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SUMMARY

Buffer overflow vulnerabilities are one of the most commonly and widely exploited security vulnerabilities
in programs. Most existing solutions for avoiding buffer overflows are either inadequate, inefficient or
incompatible with existing code. In this paper, we present a novel approach for transparent and efficient
runtime protection against buffer overflows. The approach is implemented by two tools: Type Information
Extractor and Depositor (TIED) and LibsafePlus. TIED is first used on a binary executable or shared
library file to extract type information from the debugging information inserted in the file by the compiler
and reinsert it in the file as a data structure available at runtime. LibsafePlus is a shared library that is
preloaded when the program is run. LibsafePlus intercepts unsafe C library calls such as strcpy and uses
the type information made available by TIED at runtime to determine whether it would be ‘safe’ to carry
out the operation. With our simple design we are able to protect most applications with a performance
overhead of less than 10%. Copyright c© 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Since the advent of the Morris worm in 1988, buffer overflows have constituted a major threat to
the security of computer systems. A buffer overflow exploitation is very powerful and is capable of
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rendering a computer system in total control of the attacker. As reported by the computer emergency
response team (CERT), 11 out of 20 most widely exploited vulnerabilities in 2003 have been found to
be buffer overflow vulnerabilities [1]. More than half of CERT advisories for 2003 [2] reported buffer
overflow vulnerabilities. It is thus a major concern of the computing community to provide a practical
and efficient solution to the problem of buffer overflows.

In a buffer overflow attack, the attacker’s aim is to gain access to a system by changing the control
flow of a program. In most variants of buffer overflow attacks, the program is made to execute code that
has been carefully crafted by the attacker. The code can be inserted in the address space of the program
using any legitimate form of input. The attacker then corrupts a code pointer in the address space by
overflowing a buffer and makes it point to the injected code. When the program later dereferences this
code pointer, it jumps to the attacker’s code. Variants of the buffer overflow attacks, such as return-
into-libc attacks, do not require the attacker to inject new code. In such attacks, execution flow is
diverted to an existing function, such as the system function of the C library. The attacker simply
crafts the arguments to this function and diverts the control flow by overwriting pointers. Such buffer
overflows occur mainly due to the lack of bounds checking in C library functions and carelessness on
the programmer’s part. For example, the use of strcpy() in a program without ensuring that the
destination buffer is at least as large as the source string is apparently a common practice among many
C programmers.

Buffer overflow attacks come in various forms. The simplest and also the most widely exploited
form of attack changes the control flow of the program by overflowing some buffer on the stack so that
the return address or the saved frame pointer is modified. This is commonly called the ‘stack smashing
attack’ [3]. Other more complex forms of attacks may not change the return address but attempt to
change the program control flow by corrupting some other code pointers (such as function pointers,
global offset table (GOT) entries, longjmp buffers, etc.) by overflowing a buffer that may be local,
global or dynamically allocated. In almost all the cases, buffer overflow attacks are facilitated due to
the storage of control information in-band with user data, such as return addresses and frame pointers
on the program stack, heap management data structures adjacent to the dynamically allocated chunks,
etc. Many common forms of buffer overflow attacks are described in [4].

Due to the huge amount of existing C code that lacks bounds checking, an efficient runtime solution
is needed to protect the code from buffer overflows. Other solutions which have developed over the
years such as manual/automatic auditing of the code, static analysis of programs, etc., are mostly
incomplete as they do not prevent all attacks. A runtime solution is required because certain type of
information is not available statically. For example, information about dynamically allocated buffers
is available only at runtime. However, most current runtime solutions are unacceptable because they
either do not protect against all forms of buffer overflow attacks, break existing code or impose too
high an overhead to be successfully used with common applications.

In this paper, we present a simple yet robust solution to guard against buffer overflows on local,
global and dynamically allocated variables arising due to the use of unsafe C library functions.
The solution is a transparent runtime approach to prevent such attacks, and consists of two tools:
Type Information Extractor and Depositor (TIED) and LibsafePlus. LibsafePlus is a dynamically
loadable library and is an extension to Libsafe [5]. LibsafePlus contains wrapper functions for unsafe
C library functions such as strcpy. A wrapper function determines the source and target buffer
sizes and performs the required operation only if it would not result in an overflow. To enable
runtime size checking we need to have additional type information about all buffers in the program.
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Figure 1. Rewriting of the executable and shared libraries by TIED and runtime range checking by LibsafePlus.

This is done by compiling the target program as well as the shared libraries which are used by the
program with the -g debugging option. TIED is a binary rewriting tool that can be used for rewriting
both executive linkable format (ELF) executables and shared libraries. TIED extracts the debugging
information from the program binary and shared libraries, and then augments them with an additional
data structure containing the size information for all buffers in the program. This information is utilized
by LibsafePlus to range check buffers at runtime. To keep track of the sizes of dynamically allocated
buffers, LibsafePlus intercepts calls to the malloc family of functions. Our tools thus require neither
access to the source code (if it was compiled with the -g option) nor any modifications to the compiler,
and are completely compatible with existing C code. The tools have been found to be effective against
all forms of attacks and impose a low runtime performance overhead of less than 10% for most
applications.

APPROACH OVERVIEW

The steps in the protection of a program using TIED and LibsafePlus are shown in Figure 1. The key
idea here is to augment the executable with information about the locations and sizes of character
buffers.

To this end, the program source and any shared libraries that the program uses should be
compiled with the -g option that directs the compiler to dump debugging information, including
information about sizes, addresses and types of all variables in the program, in the generated binary.
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The next step is to use TIED to rewrite the executable and the libraries with the required information
as an additional data structure in the form of a separate section available at runtime. LibsafePlus is
implemented as a dynamically loadable library that must be preloaded for a process to be protected.
To enable range checking, LibsafePlus provides wrapper functions for unsafe C library functions.
Each such wrapper function checks the bounds of the destination buffer before performing the
actual operation. For dynamically allocated buffers, LibsafePlus maintains an additional runtime data
structure that stores information about the locations and sizes of all dynamically allocated buffers.
Because all the dynamically linked libraries are also modified using TIED, LibsafePlus has complete
knowledge about sizes of all the buffers in the program image. In contrast to many other approaches
which are mainly compiler extensions, LibsafePlus does not require source code access if the program
is compiled with the -g option and is not statically linked with the C library.

LibsafePlus is implemented as an extension to Libsafe [5]. Libsafe is also a dynamically loadable
library which provides wrapper functions for unsafe C library functions such as strcpy(). However,
Libsafe only protects against stack smashing attacks. Even for stack variables, Libsafe assumes a safe
upper bound on the size of a buffer instead of determining its exact size. Therefore, it is possible for the
attacker to overwrite variables in the program that are next to the buffer in memory. Unlike Libsafe, our
tools enable precise range checking of all local, global and dynamically allocated buffers. They have
been tested extensively and have been found to be effective against buffer overruns on all such buffers
that occur due to use of unsafe C library functions. Our tools successfully prevented all the 20 different
overflow attacks in the testbed developed by Wilander and Kamkar [6] to test tools for their capability
to prevent buffer overflow attacks, while the original Libsafe could detect only 6 of the 20 attacks.

In the following sections, we describe in detail the design of Libsafe and our extensions to it.
We first describe the protection mechanism used by Libsafe and then show how LibsafePlus extends
the basic protection mechanism to prevent overflows to all local, global and dynamically allocated
buffers occurring due to the use of unsafe C library functions.

Runtime range checking by Libsafe

The goal of Libsafe is to prevent corruption of the return addresses and saved frame pointers on the
stack in the event of a stack buffer overflow. To ensure that the frame pointers and the return addresses
are never overwritten, Libsafe assumes a safe upper bound on the size of stack buffers as it does not
possess sufficient information to determine their exact sizes. The underlying principle is that a buffer
cannot extend beyond the stack frame within which it is allocated. Thus the maximum size of a buffer
is the difference between the starting address of the buffer and the frame pointer for the corresponding
stack frame. To determine the frame corresponding to a stack buffer, the topmost stack frame pointer
is retrieved and the frame pointers are traversed on the stack until the frame containing the buffer
is discovered. Since Libsafe prevents overwrites beyond the stack frame boundaries, it protects the
function arguments, in addition to the return address and saved frame pointer, from being overwritten.

Based on the above design, Libsafe is implemented as a dynamically loadable library that provides
wrapper functions for unsafe C functions such as strcpy(). The purpose of a wrapper function is
to determine the size of the destination buffer and check whether the destination buffer is at least as
large as the source string. If the check fails, the program is terminated. Otherwise, the wrapper function
simply calls the original C library function.

In addition to protecting from buffer overflows, Libsafe also provides a mechanism to prevent format
string attacks. Libsafe provides a wrapper function for IO vfprintf. The wrapper function checks
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whether the arguments corresponding to the %n specifiers point to any return address or saved frame
pointer. In addition, it also checks if all the arguments lie within a single stack frame. This prevents
the attacker from probing the stack beyond the current stack frame using statements such as
printf("%x %x . . . ").

Extended runtime range checking by LibsafePlus

As discussed above, Libsafe determines bounds on the size of stack buffers and prevents overwriting of
frame pointers and return addresses. Although it provides transparent runtime protection against buffer
overflows it does so only for stack buffers. Also, for stack buffers the attacker is allowed to overwrite
everything in the stack frame upto the frame pointer.

Our extension to Libsafe, LibsafePlus, is able to prevent overflows to all local, global and
dynamically allocated buffers occurring due to the use of unsafe C library functions. In order to
perform precise range checking of global and local buffers, LibsafePlus uses the information about
buffer sizes made available to it at runtime by TIED. If the shared libraries used by the executable have
also been modified using TIED, LibsafePlus has size information about buffers declared within the
libraries too. If the size information for a specific buffer is not available, LibsafePlus falls back to the
checks performed by Libsafe—no range checks for global buffers and loose bounds on sizes of local
buffers. Note that this means that our approach can still be used successfully, although not as effectively,
if neither source nor a binary compiled with the -g option is available for a program or some of the
shared libraries that it uses.

For range checking dynamically allocated buffers, LibsafePlus intercepts calls to the malloc family
of functions and thus keeps track of the sizes of various dynamically allocated buffers.

IMPLEMENTATION OF TIED

In this section, we describe how TIED extracts type information from a program binary and how
it organizes this information as a data structure to be used by LibsafePlus. We first describe the
techniques used for binary rewriting of executables and later show the techniques used to rewrite shared
libraries.

Extracting type information

If the -g option is used to compile a program, the GNU C compiler adds type information about
all variables to the executable in the form of special debugging sections. Debugging with arbitrary
record format (DWARF) [7] is the standard format for encoding the symbolic, source-level debugging
information. TIED uses the libdwarf consumer interface [8] to read the DWARF information present in
the executable. For each function, information about all the local buffers is collected in the form of an
〈offset from frame pointer, size〉 pair. In the current implementation, TIED extracts information about
character arrays only. For global buffers, the starting addresses and sizes are extracted. The members
of arrays, structures and unions are also explored to detect any buffers that may lie within them.
Figure 2 demonstrates a typical case of buffers within structures. TIED detects all the 40 buffers in
this case. Buffers that appear inside a union may overlap with each other. For example, consider the
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struct s{
char a[10];
char b[5];

};
struct s foo[20];

Figure 2. Buffers within a structure.

struct my_struct1{
char a[10];
void *b;
char c[10];

};
struct my_struct2{

void *a;
char b[16];

};
union my_union{

struct my_struct1 s1;
struct my_struct2 s2;

} x;

0 2410 14
x.s1.a   10 bytes x.s1.c    10 bytes

x.s2.b 16 bytes4 20

Figure 3. Overlapping buffers inside a union.

variable x declared as in Figure 3. Here, the buffer x.s2.b partially overlaps with both x.s1.a
and x.s1.c. The problem is to decide whether a string copy of 10 bytes at destination address
((void *)&x + 4) should be permitted. If it is, it may be used by an attacker to overflow x.s1.a
and write an arbitrary value to x.s1.b. On the other hand, if the operation is not permitted, legitimate
writes to x.s2.b may be denied. TIED, by default, takes the latter approach in order to prevent
all possible buffer overflows. However, it is possible to force TIED to take the former approach by
specifying a command line option.

After extracting the type information from the DWARF tables in the executable, TIED first filters it
to retain information only about variables that are character arrays. It then constructs data structures to
store this information for efficient runtime lookup. These data structures are then dumped back into the
executable or the shared library file as a new loadable section. Currently TIED handles executable and
shared library files in the ELF format only.
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TIED organizes the type information about character buffers in the form of several tables that
are linked with each other through pointers, as shown in Figure 4. The top-level structure is a
type information header that contains pointers to and sizes of a global variable table as well as a
function table. The global variable table contains the starting addresses and sizes of all global buffers.
The function table contains an entry for each function that has one or more character buffers as
local variables or arguments‡. Each entry in the function table contains the starting and ending code
addresses for the function, and the size of and a pointer to the local variable table for the function.
The local variable table for a function contains sizes and offsets from the frame pointer for each local
variable of the function or argument to the function that is a character array. The global variable table
the function table and the local variable tables are all sorted on the addresses or offsets to facilitate fast
lookup.

The type information header contains four extra fields in the case of shared libraries: the minimum
and maximum virtual addresses occupied by library code and data at runtime; and place holders for
two pointers that allow LibsafePlus to maintain a linked list of type information headers of various
libraries loaded at runtime.

Rewriting executables

Once the type information about all variables has been organized in the form of tables as shown in
Figure 4, TIED creates an empty space in the executable file for dumping the data structure. The space
is created by extending the executable file towards lower addresses by a size that is large enough to
hold the complete data structure and some other sections, which we shall shortly see, and is a multiple
of page size. This is done because the virtual addresses of existing code and data objects cannot be
changed in an executable file since the code is usually not position independent. The data structure is
then ‘serialized’ to a byte array and the pointers in it are relocated according to the address where it
will be placed in the binary.

As the position of the dumped data structure may vary from file to file, a pointer to the new section
is made available as the value of a special symbol tied type info structure in the dynamic
symbol table (.dynsym section) of the binary. The name of the symbol itself needs to be added to
the string table (.dynstr section), and the hash value of the symbol name needs to be added to the
hash table (.hash section). Thus, in all, TIED enlarges three existing sections: .dynsym, .hash
and .dynstr. Since the sizes of the original sections cannot be increased in situ, their new copies are
placed in the gap created in the executable. Relevant pointers to the three sections from the dynamic
(.dynamic) section are fixed to point to their new locations. Figure 5 illustrates the changes made to
the target binary.

Rewriting shared libraries

The process of rewriting a shared library differs substantially from that of rewriting an executable,
primarily because a shared library is relocated at runtime by the dynamic linker (ld.so), and its

‡An array can be an argument passed by value to a function if the array is part of a structure and the structure is passed by value.
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Figure 4. Data structures for storing type information.

actual load address is known only after this relocation. The virtual addresses used within the library
file itself start with 0, and thus, unlike executables, the address space of a library cannot be extended
towards lower addresses. Therefore, in the case of shared libraries, we insert the type information data
structure and other new sections just after the program headers as shown in Figure 6. This necessarily
changes the locations of the existing code and data objects in the library. However, since all new data are
inserted at contiguous locations, the relative offset between any two existing objects remains the same
as before. Any absolute reference to another object from an existing code or data object in the library
must necessarily have a corresponding relocation entry in the relocation table. Such references are fixed
by adding the size of the new data inserted to the offsets in such relocation entries. Similarly, values
for all symbols defined in the dynamic and static symbol tables (sections .dynsym and .symtab)
are updated.
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Figure 5. ELF executable before and after rewriting.

Relocating pointers in the data structure

The type information data structure contains two kinds of addresses: addresses of global variables
and functions; and pointers that link various tables of the data structure. TIED ensures that all these
pointers hold correct values before they are used by LibsafePlus. Since the base address at which the
library is loaded is not known before loading, the pointers cannot contain absolute addresses. TIED
adds relocation entries of the type R 386 RELATIVE to relocate all such pointers. The initial values
contained in the pointers are offsets which when added to the base address yield actual addresses after
relocation by ld.so.
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Figure 6. Shared library before and after rewriting by TIED.

Making the type information available to LibsafePlus

At runtime, LibsafePlus must be able to obtain a pointer to the type information header for a shared
library when it is loaded. Unlike executables, a new symbol cannot be used to make this address
available to LibsafePlus since multiple libraries may be used by a program in general. Also, since
libraries can be dynamically loaded and unloaded by the program (using dlopen anddlclose calls),
there must be a mechanism for LibsafePlus to be notified whenever a library is loaded or unloaded.
TIED harnesses the initialization and finalization code mechanism for shared libraries to achieve this.
Most libraries contain an initialization and a finalization function. The addresses of these functions are
specified in the DT INIT and DT FINI entries respectively in the dynamic section of the library.
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To notify LibsafePlus of library loading and unloading events, TIED adds new initialization and
finalization functions to the library. The new initialization function first calls the original initialization
function of the library and then calls the LibsafePlus library registration function specifying the address
of the type information structure as an argument. Similarly the new finalization code first calls the
LibsafePlus library deregistration function and then the original finalization function. The DT INIT
and DT FINI entries in the dynamic section are changed to point to these new initialization and
finalization functions, respectively. The entire code of the new initialization and finalization functions
is position independent.

Note that the rewritten library should work correctly even if LibsafePlus is not loaded. Therefore, our
initialization and finalization functions use the dlsym function to determine whether the LibsafePlus
registration and deregistration functions are available before calling these functions.

To call an external function from a library usually requires a procedure linkage table (PLT) entry and
a GOT entry. To avoid enlarging these tables, we allocate space for a pointer and add a relocation entry
of type R 386 GLOB DAT to set the value of this pointer to the address of the dlsym function at the
time of dynamic linking. The address of the type information structure is determined using position-
independent code.

The entire process of changing the initialization and finalization functions also, in general, requires
enlargement of the following existing loadable sections: the dynamic section (.dynamic) to add the
library libdl.so, which defines the dlsym function, to the list of libraries required by this library;
the dynamic symbol table (.dynsym), dynamic string table (.dynstr) and the hash table (.hash)
to add the symbol table entry for the symbol dlsym; and the sections related to symbol versioning
(.gnu.version and .gnu.version r) [9].

Securing the TIED data structures

In addition to registering the library with LibsafePlus, the new initialization function also makes the
pages containing the TIED structures read-only. The TIED data structures are initially located in
a writable segment in order to allow dynamic relocation. Once the linker relocates the structures,
the initialization function of the library calls mprotect system call to make the concerned pages
read-only. This is done to prevent malicious modifications to these data structures. Note that a similar
issue does not arise while rewriting executables since the TIED data structures in executables are in a
read-only section as they do not need relocation.

As shown in Figure 4, the top-level table in TIED structures contains pointers to maintain a linked
list of structures. These pointers are updated whenever a shared library is closed and it deregisters itself
from LibsafePlus. In order to perform these updates, LibsafePlus drops the protection level of the page
containing the pointers using mprotect and restores the level after altering the pointers.

Putting it all together

TIED modifies a number of existing sections in the process described above. For all sections that
are increased in size, a new copy is made. Sections such as .rel.plt are modified by TIED in
situ because they do not change in size. Two new program segments are created to hold all the new
sections. The first segment is read-only and holds the new copies of the sections .dynsym, .dynstr,
.hash, .rel.dyn, .gnu.version and .gnu.version r. The second program segment is a
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read–write segment and contains the type information data structure and the new .dynamic section.
The .dynamic section is modified to add an extra entry of the type DT NEEDED that makes the
library dependent on libdl.so. This is needed because the initializer function makes use of the
dlsym function from libdl.so. The dynamic section needs to be in a read–write segment because
the dynamic linker needs to fix absolute addresses in it. The data structure too needs to be in a read–
write segment because it is relocated at load time. Figure 6 shows the changes done to a shared library
by TIED while adding type information data structure.

LibsafePlus IMPLEMENTATION

LibsafePlus provides wrapper functions for unsafe C library functions such as strcpy and memcpy
and performs bounds checks on the buffer being copied to. For bound verification of local and
global buffers, LibsafePlus utilizes type information from the program binary and the shared libraries.
For dynamically allocated buffers, it keeps track of the sizes and locations of buffers by intercepting
calls to the malloc family of functions as described later. LibsafePlus is completely thread safe and
can be transparently used for multi-threaded applications as well.

Determining sizes of heap buffers

By binary rewriting, all the buffers whose sizes are known at compile time can be protected from
overflow. To capture the sizes of all dynamically allocated buffers, LibsafePlus intercepts all calls to
the malloc family of functions, viz. malloc, calloc, realloc and free. In addition to calling
the actual C library function, the wrapper function records the starting address and the size of the
chunk of memory allocated. The number of elements, nmem, in the buffer is also recorded. The value
nmem is equal to 1 except for buffers allocated using calloc(nmemb, size), in which case it is
equal to nmemb. LibsafePlus uses nmem to enforce a more rigorous size check§. For example, for the
code below, an overflow will be detected if the tighter check is enforced. The loose heap check will,
however, permit such usage:

char *buf = (char *)calloc( 5, 10 );
strcpy(buf, "A long string");

A red–black tree [10] is used to maintain the size information about dynamically allocated buffers.
The tree contains a node for each buffer allocated using malloc, calloc or realloc. On freeing
a memory area using free, the corresponding node is removed. Memory allocation for nodes in
the red–black tree is done by a fast, custom memory allocator that directly uses mmap to allocate
memory.

§A few programs have been found to fail when the rigorous check is applied. LibsafePlus, therefore, provides the strict check as
an option that can be turned on using an environment variable.
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Table I. Unsafe C library functions intercepted by LibsafePlus. Formal parameters in bold are vulnerable
to buffer overflows. Functions marked with a † are vulnerable to format string exploits.

strcpy (char *dest, const char *src) strncpy (char *dest, const char *src, size t len)
stpcpy (char *dest, const char *src) wcscpy (wchar t * dest, const wchar t * src)
wcpcpy (wchar t *dest, const wchar t *src) memcpy (void *dest, const void *src, size t n)
strcat (char *dest, const char *src) strncat (char *dest, const char *src, size t n)
wcscat (wchar t *dest, const wchar t *src) gets (char *s)
realpath (char *path, char resolved path[]) sprintf (char *str, const char *format, ...)
vsprintf (char *str, const char *format, va list ap) getwd (char *buf)
vfprintf† (FILE *fp, const char *format, va list ap)
snprintf (char *str, size t size, const char *format, ...)
IO vfprintf† (FILE *fp, const char *format, va list ap)

vsnprintf (char *str, size t size, const char *format, va list ap)
IO vfscanf ( IO FILE *s, const char *format, IO va list argptr, int *errp)

Intercepting unsafe functions and bounds verification

As outlined earlier, LibsafePlus works by intercepting unsafe C library functions such as strcpy.
Table I lists all such functions intercepted by LibsafePlus.

The wrapper functions attempt to determine the size of destination buffer. If the size of the source
string is less than that of the destination buffer, an actual C library function such as memcpy or
strncpy is used to perform the requested operation. An overflow is declared when the size of
the source string is more than that of the destination buffer, in which case the program is killed.
If the size of the buffer cannot be determined, for instance if TIED was not used to augment the
binary/shared libraries and the buffer is either global or local, the default protection offered by Libsafe
is provided.

To determine the size of the destination buffer, it is first checked whether the destination buffer
is on the stack, simply by checking if the buffer address is greater than the current stack pointer
value. If found on stack, the stack frame encapsulating the buffer is found by tracing the frame
pointers.

For example, consider the buffer dest shown in Figure 7. The buffer dest may either be a local
variable of the function f, as in case (a), or may be an argument to the function g, as in case (b).
LibsafePlus first assumes that dest is a local buffer defined in the function corresponding to its
encapsulating stack frame and attempts to determine its size. In this example, LibsafePlus attempts to
locate the local variable table of the function f. Note that the return address present in the stack frame
of g is an address within the code of the function f. This return address is used to locate the entry
for f in the function tables. First, LibsafePlus determines the correct type information data structure
where the function f must be searched. For this purpose, the return address is compared with the
minimum and maximum addresses of shared libraries, which are retrieved from the linked list of type
information data structures. If f has been defined in one of the shared libraries, the corresponding
type information data structure is obtained and the function f is searched for in its function table.
Otherwise, the function table in the type information data structure corresponding to the executable,
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dest

Saved frame pointer

Return address into f()
Saved frame pointer

Return address

Saved frame pointer

Return address into g()

g()

f()

Stack
growth

strcpy()

f(){
char dest[] = "ab";
...
g(dest);
...

}

g(char *a){
...
strcpy(a,"yz");
...

}

(a)

typedef struct{
char dest[3];

} S;

f(){
S s = {"ab"};
g(s);
...

}

g(S s){
strcpy(s.dest,"yz");
...

}

(b)

Figure 7. Determining size of a stack buffer.

which is obtained by retrieving the value of the symbol tied type info structure, is used to
search for the function f using the return address. Once the function table entry corresponding to f
has been located, a search is made for the buffer dest in the local variable table of f using the offset
of dest from the frame pointer of the stack frame of f. If the above search does not yield the size
of dest, LibsafePlus assumes that dest is an argument to the function owning the stack frame just
above the encapsulating frame. In this example, the return address into g, which is retrieved from the
stack frame of strcpy, is used to locate the function entry for g using a similar procedure as outlined
above. A search for the buffer dest is then made in the local variable table of g using the offset of
dest from the frame pointer in the stack frame of g.
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Saved frame pointer

buf1

var1

buf2

buf3

Stack
growth

−24

−28

−52

−68

Offsets from
frame pointer

int f(){
char buf1[16];
int var1=10;
char *buf2=(char *)alloca(24);
char *buf3=(char *)alloca(16);
...
strcpy(buf3, ...);
...

}

Figure 8. Estimating the size of a stack buffer that is not present in the local variable table. The shaded region
represents the buffer (buf1) whose size has been recorded in the local variable table. The buffer buf3 is therefore

estimated to extend up to just before buf1. Thus, its size is estimated to be (−24) − (−68) = 44 bytes.

There are some cases when the information about the size of a stack buffer is not available in the local
variable tables, for example when alloca is used to dynamically allocate buffers or when variable-
length arrays (supported by gcc) are used. Alloca dynamically creates space for the buffer in the
current stack frame and the space is automatically freed when the function returns. In such a case,
LibsafePlus attempts to estimate the size of the destination buffer using the sizes of buffers available
in the local variable tables. As shown in Figure 8, LibsafePlus estimates the extent of the destination
buffer to be up to the largest address in its stack frame, such that it does not overlap with any other
buffer in the local variable table.

If the buffer is not on the stack, it is checked to see whether it is on the heap by comparing its address
with the minimum heap address. The minimum heap address is recorded by the malloc and calloc
wrappers and is the address of the chunk allocated by the first call to malloc or calloc. The buffer
is assumed to be on the heap if its address is greater than the minimum heap address. In this case, its
size is determined by searching in the red–black tree.

Finally, if the buffer is neither on the stack nor on the heap, it must be a global variable defined either
in the executable or in one of the shared libraries. In this case, again, the type information structure
containing information about the buffer is located by comparing the address of the buffer with the
minimum and maximum addresses of shared libraries. The buffer is then searched for in the appropriate
global variable table. If none of the above checks yield the size of the buffer, the intended operation of
the wrapper is performed. If the size of the destination buffer is available, the size of the contents of
the source buffer is determined. The contents are copied only if the destination buffer is large enough
to hold them. The program is killed otherwise. While killing the program does make the application
vulnerable to denial-of-service attacks, letting the execution continue with a possibly malformed buffer
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is a more dangerous alternative. LibsafePlus, therefore, chooses to terminate the program whenever an
overflow is detected.

Handling memcpy

Due to the fact that memcpy requires the programmer to specify the size of the data to be copied,
its use seldom permits an opportunity for buffer overflow. However, the GNU C compiler transforms
certain strcpy calls to memcpy calls. For this reason, the original Libsafe intercepted memcpy as
well. However, this optimization is used only if the source of strcpy is a constant string. Such a
situation is clearly not likely to lead to buffer overflow exploitation since the attacker cannot control
the data copied to the destination buffer. Therefore, we believe that the interception of memcpy is not
necessary in most cases. Note also that intercepting memcpy usually has a significant performance
penalty since many programs use it quite heavily and the library implementation of memcpy is usually
a very efficient, hand-optimized one.

LibsafePlus uses an environment variable to decide whether memcpy should be intercepted or not.
If it is not to be intercepted, the wrapper function for it simply calls the C library memcpy without any
checks. When memcpy is intercepted, only very loose checks are performed on the destination buffer.
This is because memcpy is often used to copy the contents of one contiguous block of memory, such
as an array or a structure, to another. This array or structure may contain within itself several character
buffers. While the copying of the whole array is completely legitimate, the wrapper for memcpy may
consider it to be an attempt to overflow a constituent character buffer. To prevent such false positives,
only the loose checks of Libsafe are performed for stack buffers, i.e. a stack buffer is assumed to extend
until just before the saved frame pointer in the enclosing stack frame. This check is reasonable because
the stack buffer cannot extend beyond the stack frame and no ‘sensible’ use of memcpy should copy
across stack frames. No size checks are carried out for global buffers because it cannot be ascertained
from the type information data structure whether the location being copied to is a single buffer or a
sequence of possibly non-adjacent buffers. For heap buffers being copied to by memcpy, the loose
heap check, as described earlier, is always used.

PERFORMANCE

We have tested LibsafePlus for its ability to detect buffer overflows as well as for the overhead
incurred due to its use. To test the protection ability of LibsafePlus, we used the test suite developed
by Wilander and Kamkar [6]. This test suite implements 20 techniques to overflow buffers located
on stack, .data or .bss sections. The test suite uses memcpy to overflow the target buffer.
Since LibsafePlus implements loose checks for buffers being copied to by memcpy, we modified
the test suite to use strcpy for overflowing the target buffer. The test suite executable was then
modified using TIED. TIED detected all the global and local buffers declared in the test suite program.
LibsafePlus was then preloaded while running the binary. All tests were successfully terminated by
LibsafePlus when an overflow was attempted.

For testing performance overhead incurred due to LibsafePlus, we first measured overhead at a
function call level. Next, the overall performance of 11 representative applications was measured. In the
following subsections, we describe these tests and their results.
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Microbenchmarks

In this section, we present a comparison of the execution times of library functions such as malloc(),
memcpy() etc. for the following three cases:

• the test was run without any protection;
• the program was protected with Libsafe;
• the program was protected with LibsafePlus.

The tests were conducted on a 1.5 GHz Pentium M machine with 512 MB of RAM running Linux
2.4.22.

We present here the performance results for two most commonly used string handling functions:
memcpy and strcpy. To measure the overhead of finding sizes of global and local buffers using the
new section in the executable, we performed the following experiment. The test program contained 100
global buffers and 100 functions. Each function had three local buffers. The time required by a single
memcpy() into global and local buffers was measured for varying number of bytes copied. As shown
in Figure 9, we found a constant overhead of 0.31 µs for memcpy() to global buffers. The percentage
overhead decreases from about 50% for memcpy to buffers of 64 bytes to about 5% for memcpy
to buffers as large as 1024 bytes. For local buffers, the overhead due to LibsafePlus is 0.5 µs per
call to memcpy() as shown in Figure 10. This is basically the overhead for locating the stack frame
corresponding to the buffer and is the same as the overhead due to Libsafe. To measure the overhead of
finding the size of a heap variable from the red–black tree, the test program first allocated 1000 heap
buffers. It then allocated another heap buffer and measured the time taken for one memcpy() to this
buffer. This represents the worst-case performance as the buffer being copied to is the right-most child
in the red–black tree. As shown in Figure 11, the overhead due to LibsafePlus is 1.5 µs per call to
memcpy().

We also measured the performance of LibsafePlus for calls to strcpy(). The testbed was similar
to the one described earlier for memcpy(). Figure 12 shows the time taken by one strcpy() to a
global buffer. The overhead drops from 0.9 µs for buffers of size 32 bytes to 0 µs for buffers of about
400 bytes. This is because the wrapper function for strcpy() in LibsafePlus uses memcpy() for
copying, which is six to eight times faster than strcpy() for large buffer sizes. Figures 13 and 14
show similar results for strcpy() to local and heap buffers, respectively.

Next, we measured the overhead due to LibsafePlus in dynamic memory allocation. The insertion
and deletion of nodes in the red–black tree is the primary constituent of this overhead. We measured
the time required by a pair of malloc() and free() calls. The number of buffers already present in
the red–black tree at the time of allocating the buffer was varied from 25 to 223. As shown in Figure 15,
the time taken by LibsafePlus for the malloc(), free() pair grows almost logarithmically with the
number of buffers already present in the red–black tree. This is expected because of the O(log(N))

time operations of insertion and deletion of nodes in a red–black tree.

Macrobenchmarks

Next, we measured the performance overhead due to LibsafePlus using a number of applications
that involve substantial dynamic memory allocation and operations such as strcpy() to buffers.
In all, a total of 11 applications were used to evaluate the overhead of LibsafePlus and Libsafe.
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Figure 9. memcpy() to a global buffer.
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Figure 10. memcpy() to a local buffer.
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Figure 11. memcpy() to a heap buffer.
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Figure 12. strcpy() to a global buffer.
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Figure 13. strcpy() to a local buffer.
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Figure 14. strcpy() to a heap buffer.
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Figure 15. Performance overhead for malloc(), free() pair.

Two kinds of measurements were taken with LibsafePlus preloaded: with the environment variable
LIBSAFEPLUS NO MEMCPY set, in which case no size checks are done for buffers being copied to
using memcpy; and with the above variable unset, in which case loose checks are done for memcpy
as described earlier. For the cases of LibsafePlus, all libraries used by the program were also compiled
with the -g flag and modified with TIED.

Table II describes the performance metric used in each case. The performance overheads are shown
in Figure 16. The graph shows normalized metric values with respect to the case when no library was
preloaded. The overhead due to LibsafePlus was found to be less than 10% for all cases except for
Bison, Enscript and Grep. In case of Enscript, Grep and Bison, the slowdown observed is due to a huge
number of dynamic memory allocations and string operations on heap buffers.

Limitations of our approach

The current version of TIED is implemented for ELF binaries with debugging information in the
DWARF format. The approach, however, is not limited by these formats. TIED can be upgraded
to handle binaries in any standard format. Any debugging information format, such as the one used
in COFF (Common Object File Format), that provides information about location and sizes of local
and global variables declared in the program can also be handled. However, since the availability of
debugging information is central to our approach, it does not handle commercial software that lack
such information.

There are certain other cases that our approach is unable to handle. LibsafePlus can only guard
against buffer overflows due to injudicious use of unsafe C library functions and not those due to
other kinds of errors in the program itself. However, in many programs buffer overflows occur due to
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Table II. Description of application benchmarks.

Application What was measured

Apache-2.0.48 Response time while requesting a large file from the Web server
Sendmail-8.12.10 Connection rate achieved while sending a large message
Bison-1.875 Time to parse a large grammar file and generate C code
Enscript-1.6.1 Time to convert a large text file to postscript
Hypermail-2.1.8 Time to process a large mailbox file
OpenSSH-3.7.1 Time to transfer a large set of files using the loopback interface
OpenSSL-0.9.7 Time to sign and verify using RSA
Gnupg-1.2.3 Time to encrypt and decrypt a large file
Grep-2.5 Time to perform a search for palindromes using back references

on a large file
CCrypt Time to decrypt a large file encrypted using CCrypt
Tar Time to compress and bundle a large set of files
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Figure 16. Macro performance overheads.
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improper use of C library functions rather than erroneous pointer arithmetic done by the programmer.
Moreover, guarding against erroneous pointer arithmetic implies protecting every pointer instruction
that would incur a high performance overhead.

The current implementation of TIED dumps size information about character buffers only. Thus
overflows to other kinds of buffers, such as integer buffers, cannot be detected by LibsafePlus. Only
character arrays have been handled since other kinds of buffers are seldom passed as parameters to
string handling functions such as strcpy. This, however, is not a major limitation since TIED can
easily be modified to extract information about all kinds of arrays.

Also, LibsafePlus cannot precisely determine sizes of buffers that are dynamically allocated on the
stack. LibsafePlus is only able to estimate a safe bound on the size of such a buffer. Variable length
local arrays pose a similar problem.

Since LibsafePlus uses mmap for allocating nodes for the red–black tree, programs that use mmap
for requesting memory at specified virtual addresses may not work with LibsafePlus.

RELATED WORK

In this section, we review the related work in the area of protection against buffer overflow attacks.

Kernel-based techniques

The common feature used by the majority of buffer overflow attacks is the ability to execute
code located on the stack. Solar Designer has developed a Linux patch that makes the stack non-
executable [11], precisely to counteract the stack smashing attacks. The solution has some serious
weaknesses. First, nested functions or trampoline functions, which are used by LISP interpreters, many
Objective C compilers (including gcc) and most common implementations of signal handlers in Unix,
require the stack to be executable. Second, the attacker does not require the code to be stored on a stack
buffer for the exploit to work. Methods to bypass the non-executable stack defense have been explored
by Wojtczuk [12].

PaX [13] is another kernel patch that aims to protect the heap as well as the stack. The idea behind
PaX is to mark the data pages non-executable by overloading the supervisor/user bit on pages and
enabling the page fault handler to distinguish the page faults due to attempts to execute data pages.
PaX also imposes a significant performance overhead due to additional work done by the page fault
handler for each page fault. Although protecting the heap offers some additional protection, it still does
not guarantee complete protection from all forms of attacks. For example, return-into-libc attacks are
still possible.

Static analysis based techniques

Static analysis approaches to handling buffer overflows attempt to analyze the program source and
determine if the program execution can result in a buffer overflow.

Wagner et al. [14] formulated the detection of buffer overruns as an integer range analysis
problem. The approach models C strings as a pair of integer ranges (allocated size and length)
and vulnerable C library functions are modeled in terms of their operations on the integer ranges.
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Thus, the problem reduces to an integer-range tracking problem. The described tool checks, for
each string buffer, whether its inferred length is at least as large as the allocated length. The tool is
impractical to use since it produces a large number of false positives, due to lack of precision, as well
as some false negatives.

The annotation-based static code checker [15] exploits the information provided in programs in the
form of semantic comments. The approach extends the LCLint static checker [16] by introducing
new annotations which allow the declaration of a set of preconditions and postconditions for
functions. The tool does not detect all buffer overflow vulnerabilities and often generates spurious
warnings.

CSSV [17] is another tool for statically detecting string manipulation errors. The tool handles large
programs by analyzing each procedure separately and requires procedure contracts to be defined by the
programmer. A procedure contract defines a set of preconditions, postconditions and side-effects of the
procedure. The tool is impractical to use for existing large programs since it requires the declaration of
procedure contracts by the programmer. Like other static techniques, the tool can produce false alarms.
The pointer bug tracking tool [18] uses a hybrid pointer alias analysis that chooses between precise
but inefficient path-sensitive analysis for simple access paths and an efficient but imprecise analysis
for other references. The tool builds the definition-use chains to determine if an input by the user can
potentially overflow a buffer. False positives, although very low in number, have nevertheless been
shown to exist.

A very different approach used to prevent a large variety of exploits due to memory-related
programming errors is that of address obfuscation [19]. Address obfuscation randomly modifies the
absolute addresses of code and data in the program. This prevents return-into-libc-like attacks that are
based on the knowledge of the actual addresses of functions. It also randomizes the relative distances
between data items by variable and routine reordering and by introducing random padding between
memory regions such as stack frames and dynamically allocated memory. This prevents the attacks
that rely on specific ordering of data items such as those that overflow a buffer to overwrite a crucial
data item stored after it. While address obfuscation itself cannot detect an exploit, it makes crafting an
exploit more difficult. Thus, address obfuscation cannot be used as an active defence against memory
exploits. Also, some of the obfuscation transformations either require changing the dynamic linker
or relinking the program. The paddings used for obfuscating are also statically fixed at the time of
transformation, thereby necessitating frequent ‘reobfuscation’. Dynamically changing the paddings at
runtime may not be feasible.

Runtime techniques

StackGuard [20] is an extension to the GNU C compiler that protects against stack smashing attacks.
StackGuard enhances the code produced by the compiler so that it detects changes to the return
address by placing a canary word on the stack above the return address and checking the value of
the canary before the function returns. The canary is a sequence of bytes which could be fixed or
random. The approach assumes that the return address is unaltered if and only if the canary word is
unaltered. StackGuard imposes a significant runtime overhead and requires access to the source code.
Techniques to bypass StackGuard protection are described in [21] and [22].

StackShield [23] is another tool, also implemented as a compiler extension, that protects the return
address. The basic idea here is to save return addresses in an alternate non-overflowable memory space.
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The resulting effect is that return addresses on the stack are not used; instead the saved return addresses
are used to return from functions. As with StackGuard, the source code needs to be recompiled for
protection. A detailed description of StackShield protection and techniques to bypass it are available
in [21] and [22]. A similar compile-time approach for buffer overflow prevention is described in [24].
In this approach, the return address stack is flanked by read-only sections on either side. The approach
also handles complications due to use of longjmp. If the top of the return address stack does not
match the return address on the function call stack, the discrepancy is attributed to a longjmp and the
return address stack is popped off until the first match.

Propolice [25] is another compiler extension that aims to protect the saved frame pointer and the
return address by placing a random canary on the stack above the saved frame pointer. In addition,
Propolice protects local variables and function arguments by creating a local copy of arguments and
rearranging the local variables on the stack so that all local buffers are stored at higher addresses
than the local variables and pointers. As with StackGuard and StackShield, Propolice requires the
recompilation of the source code. Although Propolice protects against stack smashing attacks, it is
vulnerable to other forms of attacks.

Libverify [5] uses a similar idea as StackShield to prevent a function from returning to a forged
return address. However, Libverify is implemented as a dynamically linked library. Upon initialization,
Libverify instruments the program code in memory such that the return address verification code in the
library will be called for each function call. A copy of each function defined in the executable is
placed on the heap. The original function is modified to jump to a wrapper entry function on entry,
which pushes the return address on a separate stack and jumps to the copy of the original function.
The return instructions in the copied function are modified to jump to a wrapper exit function that
verifies the return address before returning. To handle absolute jumps in the function code, the original
function code is replaced by trap instructions and a trap handler is provided to lead the control to the
corresponding instruction in the copied version of the function.

The memory-access error-detection technique [26] extends the notion of pointers in C to hold
additional attributes such as the location, size and scope of the pointer. This extended pointer
representation is called the safe pointer representation. The additional attributes are used to perform
range access checking when dereferencing a pointer or while doing pointer arithmetic. The approach
fails to work with legacy C code as it changes the underlying pointer representation.

The backwards compatible bounds checking technique by Jones and Kelly [27] is a compiler
extension that employs the notion of referent objects. The referent object for a pointer is the
object to which it points. The approach works by maintaining a global table of all referent objects
which maintains information about their size, location, etc. Furthermore, a separate data structure is
maintained for heap buffers by modifying malloc() and free() functions. Range checking is done
at the time of dereferencing a pointer or while performing pointer arithmetic. The technique breaks
existing code and involves a high performance overhead for applications which are pointer and array
intensive since every pointer or array access has to be checked at runtime.

The C Range Error Detector (CRED) [28] is an extension of Jones and Kelly’s approach. CRED
extends the idea of referent objects and allows the use of a previously stored out-of-bounds address
to compute an in-bounds address. This is done by storing all the information about out-of-bounds
addresses in an additional data structure on the heap. The approach fails if an out-of-bounds address is
passed to an external library or if an out-of-bounds address is cast to an integer and subsequently cast
back to a pointer. As for Jones and Kelly’s technique, the tool imposes a high performance overhead
for pointer/array intensive programs since every access to a pointer has to be checked.
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The type-assisted dynamic-array bounds-checking technique [29] is also a compiler extension that
works by augmenting the executable with additional information consisting of the address, size and
type of local buffers, pointers passed as parameters to functions and static buffers. An additional data
structure is maintained for heap buffers. Range checking is actually performed by modified C library
functions which utilize this information to guarantee that overflows do not occur. As for other compiler
based techniques, the solution is not portable and requires access to the source code of the program.
It can be seen that this approach is the closest to ours. However, the main advantage of our approach is
that it does not require compiler modifications and can work with the output of any compiler that can
produce debugging information in the DWARF format.

PointGuard [30] is a pointer protection technique that encrypts pointers when they are stored in
memory and decrypts them when they are loaded into CPU registers. PointGuard is implemented
as a compiler extension that modifies the intermediate syntax tree to introduce code for encryption
and decryption. Encryption provides for confidentiality only, hence PointGuard gives no integrity
guarantees. Although, PointGuard imposes an almost zero performance overhead for most applications,
it protects only code pointers (function pointers and longjmp buffers) and data pointers, and offers no
protection for other program objects. Also, protection of mixed-mode code using PointGuard requires
programmer intervention.

Program shepherding [31] is another technique aimed at preventing exploits by enforcing security
policies based on control flow information. It allows the definition of execution privileges based on
code origins (unmodified image from disk, dynamically generated but unmodified, modified etc.).
Control flow transfers can be restricted based on the source and target of the calls and the type of
call (direct versus indirect). Furthermore, it uses uncircumventable sandboxing to implement the above
checks on program execution. The major disadvantage of this technique is that it can impose very high
overheads in some cases, especially for multi-threaded applications.

Several other techniques based on binary file rewriting have also been described in the literature.
Install-time vaccination of Windows executables and dynamically linked libraries (DLLs) [32] is a
technique that rewrites the binary file at the time of installation to prevent functions from returning
with a forged return address. The underlying idea is the same as Libverify except that the program
binary on the disk rather than its image in memory is modified. First, all the function entry and exit
points are discovered. The instructions at the entry and exit points are modified to jump to entry
and exit wrapper functions, respectively. The entry wrapper function records the return address on
a private stack and jumps back to the original function. The wrapper for function exit verifies the return
address. The implementation uses a commercial disassembler (IDAPro) for disassembly of PE binaries.
An alternative approach for PE binary disassembly has been discussed in [33].

One of the major drawbacks of all existing runtime techniques (except program shepherding) is that
they require changes to the compiler. Most of these techniques have not been adopted by any of the
mainstream compilers so far¶. In contrast, our approach does not require any compiler modifications
and can be used with any existing compiler. We feel that this may lead to more widespread adoption of
this technique in practice.

¶One of the exceptions is the Microsoft C compiler that provides an option for StackGuard-like protection.
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CONCLUSION

In this paper, we have presented TIED and LibsafePlus. These are simple, robust and portable tools
that can together guard against buffer overflow attacks on local, global and heap variables arising from
the use of unsafe C library functions. Our approach is a transparent runtime solution to the problem
of preventing buffer overflows that is completely compatible with existing code and does not require
source code access. Experiments show that our approach imposes an acceptably low overhead due to
the runtime checks in most cases.

TIED and LibsafePlus are available in the public domain and can be downloaded from
http://www.security.iitk.ac.in/projects/Tied-Libsafeplus.
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