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Abstract. This paper presents a novel approach to normalize binary
shapes which is based on the Radon transform. The key idea of the pa-
per is an original adaptation of the Radon transform. The binary shape
is projected in Radon space for different levels of the (3-4) distance trans-
form. This decomposition gives rise to a representation which has a nice
behavior with respect to common geometrical transformations. The ac-
curacy and the efficiency of the proposed algorithm in the presence of
a variety of transformations is demonstrated within a shape recognition
process.

1 Introduction

By definition The Radon transform of an image is determined by a set of pro-
jections of the image along lines taken at different angles. For discrete binary
image data, each non-zero image point is projected into a Radon matrix. Earlier
works [6,10,11] on the 2D Radon transform were dedicated to find high-valued
coefficients in the transformed domain, in order to detect specific shape primi-
tives like straight lines or arcs of conics. In all these approaches the information
encoded is contour-based allowing the characterization of simple shapes. Fur-
thermore, this kind of representation is not suited to a recognition task because
it needs to be normalized with respect to geometric parameters (translation, ro-
tation and scaling). Indeed, it is difficult to recover all the geometric parameters
of the transformation between two objects using directly the Radon transform.
To overcome this problem we propose an original adaptation of the Radon trans-
form. We define a new representation which has a low time complexity and a nice
behavior with respect to common geometrical transformations. The key idea is
to project each binary shape in the Radon space for different levels of the (3-4)
distance transform. In this manner we take into account the link between the
internal structure and the boundaries of the shape. Thus, we provide a global
description of any binary shape whatever its type and form are.

The remainder of the paper is organized as follows. A brief review of shape
representation methods is presented in Section 2. The definition of the Radon
transform is recalled in Section 3. The current method is described in Section
4 and experimental results are given in Section 5. Finally, Section 6 presents
conclusions and the future work.
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2 Related Works

The normalization of binary shape [4] is a mandatory step in many computer
vision system especially when the main goal is the discrimination of objects de-
pending on their forms. Shape representation for object recognition has been the
subject of much research, and extensive surveys of shape analysis can be found
in [7,12]. The choice of a particular representation scheme is usually driven by the
need to cope with requirements such as robustness against noise, stability with
respect to small distortions, invariance to common geometrical transformations,
or tolerance to occlusions.

Many approaches have been proposed to describe the boundary contours
from a small set of features. Fourier descriptors [8,15] have been widely used and
modified versions [16] have been proposed to compute the affine transformation
between one shape to another. In most cases the centröıd of the shape is required
to define the geometric transform and it is well known that the position of
the centröıd is sensitive to noise. Moreover, the Fourier descriptors represent
the global appearance of a shape from their most important components. The
number of required coefficients relies on the shape of the given object and is
usually rather large.

In curvature approaches [13,23] a shape is described in a scale space by
the maximum of the curvature. The similarity of two shapes is determined by
measuring the distance between their corresponding scale space representations.
In some approaches the similarity is computed at a high scale or at all scales.
These methods yields interesting results. However the number of scales is set
manually because it is difficult to compute it automatically. For the same reason
the first and the last scales are set manually too.

To solve the correspondence problem of contour points between two shapes,
S. Belongie [1] links a shape context to each contour point. The shape context at
a contour point captures the distribution around it and enables to solve the cor-
respondences as an optimal assignment problem. This method has the advantage
that it does not require ordered boundary points over the previous one. Never-
theless, matching local contexts does not necessarily preserve the coherence of
shapes.

A recognition system which recognizes objects from their silhouettes has been
proposed in [24]. Each instance of an object is represented by a graph built on
the medial axis of the shape silhouette. The nodes are skeleton junctions and
edges are the primitive points between them. An improved version is defined by
the shock structure notion [9] which is obtained by viewing the medial axis as
being the locus of singularities. This structure is represented in a shock graph
which describes the shape more accurately than the medial axis graph.

Several approaches have been proposed to compare shock graphs. K. Sid-
diqi [21] modifies the shock graph into a shock tree and matching is performed
by subgraph isomorphism or by finding the maximal cliques [14]. An alternative
approach, also based on the singularities of a curve evolution process, has been
given in [20]. The underlying graph is hierarchical, but more complex. Novel
recognition frameworks have been proposed for matching shock graphs of 2D
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Fig. 1. Definition of the Radon transform.

shapes outlines [18]. In these approaches the edit distance is used to measure
the similarity between shapes. It is performed by searching the optimal sequence
in the space of all possible transition sequences. These methods are highly ef-
fective since they rely on global optimizations. Partial and occluded shapes are
well matched. The main disadvantage is that they are computationally expen-
sive, although heuristics can be used to reduce the complexity [19] in practice.
A further problem is that they do not take into account the internal structure of
general objects and the medial axis is difficult to extract from real images due
to its noise-sensitivity.

3 The Radon Transform

Let f(x, y) be an image. Its Radon transform is defined in [5]:

TRf (ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(θ) + y sin(θ) − ρ)dxdy (1)

where δ(.) is the Dirac delta-function (δ(x) = 1 if x = 0 and 0 elsewhere),
θ ∈ [0, π[ and ρ ∈ [−∞,∞]. In other words, TRf is the integral of f over the line
L(ρ,θ) defined by ρ = x cos(θ) + y sin(θ).

In the context of shape recognition it is of particular interest to consider the
case where the general function f is replaced by (see Figure 1):

fD(x, y) =
{

1 if (x , y) ∈ D
0 otherwise. (2)

Let Li be in normal form (ρi, θi) in the plane (see Figure 1). The Radon
transform TRf (ρ, θ) describes the length intersection of all the line Li with the
function fD for all θi ∈ [0, π[ and −ρmin < ρ ≤ ρmax. When an implementation
is considered, ρmin and ρmax are finite and rely on the image size.
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Fig. 2. A 2D shape and its Radon transform.

Since the Radon transform is linear by definition, geometric properties like
straight lines or curves can be made explicit by the Radon transform which
concentrates energies (loci of intersection of several sinusoidal curves) from the
image in few high-valued coefficients in the transformed domain. These remarks
are illustrated in Figure 2 where white pixels are the loci of high energies.

The Radon transform has several useful properties. Some of them are nice
for shape representation [5]:

– Periodicity: TRf (ρ, θ) = TRf (ρ, θ + 2kπ), k integer. The period is therefore
2π.

– Shift of translation vector u = (x0, y0): TRf (ρ − x0 cos(θ) − y0 sin(θ), θ).
A translation of f results in the shift of its transform in the variable ρ
by a distance equal to the projection of the translation vector on the line
ρ = x cos(θ) + y sin(θ).

– Rotation of θ0: TRf (ρ, θ+θ0). A rotation of the image by an angle θ0 implies
a translation of the Radon transform in the variable θ.

– Scaling of α: 1
|α|TRf (α × ρ, θ). A scaling of f results in a scaling of both the

ρ coordinate and the amplitude of the transform.

To be useful, a shape recognition framework should allow explicit invari-
ance through the operations of translation, rotation and scaling. To measure
the similarity between the Radon matrix of two shapes it is necessary to know
the underlying geometric transformations from one shape into the other. How-
ever, we can see from the previous properties that if a given shape is translated,
rotated and scaled, it will be difficult to recover all the parameters of the ge-
ometric transformations from the Radon transform. To overcome this problem
we propose in the next section an original adaptation of the Radon transform.

4 R-Transform

Let the following transform, called R-transform, be:

Rf (θ) =
∫ ∞

−∞
T 2

Rf (ρ, θ)dρ (3)

where TRf is the Radon transform of f . We can show the following properties:
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Fig. 3. R-transforms of the same shape which has been rotated, scaled and translated.
Only the rotation provides a shift of the R-transform.

– Periodicity: Rf (θ ± π) = Rf (θ). The period is therefore set to π.
– Rotation: Rf (θ + θo) =

∫ ∞
−∞ T 2

Rf (ρ, θ + θo)dρ. A rotation of the image by
an angle θ0 implies a translation of the R-transform of θ0.

– Shift:
∫ ∞

−∞ T 2
Rf (ρ − xo cos(θ) − yo sin(θ))dρ = Rf (θ). The R-transform is

invariant under a translation of f by a vector u = (x0, y0).
– Scaling: 1

α

∫ ∞
−∞ T 2

Rf (αρ, θ)dρ = 1
α2 Rf (θ) (α > 0). A scaling of f causes in

a scaling of only the amplitude of the R-transform.

To summarize, the R-transform is invariant under translation and scaling if
the transform is normalized. A rotation of the shape implies a translation of the
transform modulo π. Figure 3 shows two R-transforms of the same object which
has been rotated, scaled and translated. We note that only the rotation provides
a modification of the function.

Given a large collection of shapes, unraveling its redundancies with only one
R-transform per shape is not efficient because the R-transform provides a highly
compact shape representation. In this perspective, to improve the description,
each shape is projected in the Radon space for different segmentation levels
of the (3 − 4) distance transform. A distance transformation is an operation
that converts a binary image to an image where each element is valued to the
distance of the nearest boundary contour [2,17]. There are different families
of distance transformation (see [2,17] for more details). The Chamfer distance,
called the (3−4) distance transform, is fast and simple to implement and provides
a good approximation of the Euclidean distance. To compute the (3−4) distance
transform, the two additive masks of Figure 4 are applied in two passes on the
image. In the forward pass the first mask starts in the upper left corner of the
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Fig. 4. The masks for computing the (3 − 4) distance transform.

Fig. 5. First column: (3-4) distance transform. Other columns: segmented images for
8 different levels of distance transform.

image moving from left to right and from top to bottom. The opposite operations
are performed for the backward mask.

Given the distance transform of a shape, the distance image is segmented
in n equidistant levels in order to keep the segmentation isotropic. For each
distance level, pixels having a distance value superior to that level are selected
and at each level of segmentation, an R-transform is computed. In this manner,
we capture both the internal structure and the boundaries of the shape.

Since the Radon transform is linear, all the R-transforms are computed in
only one step. That is, each non-zero point (xi, yi) is projected simultaneously
into different Radon matrices. The number of projections relies on the number of
segmentation levels and on the value of the distance transform at that point. So,
each binary shape is composed of a set of R-transforms describing a 2D surface
and verifying the previous geometric properties. Figure 5 shows the distance
transform of the two dog images of Figure 3 and their corresponding distance
images for 8 segmentation levels. We note that the isotropy of the segmentation
is kept. The corresponding 2D surfaces are presented in Figure 6. We can see
that one surface is very close to a circular permutation of the other. In the
next section, we give some indications on the way of computing the discrete
R-transform.

5 Digital Considerations

Since the aim of this paper is not to provide a new version of the discrete Radon
transform but to emphasize its application, we only give some tips about its
implementation. A great number of algorithms have been proposed which are
more or less fast. We have adapted the approach proposed in [3] which is well-
suited to deal with binary images even though the complexity is high. Let a
single point image with coordinates (x0, y0) be:

I(x, y) = δ(x − x0)δ(y − y0). (4)
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Fig. 6. Surface visualization of the corresponding 2D R-transforms of the Figure 5. On
the X-axis is the number of orientations in the Radon transform. On the Y -axis is the
number of level cuts in the distance transform.

Its Radon transform is by definition:

TRI (ρ, θ) = δ(ρ − x0 cos(θ) − y0 sin(θ)). (5)

That is, a single point has a Radon transform which is non-zero along a
sinusoidal curve of equation ρ = x0 cos(θ)+y0 sin(θ). Therefore, since the Radon
transform is by definition linear, a way to compute the transform of a binary
image is to map every non-zero image point, using the normal parameterization
ρi = xi cos(θi)+yi sin(θi), into a Radon matrix. That is, for each point (xi, yi) of
the image, i is fixed and the value ρi is calculated using stepwise increments of
θi from 0 to π. The increment is defined to avoid aliasing following the Shannon
theory (see [22] for more details). Here we set ∆θ = ∆ρ = 1, ∆x = ∆y = 1

2 and
the sampled values of ρi are defined by a linear interpolation. This algorithm
requires time O(N2M) for an image of size N × N and M different angles (here
M = 180).

Two major optimizations are made to reduce the complexity. The cosine and
the sine of all the possible values of θi are computed one time only. The values
of ρi are also defined recursively. That is, since the step increment ∆x is set to
1
2 , we have: ρi+ 1

2
= ρi + cos(θi)

2 . Therefore, when we move in the x-direction, ρ

is incremented by cos(θ)
2 . Similarly, in the y-direction ρ is increased by sin(θ)

2 .
Hence, the discrete Radon transform is represented by a digital image and

the discrete R-transform is defined by:

R̂ =
π∑

n=0

T̂ 2
Rf (ρ̂, θ̂). (6)

We are aware that the properties of the continuous Radon transform cary
over to the discrete Radon transform only approximately, due to errors of dis-
cretization. However, we will see in the next section that the provided results
have a tendency to show that the errors are small.
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6 Experimental Results

To show the efficiency of the proposed algorithm we provide experimental results
within a shape recognition process. The method was tested on a database of D.
Sharvit [20] who made it kindly available to us on his Web site. This database
consists of nine categories with 11 shapes in each category. Figure 7 shows an
example of matching one shape of each category against all other shapes of the
database. Since there were ten possible similar shapes excluding the shape itself,
we provide as results the ten nearest neighbors.

The similarity of two surfaces is defined by the χ2 distance [1]. Such a distance
can be efficiently computed and it is well-adapted to our context:

χ2 = C(hq, hm) =
#levels∑

k=1

π∑
θ=0

(hq(k, θ) − hm(k, θ))2

hq(k, θ) + hm(k, θ)
, (7)

where hq and hm are respectively the 2D surfaces of query and model shapes
belonging to the database. Given the previous cost, we look for the best per-
mutation Π which minimizes: P (Π) = min{C(hΠ(q), hm)}. Due to the (3-4)
transform level cuts, a 2D surface may be composed of non uniformly sampled
data. In this perspective we interpolate the values at uniformly spaced points
before computing the χ2 distance.

We can observe from Figure 7 that most of the shapes are well classified.
For example, the wrench image provides a good demonstration of the behavior
of the proposed approach with respect to geometric transformations and small
deformations. Furthermore, images with different sizes and types of occlusion
have been added in the database. For example, five occluded images of the fish
class have been inserted in the database. We can remark from Figure 8 that our
approach have retrieved all the occluded shapes concerning the fish query.

Each image of the database is represented by about 128 × 128 pixels. All
the 2D R-transforms are computed off-line and the running time is about 0.5s
per shape. These results are obtained on a Pentium III, 866 MHz runing under
Linux.

7 Conclusion

We have presented a new approach to shape recognition which is simple and
easy to apply. The key characteristic of our approach is the definition of a new
transform, based on both the Radon and the (3-4) distance transform, allowing
to capture the shape at different levels of distance. In our experiments we have
shown the invariance of our approach under several common image transforma-
tions, including the ability to handle partial and occluded shapes. Currently the
number of segmentation levels is defined manually. It is obvious that a small-
sized shape does not require the same levels of description than a larger one. In
this case we need also more precision on the distance decomposition. To achieve
more accuracy, further works will be devoted to get a better approximation of
the Euclidean distance and to define automatically the number of level cuts.
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Fig. 7. Top: A database of 99 shapes. Each shape of the first column is matched
against every other shapes in the database. Bottom: the 10 nearest neighbors. The
self-matching that is a perfect match is excluded from the results.

Fig. 8. Robustness to occlusion. The occluded images are represented in gray. Each
shape of the first column is matched against every other shapes in the database (self-
matching is excluded from the results). Right: the 14 nearest neighbors.
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6. P. Fränti, A. Mednonogov, V. Kyrki and H. Kälviäinen. Content-based Matching
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