parametric case, one can use a (semiparametric) estimator to obtain

v̂it2 and use it to estimate θ. We will return to this issue when discussing the estimation

procedure. For now, to simplify the presentation, assume that vit2 is known.

Assuming that function F (witθ, vit2) is continuous and monotonic in its first argument,

it can be inverted with respect to its first argument. Denote the inverse function ψ(·, v) ≡

F−1(·, v). Then, define rit = (wit, vit2), g(rit) ≡ E(yit|rit), can write

ψ[g(rit), vit2] = witθ

or, ψ[g(rit), vit2]− witθ = 0, (43)

with probability approaching one. The result in (43) implies that for any two observa-

tions, i and j, in a given period t, if E(yit|rit) = E(yjt|rjt) and vit2 = vjt2, it should be

the case that witθ = wjtθ with probability approaching one. As discussed in Blundell

and Powell (2004), this property permits constructing a matching estimator, where any

two observations with the same (or, in practice, ‘similar’) conditional expectations for

the binary dependent variable in the primary equation and the same error terms in the

selection equation are matched and used to recover the vector of parameters θ, which

satisfies the equality of the indices witθ and wjtθ.

Formally, for a non-negative weighting function ωijt ≡ ω(rit, rjt), for each t can write

E
[
ωijt · ((wit − wjt)θ)

2|g(rit) = g(rjt), vit2 = vjt2
]
= 0, (44)

so that

T∑

t=1

E
[
ωijt · ((wit − wjt)θ)

2|g(rit) = g(rjt), vit2 = vjt2
]

≡ θ′Σωθ = 0, (45)
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where Σω ≡
∑T

t=1 Σ
t
ω, Σ

t
ω ≡ E[ωijt · (wit − wjt)

′(wit − wjt)|g(rit) = g(rjt), vit2 = vjt2].

Assuming that in the population θ is not zero, Σω must be singular. Moreover, assum-

ing that θ is a unique solution to the population condition (45), Σω has only one zero

eigenvalue. A consistent estimator of θ can then be obtained by constructing a sample

analog of matrix Σω and finding its eigenvalue that is closest to zero. The estimator of

θ is the eigenvector that corresponds to the smallest eigenvalue. This approach was also

used by Ahn, Ichimura and Powell (2004) in application to general single-index models

with exogenous regressors.

Based on discussion above, estimation of θ is performed in two steps:

1. For each t and sit > 0, obtain consistent estimators of the parameters in vit2 and

the function g(·).

2. For sit > 0, find the eigenvector of the sample analog of matrix Σω that corresponds

to the eigenvalue that is closest to zero.

At step one, vit2 needs to be estimated first. Similar to the Tobit case, because vit2 is

a true structural error that has to be independent of exogenous variables, it is crucial that

the selection equation is correctly specified. It is also more appropriate to use a general

version of Chamberlain’s correlated random coefficients model of the form:

sit = max{0, η2 + zitδ + zi1ξ21 + · · ·+ ziT ξ2T + vit2}, t = 1, . . . , T. (46)

If error vit2 is continuously distributed with median zero, and its density function is

positive at zero, then parameters in equation (46) can be consistently estimated by the

censored least absolute deviations estimator proposed by Powell (1984). If the error dis-

tribution is also symmetric, then Powell’s symmetrically trimmed least squares estimator

(Powell, 1986) can be used. Under appropriate regularity conditions these estimators

are consistent and
√
N -asymptotically normal for a variety of error distributions. They
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are also robust to heteroskedasticity. Moreover, because selection equation is estimated

separately for each t, {vit2}Tt=1 may be arbitrarily serially related and can have different

variances.

Alternatively, a nonparametric estimator proposed by Lewbel and Linton (2002) could

be used to estimate the conditional mean of s∗it for each t, which then could be subtracted

from sit (for sit > 0) to obtain v̂it2. This approach involves obtaining nonparametric

estimators of E(sit|zi) and E{1[sit > 0]|E(sit|zi)}, followed by integration of a function

of the latter estimator. An important advantage of this estimator is that the conditional

mean of s∗it does not have to be linear in parameters. However, estimation is relatively

complicated and is subject to the “curse of dimensionality” problem. Moreover, the esti-

mator has a relatively slow rate of convergence. Therefore, using simpler
√
N -consistent

Powell’s estimators may be preferred.

While modeling the unobserved effect as a linear function of exogenous variables in

all time periods – as in equation (46) above – is somewhat restrictive, this approach

has important advantages over other existing estimators of unobserved effects censored

regression models. For example, estimators considered by Honore (1992) and Honore,

Kyriazidou and Powell (2000) require that {uit2}Tt=1 in equation (3) are either i.i.d. or

strictly stationary conditional on (zi, ci2). Importantly, because these estimators use dif-

ferencing to remove ci2, it is only possible to estimate ci2 + uit2, which are generally

correlated with zi, so that condition (41) necessarily fails.

Once residuals v̂it2 are obtained, the conditional mean of yit for observations with

sit > 0 can be estimated for each t using the Nadaraya-Watson kernel regression estimator:

ĝit ≡ ĝ(rit) =

∑N
j=1K

(
rjt−rit

hg

)
yjt

∑N
j=1K

(
rjt−rit

hg

) , t = 1, . . . , T, (47)

for kernel function K(·) and bandwidth hg, such that hg → 0 and NhM+L+1
g → ∞ as
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N → ∞.

The above estimators of vit and git can be used for obtaining a sample analog of matrix

Σω:

Ŝ ≡
T∑

t=1

Ŝt, (48)

Ŝt ≡




n

2




−1

∑
i<j

ω̂ijt · (wit − wjt)
′(wit − wjt),

ω̂ijt ≡ 1

h2ω
κg

(
ĝit − ĝjt
hω

)
κv

(
v̂it2 − v̂jt2

hω

)
dit · djt · τit · τjt,

where dit = 1[sit > 0], τit and τjt are trimming terms that are set to zero for observations

where ĝit and/or v̂it2 are imprecise, and hω → 0, Nh2ω → ∞ as N → ∞.

Under appropriate regularity conditions, it can be shown that Ŝ is a consistent esti-

mator of Σ0, which is matrix Σω that uses a particular weighting function,

ωijt = (fitfjt)
1/2 · dit · djt · τit · τjt = fit · dit · djt · τit · τjt, t = 1, . . . , T, (49)

where fit ≡ f(git, vit2) is the conditional joint density of git and vit2 for a given t.

Let ζ denote the eigenvalue of Ŝ that is closest to zero. Then θ̂ is the eigenvector that

corresponds to eigenvalue ζ and can be obtained by solving

(Ŝ − ζIM+L)θ̂ = 0, (50)

where IM+L is the identity matrix of dimension M + L.

Because any multiple of the true parameter vector θ will satisfy equation (50), it is

convenient to set the first parameter in θ to unity, so that θ = (1, α′)′. Correspondingly,
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matrix Ŝ can be partitioned as

Ŝ =



Ŝ11 Ŝ12

Ŝ21 Ŝ22


 . (51)

Then, using the normalization mentioned above and solving (50) for α gives

α̂ = −[Ŝ22 − ζIM+L−1]
−1Ŝ21. (52)

It can be shown that θ̂ = (1, α̂′)′ is consistent for θ and
√
N -asymptotically normal.

The formal consistency argument and derivation of the asymptotic variance are provided

in the Appendix. As an alternative to using the analytical formula, the asymptotic vari-

ance of α̂ can be estimated using panel bootstrap.

Several points are worth mentioning. In (45), and therefore in (48), matching is

performed within a given period, so that time-specific shocks that are common to all cross-

section units are permitted (although the time-specific intercept cannot be estimated).

Also, errors may be arbitrarily serially related. An alternative approach would be to

match observations for the same cross-section unit i in any two periods, t and s, where

g(rit) = g(ris) and vit2 = vis2, as was proposed by Kyriazidou (1997) in application to

linear panel data models with selection. Such an approach would be robust to an arbitrary

form of dependence between exogenous variables and unobserved effect. However, an

important disadvantage of such method is that it requires a strong form of stationarity

and implies that there are no common time-specific shocks to yit, which rarely holds in

practice. Moreover, for observations where g(rit) and g(ris) are similar, it would often be

the case that wit and wis would also be similar, which would cause identification problems,

especially in short panels.

A general shortcoming of a semiparametric approach is that it does not permit esti-

mating average partial effects. Because vit2 is not known for the part of the population
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with sit = 0, it is not possible to “integrate out” vit2 across its entire distribution. There-

fore, the ASF and APEs cannot be estimated. In fact, it appears that in the sample

selection context, partial effects can be identified only for parametric models. However,

the semiparametric approach can be used to estimate relative effects of continuous vari-

ables. Specifically, for continuous explanatory variables

APEk

APEj

=
βk
βj
,

and we have consistent estimators for the βj up to a common scale factor. Unfortunately,

relative effects of discrete variables cannot be estimated.

5 Monte Carlo Simulations

This section presents results from limited Monte Carlo experiments that have been con-

ducted to examine the finite-sample properties of proposed estimators. The focus is on

the censored selection variable case where both parametric and semiparametric methods

apply. For the same reason we do not simulate average partial effects. Because parameters

can only be estimated up to scale, relative effects are reported.

Data are generated using equation (6), with xit = (x1it, x2it) and zit = (1, x1it, x2it, x3it).

Model parameters are set at β = (1, 0.6)′, δ = (1, 0.5, 0.8, 1.2)′, ξ1 = (−0.3,−0.3,−0.3)′,

ξ2 = (0.3, 0.3, 0.3)′. Unobserved effects, ai1 and ai2, are independent across i and dis-

tributed as Normal(0, σ2
a) with Corr(ai1, ai2) = 0.25. Idiosyncratic errors, uit1 and uit2,

are independent across i and t and distributed as Normal(0, σ2
u); ρ is either 0.5 or 0. The

total variance of the composite errors is set to unity, whereas σ2
a/σ

2
u is either 0.3 or 0.

Exogenous variables are generated according to the model:

xitj = bij + ϵitj, j = 1, 2, 3, (53)
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where bij are independent across i and distributed as Normal(0, σ2
b ); ϵij are indepen-

dent across i and t and distributed as Normal(0, σ2
ϵ ); σ

2
b + σ2

ϵ = 1 with σ2
b/σ

2
ϵ = 0.3;

Corr(bij, bih) = Corr(bij, aik) = 0.25 for j = 1, 2, 3, h ̸= j, k = 1, 2. The employed data

generating process results in about 33% of the sample having missing values for yit in a

given t.

In the semiparametric estimation, the cross-validation criterion was used when se-

lecting the optimal bandwidth for the conditional expectation function git and weighting

(joint density) function ωijt (see Li and Racine, 2007, for example). We follow the common

practice and set trimming terms equal to one for all observations.

In addition to comparing performance of the parametric and semiparametric estima-

tors discussed in sections 3 and 4, we consider two commonly used parametric methods

that do not account for selection. Specifically, model (1) is estimated by probit, so that

both selection and unobserved heterogeneity are ignored. We also report results obtained

from a probit regression that includes the time means of exogenous variables, but does

not account for selection. Simulations were performed for N = 500 and 1000, T = 3,

using 1000 replications.

Results for the estimated relative effect, β̂2/β̂1, are reported in Table 1. Under no

unobserved heterogeneity and random selection (σ2
a = 0, ξ1 = 0, ρ = 0), the computed bias

is small for all estimators, while the root mean squared error is the smallest for the usual

probit estimator. When adding the correlated unobserved effect (σ2
a = 0.3, ξ1 = −0.3,

ρ = 0), the bias in the probit estimator noticeably increases, while there are only minor

changes in the biases of the other four estimators; the root mean squared errors increase

for all estimators. Finally, when both the correlated unobserved heterogeneity and non-

random selection are present, the standard probit estimator has the largest computed

bias, and the probit estimator of a model that includes time means has the second largest

bias.

Both parametric estimators that implement selection correction (two-step and full
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Table 1: Simulation results for β̂2/β̂1 (β2/β1 = 0.6), uit1 ∼ Normal(0, σ2
u)

No correction No correction Censored selection Binary selection Censored selection
Probit Probit, time means two-step MLE full MLE Semiparametric
(1) (2) (3) (4) (5)

σ2
a = 0, ξ1 = 0, ρ = 0

N=500 Bias 0.0022 0.0025 0.0012 0.0017 -0.0045
RMSE 0.0571 0.0679 0.0722 0.0706 0.0921

σ2
a = 0.3, ξ1 = −0.3, ρ = 0

N=500 Bias -0.0342 -0.0005 0.0022 0.0025 -0.0011
RMSE 0.0737 0.0721 0.0764 0.0736 0.1144

σ2
a = 0.3, ξ1 = −0.3, ρ = 0.5

N=500 Bias -0.0736 -0.0338 0.0014 0.0011 -0.0156
RMSE 0.0990 0.0812 0.0752 0.0732 0.1362

σ2
a = 0, ξ1 = 0, ρ = 0

N=1000 Bias -0.0002 0.0006 0.0009 0.0014 -0.0081
RMSE 0.0394 0.0475 0.0500 0.0488 0.0564

σ2
a = 0.3, ξ1 = −0.3, ρ = 0

N=1000 Bias -0.0375 -0.0027 0.0012 0.0018 -0.0099
RMSE 0.0587 0.0545 0.0569 0.0550 0.0717

σ2
a = 0.3, ξ1 = −0.3, ρ = 0.5

N=1000 Bias -0.0733 -0.0335 0.0027 0.0024 -0.0300
RMSE 0.0863 0.0631 0.0547 0.0531 0.0840

MLE) have small biases under all scenarios. However, the computed bias of the semipara-

metric estimator is higher than that of the parametric correction methods when ρ = 0.5.

Increasing the sample size from 500 to 1000 decreases root mean squared errors for all

estimators, but does not necessarily help to reduce the bias. Perhaps not surprisingly, the

mean squared errors are larger for the semiparametric estimator. However, if compared to

the other correction procedures, the precision of the semiparametric estimator improves

more substantially when the sample size grows.

To check the properties of the estimators when the error distribution is not normal,

we consider an alternative specification, where uit1 has chi-square distribution with three

degrees of freedom. The distribution was transformed to have zero mean and variance

equal to Var(uit1) in the normal distribution case. Results from that specification are

presented in Table 2.

As seen in Table 2, results do not change much. Similar to the case where uit1 ∼
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Table 2: Simulation results for β̂2/β̂1 (β2/β1 = 0.6), uit1 has chi-square distribution

No correction No correction Censored selection Binary selection Censored selection
Probit Probit, time means two-step MLE full MLE Semiparametric
(1) (2) (3) (4) (5)

σ2
a = 0, ξ1 = 0, ρ = 0

N=500 Bias 0.0005 0.0004 -0.0011 0.0036 0.0002
RMSE 0.0464 0.0578 0.0606 0.0589 0.0924

σ2
a = 0.3, ξ1 = −0.3, ρ = 0

N=500 Bias -0.0305 -0.0006 -0.0014 0.0090 -0.0051
RMSE 0.0694 0.0696 0.0721 0.0706 0.1081

σ2
a = 0.3, ξ1 = −0.3, ρ = 0.5

N=500 Bias -0.0687 -0.0320 0.0011 0.0099 -0.0224
RMSE 0.0939 0.0777 0.0730 0.0718 0.1325

σ2
a = 0, ξ1 = 0, ρ = 0

N=1000 Bias 0.0012 0.0017 0.0009 0.0054 -0.0023
RMSE 0.0319 0.0398 0.0417 0.0409 0.0536

σ2
a = 0.3, ξ1 = −0.3, ρ = 0

N=1000 Bias -0.0319 -0.0022 -0.0021 0.0068 -0.0065
RMSE 0.0534 0.0473 0.0501 0.0485 0.0630

σ2
a = 0.3, ξ1 = −0.3, ρ = 0.5

N=1000 Bias -0.0692 -0.0344 -0.0011 0.0074 -0.0253
RMSE 0.0825 0.0598 0.0511 0.0492 0.0788

Normal(0, σ2
u), both the usual probit estimator and probit estimator of an augmented

equation that includes time means have sizable biases when ρ = 0.5. The two-step and

full MLE estimators that account for nonrandom selection perform well under all scenar-

ios: both have only small biases and small root mean squared errors. The semiparametric

estimator tends to have larger biases and root mean squared errors than parametric correc-

tion methods, but performs better than the estimators that ignore non-random selection.

Similar to the trends observed in Table 1, mean squared errors of all estimators decrease

when N increases.

6 Conclusion

This paper considers estimation of binary-response panel data models in the presence of

non-random sample selection and self-selection. Parametric estimators proposed in the

paper can be used when the selection variable is either censored or binary. The discussed
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approach permits estimating both coefficients and partial effects, as well as treatment

effects. The considered parametric methods are simple in implementation and perform

well in simulations even when the underlying distributional assumptions do not hold.

Moreover, we discuss tests that provide a simple way of detecting a selection bias.

The paper also proposes a semiparametric estimator that does not impose distribu-

tional assumptions, but can only be used when the selection variable is censored. In

Monte Carlo experiments, this estimator performs reasonably well, although it is less pre-

cise and has a larger computed bias than parametric estimators. The relatively large bias

of the semiparametric estimator may be due to our inability to fully optimize the choice of

bandwidths. In simulations, the optimal bandwidths were selected for the two nonpara-

metric components (conditional expectation function, git, and weighting function, ωijt)

separately. Future research could focus on the choice of the optimal bandwidths jointly.

Appendix

In this appendix we discuss asymptotic properties of the semiparametric estimator pro-

posed in Section 4. The argument below is very similar to the one in Blundell and Powell

(2004).

To demonstrate the consistency of the semiparametric estimator, first show that Ŝt

is consistent for Σt
0, t = 1, ..., T , where Σt

0 is a particular form of matrix Σt
ω that uses the

weighting matrix specified in equation (49). Using the first-order mean-value expansion,
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for each t we can write:

Ŝt = St
0 + St

1, where (54)

St
l ≡




n

2




−1

∑
i<j

ωl
ijt(wit − wjt)

′(wit − wjt), l = 0, 1, (55)

ω0
ijt ≡ 1

h2ω
κg

(
git − gjt
hω

)
κv

(
vit2 − vjt2

hω

)
dit · djt · τit · τjt, (56)

ω1
ijt ≡ 1

h3ω

{
κ(1)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
(ĝit − git − ĝjt + gjt)

− κ(1)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
g(1)v (wit, v

∗

it2) · qit(π̂t − πt)

+ κ(1)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
g(1)v (wjt, v

∗

it2) · qjt(π̂t − πt)

− κg

(
g∗ijt
hω

)
κ(1)v

(
v∗ijt2
hω

)
(qit − qjt)(π̂t − πt)

}
dit · djt · τit · τjt, (57)

where κ
(1)
g (·) and κ(1)v (·) are vectors of first derivatives of functions κg(·) and κv(·), respec-

tively, g
(1)
v (·) is the first derivative of function g(·) with respect to vit2, qit = (1, zi1, . . . , ziT ),

πt = (η2t, ξ21, . . . , δt + ξ2t, . . . , ξ2T )
′, and π̂t is the first-step CLAD estimator of πt.

Similar to Blundell and Bond (2004), the summand in (??) is of order 1
h2
ω
when the

first four moments of rit and sit are finite, and κg(·), κv(·), τit are bounded. Therefore,

when hω → 0, h2ωN → ∞, it is true that Ŝt = Σt
0 + op(1), t = 1, ..., T .

To show that St
1 converges in probability to zero, t = 1, . . . , T , assume that functions

κg(·), κv(·), κ(1)g (·), κ(1)v (·), g(1)v (·) are uniformly bounded, and the first two moments of

qit exist. Furthermore, when using Powell’s censored least absolute deviations estimator

(Powell, 1984) or symmetrically trimmed censored least squares estimator (Powell, 1986)

to estimate π, assume that the appropriate regularity conditions hold, and let h6ωN → ∞

as N → ∞. This ensures that h−3
ω (π̂−π) = op(1). Moreover, assume that regularity con-

ditions provided in Ahn and Powell (1993) hold. These include smoothness assumptions

for conditional expectation and density functions, the use of higher-order kernel functions,
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and restrictions on the speed with which hg and hω converge to zero as N → ∞. Then,

h−3
ω (ĝit − git) uniformly converges to zero.

From above, it follows that under the specified conditions,

Ŝ ≡
T∑

t=1

Ŝt =
T∑

t=1

Σt
0 + op(1) ≡ Σ0 + op(1). (58)

Moreover, using the law of iterated expectations:

Σt
0 ≡ E[fit · dit · djt · τit · τjt · (wit − wjt)

′(wit − wjt)|git = g, vit2 = v]

= E
{
2fit · (ϱitµww,it − µ′

w,itµw,it)
}
, t = 1, . . . , T, (59)

ϱit ≡ E[dit · τit|git = g, vit2 = v],

µw,it ≡ E[dit · τit · wit|git = d, vit2 = v],

µww,it ≡ E[dit · τit · w′

itrit|git = g, vit2 = v]. (60)

Furthermore, Σ0θ = 0 because

T∑

t=1

[ϱitµww,it − µ′

w,itµw,it]θ =
T∑

t=1

[
ϱitE(w

′

itwitθ|git, vit2)− µ′

w,itE(witθ|git, vit2)
]

=
T∑

t=1

(ϱitµ
′

w,itgit − ϱitµ
′

w,itgit) = 0, (61)

where we use the fact that witθ = git, t = 1, . . . , T .

Finally, we need to specify the identification condition. Regarding the first-step esti-

mation, necessary identification conditions for the censored least absolute deviations esti-

mator and symmetrically trimmed least squares estimator are provided in Powell (1984)

and Powell (1986), respectively. The second part of the identification condition is that

in the population, θ is a unique nontrivial solution to Σ0θ = 0 after the normalization

33



θ = (1, α′)′ is imposed. Specifically, assume that matrix Σ22
0 , which is the lower-right

(M + L − 1) × (M + L − 1) sub-matrix of matrix Σ0, has full rank. This completes the

consistency argument.

In order to establish
√
N -asymptotic normality, first use the second order mean value

expansion to write

Ŝ = S0 + S1 + S2 ≡
T∑

t=1

St
0 +

T∑

t=1

St
1 +

T∑

t=1

St
2, (62)

where

St
l ≡




n

2




−1

∑
i<j

ωl
ijt(wit − wjt)

′(wit − wjt), l = 0, 1, (63)

ω0
ijt ≡ 1

h2ω
κg

(
git − gjt
hω

)
κv

(
vit2 − vjt2

hω

)
dit · djt · τit · τjt, (64)

ω1
ijt ≡ 1

h3ω

{
κ(1)g

(
git − gjt
hω

)
κv

(
vit2 − vjt2

hω

)
(ĝit − git − ĝjt + gjt)

− κ(1)g

(
git − gjt
hω

)
κv

(
vit2 − vjt2

hω

)
g(1)v (rit) · qit(π̂t − πt)

+ κ(1)g

(
git − gjt
hω

)
κv

(
vit2 − vjt2

hω

)
g(1)v (rjt) · qjt(π̂t − πt)

− κg

(
git − gjt
hω

)
κ(1)v

(
vit2 − vjt2

hω

)
(qit − qjt)(π̂t − πt)

}
dit · djt · τit · τjt, (65)
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ω2
ijt ≡ 1

2h4ω

{
κ(2)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
(ĝit − git − ĝjt + gjt)

2

− 2κ(2)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
g(1)v (r∗it) · qit(π̂t − πt)(ĝit − git)

+ 2κ(2)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)
g(1)v (r∗jt) · qjt(π̂t − πt)(ĝjt − gjt)

− 2κ(1)g

(
g∗ijt
hω

)
κ(1)v

(
v∗ijt2
hω

)
· (qit − qjt)(π̂t − πt)(ĝit − git − ĝjt + gjt)

+ 2κ(1)g

(
g∗ijt
hω

)
κ(1)v

(
v∗ijt2
hω

)[
g(1)v (r∗it)qit − g(1)v (r∗jt)qjt

]
(π̂t − πt)(π̂t − πt)

′(qit − qjt)
′

+ hwκ
(1)
g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)[
g(2)v (w∗

it)qit − g(2)v (w∗

jt)qjt
]
(π̂t − πt)(π̂t − πt)

′(qit − qjt)
′

+ κ(2)g

(
g∗ijt
hω

)
κv

(
v∗ijt2
hω

)([
g(1)v (w∗

it)
]2
qit −

[
g(1)v (w∗

jt)
]2
qjt

)
(π̂t − πt)(π̂t − πt)

′(qit − qjt)
′

+ κg

(
g∗ijt
hω

)
κ(2)v

(
v∗ijt2
hω

)
(qit − qjt)(π̂t − πt)(π̂t − πt)

′(qit − qjt)
′

}
dit · djt · τit · τjt (66)

Under assumptions stated in Ahn and Powell (1993), using
√
N -consistency of the

first-step estimator π̂, and following the same argument as in Blundell and Powell (2004),

it should be the case that

√
NS0θ = op(1),

√
NS2θ = op(1). (67)

Furthermore, when the selection equation is estimated using either Powell’s censored

least absolute deviations estimator or symmetrically trimmed censored least squares esti-

mator, π̂ satisfies
√
N(π̂ − π) =

1√
N

N∑

i=1

mi + op(1),

where E(mi) = 0, and E(mim
′

i) exists and is nonsingular.

Then, can show

√
NŜθ =

√
NS1θ + op(1) =

1√
N

N∑

i=1

(ei1 + ei2) + op(1), (68)
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where

ei1 ≡
T∑

t=1

2fitϱit(ϱitwit − µw,it)
′ · ∂ψ(git, vit2)

∂ git
· [yit − g(wit)],

ei2 ≡ −Fmi(π),

F ≡ E

[
T∑

t=1

2fitϱit(ϱitwit − µw,it)
′

(
∂ψ(git, vit2)

∂ git
· ∂git
∂ vit2

+
∂ψ(git, vit2)

∂ vit2

)
qit

]
. (69)

If the censored least absolute deviations estimator (Powell, 1984) is used as a first-step

estimator of π, and estimation is performed separately for each t, then

mi(π) =




mi1(π1)

. . .

miT (πT )



,

mit(πt) = [ft(0) · Jt]−1 · 1[qitπt > 0] · q′it
(
1

2
− 1[vit2 > 0]

)
,

Jt ≡ E [1[qitπt > 0] · q′itqit] , t = 1, . . . , T, (70)

where ft(·) is the density function of error vit2 in period t.

If πt, t = 1, . . . , T , is estimated using the symmetrically trimmed lease squares esti-

mator (Powell, 1986), then

mit(πt) = C−1
t · 1[qitπt > 0] · q′it · (min{sit, 2qitπt} − qitπt) ,

Ct ≡ E {1[−qitπt < vit2 < qitπt] · q′itqit} , t = 1, . . . , T. (71)

From (61) and (68) it follows that

√
Nθ′Ŝθ = op(1), (72)
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so that for the subvector α̂ of θ̂ = (1, α̂′)′, we obtain

√
N(α̂− α)

d−→ Normal(0,Σ−1
22 V22Σ

−1
22 ), (73)

where Σ22 is the lower (M + L− 1)× (M + L− 1) diagonal submatrix of Σ0, and V22 is

the lower (M + L− 1)× (M + L− 1) diagonal submatrix of V ,

V ≡ Var(ei1 + ei2) = E[(ei1 + ei2)(ei1 + ei2)
′]. (74)

Note that this is a robust form of the variance that accounts for serial dependence in

the errors.
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