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Catharanthus roseus is an important medicinal plant, which produces a variety of

indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed

to investigate the potential stress-induced increase of indole alkaloid biosynthesis

in C. roseus using proteomic technique. The contents of the detectable alkaloids

ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly

increased under binary stress. Proteomic analysis revealed that the abundance of

proteins related to tricarboxylic acid cycle and cell wall was largely increased; while,

that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased.

Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of

indole alkaloid was two-fold more abundant in treated group compared to the control. In

addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic

pathway indicated an up-regulation in their transcription in C. roseus under UV-B

irradiation. These results suggest that binary stress might negatively affect the process of

photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears

to be responsive to binary stress.

Keywords: biosynthesis pathway, Catharanthus roseus, dark incubation, indole alkaloids, gel-free proteomics,

UV-B irradiation

Introduction

Catharanthus roseus (C. roseus) produces a wide range of indole alkaloids, many of which are
pharmaceutically important compounds (Ganapathi and Kargi, 1990). Vinblastine and vincristine
are frequently used as cancer chemotherapeutics (Gidding et al., 1999). Aajmalicine was shown
to have anti-hypertensive and anti-arrhythmias activities (Almagro et al., 2011). Vindoline and
catharanthine displayed anti-bacterial activities, anti-diabetic properties, and diuretic actions
(Chen et al., 2013). Given these biological activities, the indole alkaloids have been comprehensively
investigated in the last two decades (Irie et al., 1987; O’Connor and Maresh, 2006), with C. roseus
as an important and attractive resource for research of anticancer drugs.

Abbreviations: HPLC, high performance liquid chromatography; MDA, Malondialdehyde; POD, peroxidase; qRT-PCR,

quantitative reverse transcription-polymerase chain reaction; ROS, reactive oxygen species; SOD, superoxide dismutase; TCA,

tricarboxylic acid; 10-HGO, 10-hydroxygeraniol oxidoreductase.
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Since most of the active components accumulate as secondary
metabolites, these compounds are often present in trace
quantities in plants, which hinders industrial-scale purification.
The insufficiency of indole alkaloids from the available
natural sources has led to the development of a number of
alternative methods for their synthesis and production, including
chemical synthesis (total synthesis or semi-synthesis), metabolic
engineering, plant cell, and tissue culture (Hughes and Shanks,
2002). However, there are some major flaws in all of the current
alternative methods.

Although chemical synthesis of alkaloids from C. roseus
had been reported, it was not applicable for industrial-scale
production due to its low productivity and high cost. In recent
decades, various intermediates of indole alkaloids were identified
(St-Pierre et al., 1999), and a series of key enzymes involved in the
biosynthesis of indole alkaloids were cloned and characterized
(Han et al., 2007). In addition, the metabolic network of indole
alkaloids has been vigorously studied (Richer et al., 2006), making
it possible to improve the content of alkaloids in C. roseus
by metabolic engineering (van der Heijden et al., 2004). For
example, overexpression of ORCA3 and G10H genes in C. roseus
largely increased the accumulation of vindoline, catharanthine
and ajmalicine (Pan et al., 2012). Using transgenic plants for
the production of alkaloids has also been explored, however,
genetic instability is a major hindrance in its application for
commercial production (Koprek et al., 2001). Although large-
scale C. roseus cell culture can also be used to produce the
alkaloids, the levels of production were still insufficient for
commercial production (Mujib et al., 2012). Moreover, due to
the absence of certain enzymes, several important alkaloids such
as the bisindole alkaloids, cannot be produced in cell cultures
(Kutchan, 1995).

The rate of biosynthesis of secondary metabolites in plants
is usually influenced by abiotic stress (Ramakrishna and
Ravishankar, 2011). The content of catharanthine in C. roseus
plant cell suspension was increased by exposure to a low
dose of ultraviolet-B (UV-B) irradiation (Ramani and Chelliah,
2007). When C. roseus hairy roots were exposed to UV-B light
for 20min, the concentrations of lochnericine, serpentine, and
ajmalicine were increased by 60, 20, and 50%, respectively
(Binder et al., 2009). The reported results verified that UV-
B was an elicitor of indole alkaloids. Nevertheless, the effect
of UV-B irradiation on the content of indole alkaloids in
C. roseus at the whole plant scale, which is the sole source
for commercial production of alkaloids, has not yet bee
investigated.

Recently, comparative proteomics has been widely applied
in the investigation of biosynthetic mechanisms in plants.
For C. roseus, the proteomic analysis of suspension cell had
been carried out using two-dimensional electrophoresis, two-
dimensional fluorescence difference gel electrophoresis, and gel-
free approaches (Jacobs et al., 2005; Champagne et al., 2012).
The results indicated that gel-based proteomic technique had the
limitation to detect low-abundant proteins. Gel-free quantitative
proteomics has since been rapidly developed, and is more useful
for the identification of a large number of proteins (Neilson
et al., 2011). This approach provides significantly more detailed

proteome information on low-abundant proteins and might
be more suitable for the investigation of proteins involved in
secondary metabolism in plants.

In this study, the effects of UV-B irradiation and dark
incubation on alkaloid contents, mRNA expression, and protein
abundance were analyzed to investigate the influence of binary
stress on the regulation of alkaloid biosynthesis. The content
of the detectable alkaloids, ajmalicine, vindoline, catharanthine,
and strictosidine as well as various physiological parameters were
analyzed in the leaves of C. roseus after UV-B irradiation and
dark incubation. Subsequently, the physiological parameters of
C. roseus leaves were analyzed. To better understand the UV
responsivemechanism inC. roseus, gel-free/label-free proteomics
was performed. Moreover, the expression patterns of key genes
involved in alkaloid biosynthesis were analyzed to gain further
insights into the molecular mechanism of increased indole
alkaloid biosynthesis in C. roseus.

Material and Methods

Plant Materials and Treatments
Catharanthus roseus was provided from College of Pharmacy,
Zhejiang University (Hangzhou, China). The plants were
cultivated in a greenhouse for 45 days after sowing with
temperature maintained at 25–28◦C and 80% relative
humidity. For UV-B irradiation, the light intensity of UV-B
(1345.00µW·cm−2) was measured from 275 to 320 nm with
an UV radiometer (Beijing Normal University photoelectric
instrument factory, Beijing, China). For the analysis of alkaloid
content, the plants were exposed to UV-B for 1, 2, and 3 h, and
then cultured for 72 h in darkness. The leaves were dried at 50◦C
in a drying oven and ground into a coarse powder for 1min
using a high-speed mixer. The coarse powder was screened into
fine powder using a mesh with a 0.43mm aperture. For the
analysis of physiological parameters, the plants were exposed
to UV-B for 1 h followed by a 72 h dark incubation prior to
harvesting the leaves. For proteomic analysis, the plants were
exposed to UV-B for 1 h followed by a 72 h dark incubation.
Leaves were then collected, frozen in liquid nitrogen, and stored
at −80◦C. For quantitative reverse transcription-polymerase
chain reaction (qRT-PCR) analysis, the plants were exposed to
UV-B for 0, 15, 30, and 60min without dark incubation. The
fresh leaves were frozen in liquid nitrogen and stored at −80◦C.
The control groups of all experiments were incubated in the dark
for 72 h without prior UV-B irradiation. For all experiments,
three independent experiments were performed as biological
replicates (Supplementary Figure 1).

Quantitative Analysis of Alkaloids
Samples (1 g dry weight) were extracted in 100mL of methanol
using an ultrasonic extraction method (Tanabe et al., 1999)
for three times (for 1 h each). The methanol extracts were
dried in a rotary evaporator at 50◦C. The residue was
dissolved in 5mL of methanol, and then filtered through
a 0.45-µm filter (Millipore, Bullerica, MA, USA) for high
performance liquid chromatography (HPLC) analysis. Several
standard compounds, which consisted of strictosidine, vindoline,
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catharanthine, and ajmalicine were provided by Zhejiang
Institute for Food and Drug Control (Hangzhou, China).
For quantification, a calibration curve was constructed using
the standard solutions diluted in methanol at six different
concentrations: strictosidine (0.125, 0.250, 0.375, 0.500, 0.625,
and 0.750mg·mL−1), vindoline (0.181, 0.362, 0.543, 0.724, 0.905,
and 1.086mg·mL−1), catharanthine (0.098, 0.196, 0.294, 0.392,
0.490, and 0.588mg·mL−1), and ajmalicine (0.035, 0.070, 0.105,
0.140, 0.175, and 0.209mg·mL−1). For HPLC analysis, 20µL of
the standard solutions and samples were used.

HPLC analysis was performed on a Waters 2695 Alliance
HPLC system (Waters, Milford, MA, USA) equipped with a
photodiode array detector. The compounds were separated using
reversed phase high performance liquid chromatography. A
C18 column (250 × 4.6mm, Waters) was used with a flow
rate of 1mL·min−1 at 40◦C. Gradient elution was employed
for qualitative and quantitative analyses using mobile phase of
0.025M ammonium acetate solution and acetonitrile: 0–40min
(30–60% acetonitrile) and 41–50min (60–80% acetonitrile).
Spectra weremeasured at a wavelength of 220 nm, and peaks were
determined by comparing the retention time and UV spectra
with those of the standards.

Analysis of the Physiological Parameters
Photosynthetic pigment content was determined according
to the procedures of Lichtenthaler and Wellburn (1983).
Malondialdehyde (MDA) content was assayed (Heath and
Packer, 1968) with minor modifications. In order to determine
the MDA content, a portion (0.3 g fresh weight) of leaves was
ground in 3mL of 10% trichloroacetic acid and centrifuged at
5000 × g for 10min. Then, 2mL of 0.6% thiobarbituric acid was
added to 2mL of the obtained supernatant. The mixture was kept
in boiling water for 15min, and the absorbance of the solution
was measured at wavelengths of 532, 450, and 600 nm.

The contents of soluble sugar and soluble protein were
determined by the anthrone method (Fales, 1951) and the Lowry
method (Lowry et al., 1951), respectively. The proline content
was measured according to published method (Bates et al.,
1973). Briefly, a portion (0.3 g) of leaves was homogenized in 3%
aqueous sulfosalicylic acid. Then it was centrifuged at 5000 × g
for 10min. A reaction mixture consisting of 2mL of supernatant,
2mL of ninhydrin and 2mL of glacial acetic acid was boiled at
100◦C for 1 h. The resulting reaction mixture was extracted with
5mL of toluene and the absorbance of the proline-ninhydrin
chromophore was measured at 520 nm.

The superoxide dismutase (SOD) activity was assayed using
the SOD assay kit-WST (Dojindo Molecular Technologies,
Gaithersburg, MD, USA) according to the manufacturer’s
protocol. Briefly, the formation of a formazan dye upon
reduction of the tetrazolium salt WST-1 (2-(4-iodophenyl)-
3-(4-nitrophenly)-5-(2, 4-disulfophenyl)-2H-tetrazolium) with
superoxide anions was measured. The mixture of the supernatant
and enzyme working solution was incubated for 20min at 37◦C
and the absorbance was measured at 450 nm.

Peroxidase (POD) activity was assayed using the POD
assay kit (Jiancheng Bioengineering Institute, Nanjing, China)
according to the manufacturer’s protocol. Briefly, a portion

(0.3 g) of leaves was homogenized in 5mL of 0.1M phosphate
buffer (pH 6.8) and then centrifuged at 15,000 × g for 15min.
The supernatant was collected as enzyme extract. A mixture
of 0.125mM phosphate buffer (pH 6.8), 0.05mM pyrogallol,
0.05mM hydrogen peroxide, and 1mL of enzyme extract was
incubated for 5min at 25◦C and the absorbance was measured
at 420 nm.

The glutathione content was determined using a Reduced
Glutathione Detection Kit (Jiancheng Bioengineering Institute,
Nanjing, China) according to the manufacturer’s protocol.
Briefly, a portion (0.3 g) of leaves was homogenized in 3mL
of 10% trichloroacetic acid containing 5mM EDTA and was
then centrifuged at 12,000 × g for 20min. The supernatant was
collected. Then, 1mL of the obtained supernatant were added to
the tubes containing 1mL of 0.1M phosphate buffer (pH 7.7),
20µL of 40mM 5, 5-dithiobis (2-nitrobenzoic acid), 20µL of
10mM NADPH. The reaction was started by the addition of
20µL glutathione reductase. After mixing, the absorbance was
monitored for 5min at 412 nm.

Protein Extraction
Samples (0.5 g fresh weight) were ground to powder in liquid
nitrogen and then transferred into a polypropylene tube
containing an acetone solution of 10% trichloroacetic acid and
0.07% 2-mercaptoethanol. The resulting mixture was vortexed
and then sonicated for 5min at 4◦C. The suspension was
incubated for 1 h at −20◦C and vortexed every 15min. It
was then centrifuged at 9000 × g for 20min at 4◦C. The
supernatant was discarded and the pellet was washed twice
with 0.07% 2-mercaptoethanol in acetone. The final pellet was
dried and re-suspended in lysis buffer, consisting of 7M urea,
2M thiourea, 5% 3-[(3-Cholamidopropyl) dimethylammonio]-
1-propanesulfonate, and 2mM tributylphosphine, by vortexing
for 1 h at 25◦C. The suspension was then centrifuged at 20,000×
g for 20min at room temperature until a clean supernatant was
obtained. The protein concentrations were determined using the
Bradfordmethod (Bradford, 1976) with bovine serum albumin as
the standards.

Protein Purification and Digestion for Mass
Spectrometry Analysis
Proteins (100µg) were purified with methanol and chloroform
to remove any detergent from the sample solutions. Briefly,
400µL of methanol was added to the sample, and the resulting
solution was mixed. Subsequently, 100µL of chloroform and
300µL of water were added to the samples, which were
mixed and centrifuged at 20,000 × g for 10min to achieve
phase separation. The upper phase was discarded, and 300µL
of methanol was added slowly to lower phase. The samples
were centrifuged at 20,000 × g for 10min, supernatants were
discarded, and pellets were dried. The dried pellets were
resuspended in 50mM NH4HCO3. The proteins were reduced
with 50mM dithiothreitol for 1 h at 56◦C and alkylated with
50mM iodoacetamide for 1 h at 37◦C in the dark. Alkylated
proteins were digested with trypsin and lysyl endopeptidase
at 1:100 enzyme/protein concentrations for 16 h at 37◦C. The
resulting peptides were acidified with formic acid to pH < 3,
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and the resulting solution was centrifuged at 20,000 × g for
10min. The obtained supernatant was collected and analyzed by
nanoliquid chromatography (LC)-mass spectrometry (MS).

Nanoliquid Chromatography-tandem Mass
Spectrometry Analysis
Peptides were analyzed on a nanospray LTQ XL Orbitrap MS
(Thermo Fisher Scientific, San Jose, CA, USA) operated in
data-dependent acquisition mode with the installed XCalibur
software (version 2.0.7, Thermo Fisher Scientific). Using an
Ultimate 3000 NanoLC system (Dionex, Germering, Gemany),
peptides in 0.1% formic acid were loaded onto a C18 PepMap
trap column (300µm ID × 5mm, Dionex). The peptides were
eluted from the trap column with a linear acetonitrile gradient
(8–30% for 120min) in 0.1% formic acid and at a flow rate
of 200 nL·min−1. The peptides that were eluted from the trap
column were separated on a C18 capillary tip column (75µm
ID × 120mm, Nikkyo Technos, Tokyo, Japan) and ionized at
a spray voltage of 1.5 kV. Full-scan mass spectra were acquired
in the LTQ Orbitrap mass spectrometer over 400–1500m/z with
a resolution of 30,000. A lock mass function was used for high
mass accuracy (Olsen et al., 2005). The 10 most intense precursor
ions were selected for collision-induced fragmentation in the
linear ion trap at normalized collision energy of 35%. Dynamic
exclusion was employed within 90 s to prevent repetitive selection
of peptides (Zhang et al., 2009).

Protein Identification from Acquired Mass
Spectrometry Data
Identification of proteins was performed using the Mascot
search engine (version 2.5.1; Matrix Science, London, UK)
with the NCBInr-Viridiplantae database (2, 564, 738 sequences)
obtained from the NCBI database (http://www.nibi.nlm.nih.
gov/protein). The acquired raw data files were processed
using Proteome Discoverer (version 1.4.0.288; Thermo Fisher
Scientific). The parameters used in Mascot searches were as
follows: carbamidomethylation of cysteine was set as a fixed
modification, and oxidation of methionine was set as a variable
modification. Trypsin was specified as the proteolytic enzyme
and one missed cleavage was allowed. Peptide mass tolerance was
set at 10 ppm, fragment mass tolerance was set at 0.8 Da, and
the peptide charge was set at +2, +3, and +4. An automatic
decoy database search was performed as part of the search.
Mascot results were filtered with Mascot Percolator to improve
the accuracy and sensitivity of peptide identification (Brosch
et al., 2009). False discovery rates for peptide identification of
all search strategies were < 1.0%. Peptides with a percolator
ion score of more than 13 (p < 0.05) were used for protein
identification. The acquired Mascot results were exported into
the SIEVE software (version 2.1.377; Thermo Fisher Scientific)
for differential analysis.

Differential Analysis of Proteins Using Mass
Spectrometry Data
Proteins that contained common peptides were grouped.
Both unique and shared peptides were analyzed for protein
quantification. Peptides that are shared between proteins were

only included in the quantitative information for the protein
that contained the most number of assigned peptides to ensure
that a peptide was only used once for quantification. The
chromatographic peaks detected by MS were aligned, and the
peptide peaks were detected as frames on all parent ions scanned
by MS/MS using 5min of frame time width and 10 ppm of frame
m/z width. In the differential analysis of protein abundance,
total ion current was used for normalization. Chromatographic
peak areas within a frame were compared for each sample, and
the ratios between samples were determined for each frame.
The frames detected in the MS/MS scan were matched to the
imported Mascot results. The peptide ratios between samples
were determined from the variance-weighted average of the ratios
in frames that matched the peptides in the MS/MS spectrum.
The ratios of peptides were further integrated to determine
the ratios of the corresponding proteins. For identification of
differentially changed proteins, the minimum requirements for
the identification of differentially changed proteins were: at least
six peptide sequence matches above the identity threshold with
more than 10% sequence coverage; the number of matched
peptides with more than two peptides; and a fold change of more
or less than 1.2 times in protein quantities in the treated samples
against the control with a significant difference (p < 0.05).

RNA Extraction and Quantitative Reverse
Transcription-Polymerase Chain Reaction
Analysis
Samples (0.1 g fresh weight) were ground to powder in liquid
nitrogen using a sterilized mortar and pestle. Total RNA
was extracted from the tissue powder using a Quick RNA
Isolation Kit (Huayueyang Biotechnology, Beijing, China). RNA
was reverse-transcribed using a Reverse Transcription System
(Promega, Madison, WI, USA) according to the manufacturer’s
protocol. Primers were designed using the Primer Premier
5.0 (Supplementary Table 1). The qRT-PCR was performed in
a 10µL reaction using a QuantiFast SYBR Green PCR Kit
(Qiagen, Hilden, Germany) on an IQ5 Multicolor Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). The
relative quantification method (2−11CT) was used to evaluate
quantitative variation between treatments. 40S Ribosomal protein
S9 (RPS9) was used as a single reference gene (Menke et al., 1999).

Functional Categorization of Identified Proteins
Protein functions were categorized using MapMan bin codes
(http://mapman.gabipd.org/), as previously described (Usadel
et al., 2005). A small-scale prediction of the identified proteins
from C. roseus was performed by transferring annotations from
the Arabidopsis genome and consideration of orthologous genes.

Statistical Analysis
SPSS 19.0 (IBM, Chicago, IL, USA) statistical software was used
for the statistical evaluation of the results. One-Way ANOVA
followed by Tukey’s multiple comparison post-hoc tests and the
Student’s t-test was also performed when only two groups were
compared. All results were shown as mean ± SD from three
independent biological replicates. A p value of less than 0.05 was
considered statistically significant.
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Results

The Contents of Indole Alkaloids in C. roseus

Leaf Increased under Binary Stress
To profile changes in indole alkaloids biosynthesis in C. roseus
plant under stresses, the indole alkaloids in C. roseus leaves
were analyzed. Methanol extracts of C. roseus leaves were
examined by HPLC analysis. Based on retention times and
ultraviolet absorbance of the standards, the four alkaloids
containing strictosidine, ajmalicine, vindoline, and catharanthine
were identified in leaves. The contents of alkaloids in C. roseus
leaves increased after 1 h of UV-B irradiation followed by
72 h of dark incubation (Figure 1A). Time-course quantitative
analysis of the induced alkaloids demonstrated that 1 h of UV-
B irradiation coupled with 72-h of dark incubation were the
optimal induction conditions, under which the total contents of
the four compounds were at maximum (Figure 1B). Compared
with the control, the contents of strictosidine, ajmalicine,
vindoline, and catharanthine in C. roseus leaves after 1 h of
UV-B irradiation and 72 h of dark incubation increased by
527.9, 321.6, 20.1, and 19.0%, respectively (Supplementary
Table 2).

Quantitative Proteomic Analysis Reveals
Identities of Proteins That Were Responsive to
Binary Stress
Gel-free proteomic technique was employed to reveal changes in
protein abundance that accounted for the increase in alkaloid
contents in C. roseus leaves. The leaves that were treated
with or without 1 h of UV-B irradiation followed by 72 h
of dark incubation were collected. Proteins were extracted,
reduced, alkylated, and digested. The tryptic peptides were
collected. Principle component analysis of the peptide profile
for total proteins was performed for quality assessment of the
experimental inputs (Supplementary Figure 2). A total of 90
proteins with more than 2 matched peptides were identified
as being differentially changed (fold change > 1.2 and p <

0.05). Out of these 90 proteins, the accumulation level of 24
proteins was decreased and that of 66 proteins was increased
significantly in C. roseus leaves upon UV-B irradiation and dark
incubation (Table 1, Supplementary Table 3). These differential
proteins were categorized into 18 groups (Figure 2). The
abundance of proteins related to oxidative pentose phosphate,
tricarboxylic acid (TCA) cycle, cell wall, glycolysis, transport,
amino acid metabolism, secondary metabolism, C1-metabolism,
major CHO metabolism, mitochondrial electron transport, and
signaling were increased after UV-B irradiation and dark
incubation. In contrast, the abundance of proteins related
to tetrapyrrole synthesis were decreased. The abundance of
proteins related to photosynthesis, redox ascorbate/glutathione
metabolism, stress, and protein synthesis followed either an
increasing or decreasing trend. Additionally, the abundance
of 10-hydroxygeraniol oxidoreductase (10-HGO) in C. roseus
leaves, which is involved in the pathway of indole alkaloid
biosynthesis, was 2 times higher than that of the control
group.

Expression of Genes Involved in the Biosynthesis
of Indole Alkaloid in C. roseus Was Up-regulated
in Response to Binary Stress
To uncover the molecular mechanism of increased indole
alkaloid in C. roseus upon exposure to binary stress, qRT-
PCR analysis was performed. Forty five-day-old C. roseus
were treated with UV-B irradiation for 0, 15, 30, and 60min
and RNAs extracted from leaves were analyzed by qRT-
PCR. The nine genes and one transcription factor containing
tryptophan decarboxylase (tdc), geraniol-10-hydroxylase (g10h),
10-hydroxygeraniol oxidoreductase (10hgo), secologanin synthase
(sls), strictosidine synthase (str), strictosidine β-glucosidase
(sgd), tabersonine 16-hydroxylase (t16h), deacetoxyvindoline 4-
hydroxylase (d4h), 6-17-O-deacetylvindoline O-acetyltransferase
(dat), and Octadecaniod-derivative Responsive Catharanthus
AP2-domain Protein 3 (ORCA3), which are involved in the
biosynthesis pathway of the alkaloids, were selected for further
analysis of mRNA expression levels (Supplementary Figure 3).
RPS9 was selected as a reference gene (Supplementary Table 1).
Among the examined genes, the mRNA expression levels of dat,
t16h, d4h, ORCA3, str, g10h, and 10-hgo were up-regulated in
leaves under UV-B stress. In addition, the expression levels of
t16h, ORCA3, and str in C. roseus leaf after UV-B irradiation
were four times higher than those of the control. The levels
of sgd, sls, and tdc were up-regulated after 30-min of UV-B
irradiation, but down-regulated after 60min of UV-B irradiation
(Figure 3).

The Physiological Activity of C. roseus was
Changed under Binary Stress
Physiological parameters were determined to reflect the
physiological activities of C. roseus leaves after UV-B irradiation
and dark incubation. The leaves of C. roseus plants that were
treated with or without 1 h of UV-B irradiation and 72 h of dark
incubation were collected and homogenized in buffer solution.
After centrifugation, the supernatants were collected for the
analysis of physiological parameters. After UV-B irradiation and
dark incubation, the contents of soluble protein, soluble sugar,
MDA, and proline were decreased by 5.6, 7.5, 24, and 19.2%,
respectively; while, the content of glutathione was increased
by 33%. Compared with the control, the activities of SOD and
POD were increased by 21.4 and 124%, respectively. In contrast,
the activity of glutathione reductase was decreased by 31.4%
(Table 2). However, the content of photosynthetic pigments did
not show a significant change after UV-B irradiation and dark
incubation (Supplementary Table 4).

Discussion

The Increase in Indole Alkaloid Biosynthesis in C.

roseus is Induced by Binary Stress
Although UV-B serves as an adverse environmental factor
for the growth and development of plants (Caldwell et al.,
2007), it has been shown to induce a variety of bioactive
secondary metabolites, such as indole alkaloids, in medicinal
plants (Ramani and Chelliah, 2007). Indole alkaloids provide
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FIGURE 1 | Pattern of metabolites in leaves of C. roseus.

Methanol extracts from leaves collected from 45-day-old C. roseus

plants were analyzed by HPLC (A). Arrowheads show the positions of

the identified alkaloids. Control: C. roseus plants were only incubated

for 72 h in the dark (black line). Treated: C. roseus plants were

irradiated by UV-B for 1 h and incubated for 72 h in the dark (blue

line). The content of the alkaloids in C. roseus under 1, 2, and 3 h

UV-B irradiation times were calculated from standard curves (B). Data

were shown as means ± SD from three independent biological

replicates. Means with the same letter are not significantly different

according to One-Way ANOVA test (p < 0.05). Control, plants with

only 72 h of dark incubation.

protection against microbial infection, herbivores consumption,
and abiotic environmental stresses (Cordell, 2013). In this study,
the contents of the indole alkaloids strictosidine, vindoline,
catharanthine, and ajmalicine in C. roseus leaves were increased
under the binary stress of UV-B irradiation and dark incubation.
Both UV-B irradiation and dark incubation are essential stresses
for alkaloid induction (Zhang et al., 2014). Additionally, it
is known that reactive oxygen species (ROS) are largely
released under conditions of high-energy irradiation of UV-
B, resulting in oxidative injury and disturbance of metabolism
in plants (Apel and Hirt, 2004). It is likely that the alkaloids

are accumulated to enhance the scavenging capacity of ROS.
Moreover, the enhanced activities of the enzymatic and non-
enzymatic antioxidant systems also indicate the accumulation
of ROS.

The accumulation of 10-HGO, which is a key enzyme
involved in the alkaloid biosynthesis pathway, provides further
insights into the induction of the indole alkaloids. 10-HGO
also plays a key role in the secoiridoid pathway and catalyzes
the synthesis of secologanin which is one of the substrates
for strictosidine synthase (Valletta et al., 2010). The other
substrate for strictosidine synthase is tryptamine, which is
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TABLE 1 | Total proteins changed between control and UV-B treatment by gel-free proteomics.

Protein ID Orthologa Description M.P.b Ratioc Functional categoryd

INCREASE

GI:30693656 At3g52560 Ubiquitin-conjugating enzyme E2 variant 1D [Arabidopsis thaliana] 2 2.16 Protein

GI:159471081 At3g02230 UDP-Glucose:protein transglucosylase [Chlamydomonas reinhardtii] 2 2.03 Cell wall

GI:33519154 – 10-hydroxygeraniol oxidoreductase [Camptotheca acuminata] 2 1.98 Secondary metabolism

GI:357471289 At-105710 Aconitate hydratase [Medicago truncatula] 2 1.96 TCA

GI:21536725 At5g41670 6-phosphogluconate dehydrogenase [Arabidopsis thaliana] 4 1.94 OPP

GI:448872690 At3g02230 Alpha-1,4-glucan-protein synthase [Elaeis guineensis] 3 1.93 Cell wall

GI:402228002 At4g37990 Cinnamyl alcohol dehydrogenase [Fragaria × ananassa] 2 1.88 Secondary metabolism

GI:508706435 At5g09590 Mitochondrial HSO70 2 isoform 2 [Theobroma cacao] 2 1.87 Stress

GI:525507286 At3g52880 Monodehydroascorbate reductase, seedling isozyme [Cucumis sativus] 2 1.86 Redox

GI:195633817 At4g21280 Oxygen-evolving enhancer protein 3-1 [Zea mays] 2 1.83 Photosynthesis

GI:473888752 At5g03290 Isocitrate dehydrogenase [NAD] catalytic subunit 5 [Triticum urartu] 2 1.82 TCA

GI:297807587 At5g15650 Reversibly glycosylated polypeptide_3 [Arabidopsis lyrata subsp. lyrata] 2 1.77 Cell wall

GI:351727547 At3g61440 OAS-TL3 cysteine synthase [Glycine max] 3 1.77 Amino acid metabolism

GI:162463414 At5g15650 Alpha-1,4-glucan-protein synthase [UDP-forming] [Zea mays] 2 1.76 Cell wall

GI:297802428 At4g35220 Cyclase family protein [Arabidopsis lyrata subsp. lyrata] 2 1.74 DNA

GI:351722265 At3g02360 6-phosphogluconate dehydrogenase [Glycine max] 2 1.73 OPP

GI:213493066 At1g65930 NADP-dependent isocitrate dehydrogenase [Passiflora edulis] 2 1.72 TCA

GI:285309965 At4g35830 Aconitate hydratase 1 [Citrus clementina] 3 1.72 TCA

GI:213959111 At3g12580 Heat shock protein 70 [Oryza sativa Japonica Group] 2 1.72 Stress

GI:508707706 At5g13420 Aldolase-type TIM barrel family protein isoform 2, partial [Theobroma cacao] 2 1.72 OPP

GI:357491797 At1g65930 Isocitrate dehydrogenase [Medicago truncatula] 2 1.63 TCA

GI:18414289 At4g14710 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 3 [Arabidopsis thaliana] 2 1.63 Amino acid metabolism

GI:285309969 At2g05710 Aconitate hydratase 2 [Citrus clementina] 2 1.62 TCA

GI:475618083 At5g15650 Alpha-1,4-glucan-protein synthase (UDP-forming) [Aegilops tauschii] 3 1.61 Cell wall

GI:197717740 At1g09210 Calreticulin [Nicotiana tabacum] 2 1.59 Signaling

GI:297800722 At4g14880 O_acetylserine (thiol) lyase (oas_tl) isoform A1 [Arabidopsis lyrata] 2 1.55 Amino acid metabolism

GI:508778858 At3g12580 Heat shock protein 70B [Theobroma cacao] 2 1.53 Stress

GI:15218869 At1g65930 Isocitrate dehydrogenase [Arabidopsis thaliana] 3 1.51 TCA

GI:315440254 At3g60100 Mitochondrial citrate synthase [Pyrus pyrifolia] 4 1.51 TCA

GI:285309967 At4g26970 aconitate hydratase 3 [Citrus clementina] 3 1.46 TCA

GI:474119554 At4g38510 V-type proton ATPase subunit B 1 [Triticum urartu] 2 1.45 Transport

GI:357439825 At4g13430 3-isopropylmalate dehydratase [Medicago truncatula] 2 1.44 TCA

GI:357445271 At5g49910 Heat shock protein [Medicago truncatula] 2 1.43 Stress

GI:351726325 At3g09640 L-ascorbate peroxidase 2 [Glycine max] 2 1.43 Redox

GI:308808864 At1g78900 Vacuolar H__ATPase V1 sector_ subunit A (ISS) [Ostreococcus tauri] 2 1.42 Transport

GI:390098820 At2g11270 Citrate synthase [Capsicum annuum] 2 1.41 TCA

GI:37903393 At4g09000 14-3-3-like protein [Saccharum hybrid cultivar CP65-357] 2 1.41 Signaling

GI:381145559 At3g53230 cell division cycle protein 48 [Camellia sinensis] 2 1.4 Cell

GI:297819360 At5g01530 chlorophyll a/b_binding protein [Arabidopsis lyrata subsp. lyrata] 2 1.38 Photosynthesis

GI:374433978 At3g14420 glycolate oxidase [Wolffia australiana] 3 1.38 Photosynthesis

GI:18409740 At3g52990 pyruvate kinase [Arabidopsis thaliana] 2 1.38 Glycolysis

GI:214010947 At2g13360 serine glyoxylate aminotransferase 3 [Glycine max] 2 1.37 Photosynthesis

GI:308812360 At3g12110 ACT_COLSC Actin (ISS) [Ostreococcus tauri] 2 1.37 Cell

GI:7547401 At5g40810 cytochrome c1 precursor [Solanum tuberosum] 2 1.37 mitoETC

GI:302850070 At2g07698 F1F0 ATP synthase_ subunit alpha_ mitochondrial [Volvox carteri f. nagariensis] 2 1.37 mitoETC

GI:15231937 At3g08580 ADP,ATP carrier protein 1 [Arabidopsis thaliana] 2 1.34 Transport

GI:297807205 At5g11670 NADP_malic enzyme 2 [Arabidopsis lyrata subsp. lyrata] 2 1.32 TCA

GI:508710478 At5g14780 Formate dehydrogenase [Theobroma cacao] 2 1.32 C1-metabolism

GI:302127766 At1g53310 C3 phosphoenolpyruvate carboxylase [Panicum bisulcatum] 3 1.32 Glycolysis

(Continued)
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TABLE 1 | Continued

Protein ID Orthologa Description M.P.b Ratioc Functional categoryd

GI:42416979 At4g33010 glycine dehydrogenase P protein [Oryza sativa Indica Group] 4 1.31 Photosynthesis

GI:474012573 At5g02500 Heat shock cognate 70 kDa protein 1 [Triticum urartu] 4 1.3 Stress

GI:940877 At5g14590 Isocitrate dehydrogenase (NADP+) [Solanum tuberosum] 2 1.29 TCA

GI:195605636 At3g55440 triosephosphate isomerase, cytosolic [Zea mays] 2 1.29 Glycolysis

GI:15229784 At3g43810 calmodulin 7 [Arabidopsis thaliana] 2 1.28 Signaling

GI:15226854 At2g02010 glutamate decarboxylase 4 [Arabidopsis thaliana] 2 1.27 Amino acid metabolism

GI:4239891 At1g79750 NADP-malic enzyme [Aloe arborescens] 2 1.26 TCA

GI:473968259 At1g32060 Phosphoribulokinase, chloroplastic [Triticum urartu] 2 1.26 Photosynthesis

GI:226500740 At2g19860 hexokinase-1 [Zea mays] 2 1.26 Major CHO metabolism

GI:162134229 AtMg01190 ATP synthase F1 subunit alpha [Trebouxia aggregata] 2 1.25 mitoETC

GI:15219234 At1g78900 V-type proton ATPase catalytic subunit A [Arabidopsis thaliana] 7 1.24 Transport

GI:15233115 At3g54890 light-harvesting complex I chlorophyll a/b binding protein 1 [Arabidopsis thaliana] 3 1.23 Photosynthesis

GI:297812157 At5g19760 dicarboxylate/tricarboxylate carrier [Arabidopsis lyrata subsp. lyrata] 2 1.23 Transport

GI:195658441 At1g78900 vacuolar ATP synthase catalytic subunit A [Zea mays] 3 1.23 Transport

GI:240254125 At1g20260 V-type proton ATPase subunit B3 [Arabidopsis thaliana] 5 1.23 Transport

GI:474369193 At1g23490 ADP-ribosylation factor 2 [Triticum urartu] 2 1.22 Protein

GI:224127848 At4g10340 light-harvesting complex II protein Lhcb5 [Populus trichocarpa] 2 1.21 Photosynthesis

DECREASE

GI:18411711 At3g60750 transketolase [Arabidopsis thaliana] 2 0.83 Photosynthesis

GI:297794397 At5g66190 ferredoxin_NADP_ reductase [Arabidopsis lyrata subsp. lyrata] 2 0.82 Photosynthesis

GI:78675163 AtCg00270 photosystem II protein D2 [Lactuca sativa] 2 0.82 Photosynthesis

GI:307136095 At5g66190 ferredoxin–NADP reductase [Cucumis melo subsp. melo] 3 0.82 Photosynthesis

GI:297840973 AtCg00340 photosystem I P700 chlorophyll a apoprotein A2 [Arabidopsis lyrata subsp. lyrata] 2 0.81 Photosynthesis

GI:511348322 AtCg00130 ATP synthase CF0 subunit I (chloroplast) [Catharanthus roseus] 2 0.81 Photosynthesis

GI:27448410 AtCg00490 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [Selaginella wrightii] 2 0.79 Photosynthesis

GI:374975197 AtCg00490 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [Neoregelia

carolinae]

4 0.79 Photosynthesis

GI:413968524 At1g31330 photosystem I subunit III precursor (chloroplast) [Solanum tuberosum] 2 0.77 Photosynthesis

GI:89280643 AtCg00490 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [Solanum

lycopersicum]

2 0.76 Photosynthesis

GI:428697696 AtCg00490 ribulose 1_5_bisphosphate carboxylase/oxygenase large subunit [Pellia endiviifolia] 2 0.76 Photosynthesis

GI:443329645 AtCg00490 ribulose 1_5_bisphosphate carboxylase/oxygenase large subunit [Equisetum

hyemale]

3 0.76 Photosynthesis

GI:18412632 At4g04640 ATP synthase gamma chain 1 [Arabidopsis thaliana] 2 0.75 Photosynthesis

GI:224179477 AtCg00490 ribulose_1_5_bisphosphate carboxylase/oxygenase large subunit [Monomastix sp.] 4 0.75 Photosynthesis

GI:139389650 AtCg00490 large subunit of riblose-1,5-bisphosphate carboxylase/oxygenase [Arabis hirsuta] 3 0.7 Photosynthesis

GI:508781449 At4g04640 ATPase, F1 complex, gamma subunit protein [Theobroma cacao] 2 0.66 Photosynthesis

GI:508777181 At1g62750 Translation elongation factor EFG/EF2 protein [Theobroma cacao] 2 0.57 Protein

GI:474036467 At5g45930 Magnesium-chelatase subunit chlI, chloroplastic [Triticum urartu] 3 0.55 Tetrapyrrole synthesis

GI:148763638 At5g45930 Magnesium chelatase 40-kDa subunit [Hordeum vulgare subsp. vulgare] 2 0.52 Tetrapyrrole synthesis

GI:297804102 At4g20360 Chloroplast elongation factor tub [Arabidopsis lyrata subsp. lyrata] 2 0.42 Protein

GI:300681420 At3g55800 sedoheptulose-1,7-bisphosphatase, chloroplast precursor, expressed [Triticum

aestivum]

2 0.36 Photosynthesis

aOrtholog, indicates AGI E.C.code.
bM.P., indicates number of matched peptide, the proteins with >2 matched peptides and p-value < 0.05 were considered.
cRatio, indicates ratio of quantities of protein (UV-B treated group/control group), the proteins with ratio 1.2/0.8 were considered.
d“Functional category” indicates protein function categorized using MapMan bin codes.

derived from tryptophan metabolism via the shikimate pathway.
Strictosidine synthase catalyzes the condensation of secologanin
and tryptamine to yield strictosidine, which is the key precursor
for the biosynthesis of indole alkaloids in C. roseus (Yamazaki

et al., 2003). In the present study, 10-HGO was two-fold
more abundant in the treated group compared to the control
group, which may explain the increased amount of strictosidine
observed after stress treatment.
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FIGURE 2 | Functional categorization of differential proteins in leaves

of C. roseus treated with UV-B and dark stress. C. roseus plants were

irradiated with or without 1 h of UV-B irradiation and 72 h of dark incubation.

Leaves were collected and proteins were then extracted, digested and

analyzed by nanoLC-MS/MS. The identified proteins were categorized using

MapMan bin codes. Numbers of categorized proteins are shown in the graph.

Blue bars and red bars indicate increased and decreased levels of proteins.

The abbreviations are as follows: TCA, tricarboxylic acid cycle; OPP, oxidative

pentose phosphate; mitoETC, mitochondrial electron transport chain; cell, cell

organization/vesicle transport; redox, redox ascorbate/glutathione

metabolism; protein, protein synthesis/posttranslational

modification/folding/degradation/activation; DNA, DNA synthesis/repair; CHO,

carbohydrates; and C1-metabolism, carbon 1-metabolism.

To verify the mechanism behind the change in the alkaloid
at the transcript level, 10 key genes, which are involved in
indole alkaloids biosynthesis, were selected for investigation by
qRT-PCR. The genes tdc, g10h, 10-hgo, sls, and str encode the
key enzymes that catalyze the biosynthesis of strictosidine from
tryptophan and geraniol, which is a key intermediate in indole
alkaloid biosynthesis (Patra et al., 2013).ORCA3 is a transcription
factor that plays a key role in controlling several important key
genes involved in indole alkaloid biosynthesis (Goklany et al.,
2013). The overexpression of ORCA3 increases the expression of
indole alkaloid biosynthetic genes, leading to the accumulation
of indole alkaloids (van der Fits and Memelink, 2000). In the
present study, the continual up-regulated expression of tdc, g10h,
10-hgo, sls, and str was consistent with the increased content
of strictosidine in C. roseus under stress. Similarly, the up-
regulated expression of sgd, d4h, dat, ORCA3, and t16hmay have
contributed to the observed increasing contents of ajmalicine,

FIGURE 3 | The variation in expression tendency of the selected genes

of leaves derived from C. roseus under conditions of different UV-B

exposure. The leaves of C. roseus plants were collected at 0, 15, 30, and

60min UV-B irradiation. Total RNA was extracted from the collected leaves.

The transcript abundance of the selected genes was analyzed by qRT-PCR.

Data were shown as means ± SD from three independent biological

replicates. Means with the same letter are not significantly different according

to One-Way ANOVA test (p < 0.05). The abbreviations are follows: the genes

tdc, g10h,10-hgo, sls, str, sgd, t16h, d4h, dat, and ORCA3 code for

tryptophan decarboxylase,geraniol-10-hydroxylase, 10-hydroxygeraniol

oxidoreductase, secologanin synthase, strictosidine synthase, strictosidine

β-glucosidase, tabersonine 16-hydroxylase, deacetoxyvindoline

4-hydroxylase, 6-17-O-deacetylvindoline O-acetyltransferase and

Octadecaniod-derivative Responsive Catharanthus AP2-domain Protein 3,

respectively. The RPS9 gene was used as a reference control gene.

vindoline, and catharanthine under binary stress. Furthermore,
the variation tendency in gene expression under stresses was the
same as that of alkaloids. Taken together, our results indicate
that the genes involved in the biosynthesis of indole alkaloids are
induced under binary stress, whichmay account for the increased
contents of indole alkaloids in C. roseus.

Enhanced Tricarboxylic Acid Cycle in C. roseus

Might Be Related to the Biosynthesis of
Secondary Metabolites
The abundance of aconitate hydratase, iscocitrate dehydrogenase,
and mitochondrial citrate synthase which were involved in the
TCA cycle, was increased in C. roseus under UV-B irradiation
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TABLE 2 | Changes of physiological parameters in C. roseus leaves.

Soluble sugar

(mg/g)

Soluble protein

(mg/g)

SOD [U/mg(pro)] GRa [U/g(pro)] POD [U/(g.min)] MDA (umol/g) Proline (ug/g) GSHb (mg/g)

Control 5.288 ± 0.067 8.517 ± 0.058 122.361 ± 2.465 39.360 ± 2.622 1255.093 ± 20.789 0.0071 ± 0.0001 35.880 ± 1.363 0.058 ± 0.002

Treated 4.990 ± 0.027* 7.879 ± 0.167* 148.501 ± 1.671* 27.009 ± 2.462* 2810.691 ± 46.463* 0.0054 ± 0.0004* 29.005 ± 1.373* 0.077 ± 0.003*

*Significant at P < 0.05; aGR, glutathione reductase; bGSH, glutathione.

and dark incubation. The TCA cycle which is composed of a set
of eight enzymes can oxidize pyruvate and malate to form CO2

and nicotinamide adenine dinucleotide (NADH) and provide
intermediates for metabolic pathways (Nunes-Nesi et al., 2013).
Aconitase hydratase which is involved in the TCA cycle plays a
vital role in nutrient metabolism and energy supply (Zhang et al.,
2003). NADP dependent iscocitrate dehydrogenase is related
to the synthesis of 2-oxoglutarate for ammonia assimilation
and glutamate in plants (Palomo et al., 1998). Additionally,
citrate synthase catalyzes the condensation reaction to form
citrate (Mulholland and Richards, 1997). Functioning with the
described key enzymes, the TCA cycle provides ATP for the
fundamental physiological activities of plants (Fernie et al., 2004).
In C. roseus leaves, the enhanced TCA cycle may serve to
provide energy and intermediates for secondary metabolism.
Furthermore, the increase in abundance of proteins related
to primary metabolism, such as acetylserine lyase, cysteine
synthase, and aldolase-type barrel family protein isoforms, and
the resulting accumulation of the primary metabolites, might
promote the biosynthesis of secondary metabolites.

Fundamental Physiology of C. roseus was
Influenced by Binary Stress
UV-B can induce plant photomorphogenic development which
is characterized by the inhibition of flavonoid accumulation
and UV-B stress tolerance (Huang et al., 2014). Low-intensity
UV-B radiation can act as entraining signal for the circadian
clock (Feher et al., 2011). Photomorphogenic UV-B signaling
also controls plant immune response (Demkura and Ballare,
2012). Photosynthesis has been reported as a direct and most
affected system in plants upon UV-B stress, which frequently
results in reduced abundance of photosynthesis related
proteins (Strid et al., 1994; Kanalas et al., 2008). In the present
study, the abundance of proteins related to photosynthesis
such as sedoheptulose-1, 7-bisphosphatase, chlorophyll a/b
binding protein, serine glyoxylate aminotransferase 3, ribulose
bisphosphate carboxylase/oxygenase, and light-harvesting
complex II protein were decreased in C. roseus leaves. It is
known that chlorophyll can be synthesized via a common
tetrapyrrole biosynthetic pathway. In our study, the abundance
of two tetrapyrrole synthesis proteins were also decreased after
UV stress. Moreover, this observation was consistent with the
content of the photosynthetic pigment observed in C. roseus
leaves. This evidence suggests that binary stress might negatively
affect the process of photosynthesis in C. roseus.

Cinnamyl alcohol dehydrogenases is a zinc-dependent
dehydrogenase, responsible for catalyzing the reversible

conversion of p-hydroxycinnamaldehydes to the corresponding
alcohols in lignin biosynthesis (Blanco-Portales et al., 2002).
Lignin is one of the most important components in plant cell
walls, which protects cellulose in the cell walls of plants by
adhering to hydrolytic enzymes (Moura et al., 2010). UDP-
glucose: protein transglucosylase (UPTG) catalyzes the synthesis
of α-1, 4-glucan, which is related to starch biosynthesis and plays
a crucial role in the synthesis of cell wall polysaccharides (Bocca
et al., 1999). In addition it has been shown to relate to cell wall
compound metabolism and contribute to cell wall thickening
(Ge et al., 2007). In this study, the E. guineensis and in Z. mays
orthologs of alpha-1,4-glucan-protein synthase were identified
(Supplementary Table 3). The abundance of cinnamyl alcohol
dehydrogenases and proteins related to cell wall such as alpha-
1,4-glucan-protein synthase, reversibly glycosylated polypeptide,
and UPTG were increased compared to the control group.
These results suggest that the increase of cell wall formation is a
response to binary stress in C. roseus.

Furthermore, heat shock proteins (HSP) are produced by
cells in response to environmental stress conditions in plants
(Wang et al., 2004). HSP-70 is widely distributed in plants and is
responsible for preventing aggregation and assisting refolding of
non-native proteins under stressful conditions (Frydman, 2001).
Some studies found that HSP 70 participates in photo-protection
and the process of photosystem II repair (Schroda et al., 1999).
The up-regulated Hsp70 level may be involved in the modulation
of signal transduction and maintenance of key functions of basic
cellular proteins after UV-B exposure and dark stress conditions
such as damaged photosystem II centers from UV-B irradiation.

Concluding Remarks

In conclusion, our data indicated that the increase of indole
alkaloids production in C. roseus leaves under binary stress was a
consequence of metabolic pathways alteration. Comparative gel-
free proteomics revealed significant proteome difference in C.
roseus leaves between control and treated groups. The proteins
related to cell wall and secondary metabolism in C. roseus leaves
might be parts of the defense system against injuries resulted
from binary stress. The alteration in secondary metabolism,
might account for the increase in indole alkaloids observed in C.
roseus leaves after stress exposure. In addition, the enhanced TCA
cycle might affect the biosynthesis of indole alkaloid in C. roseus.
Finally, the data derived from this study is highly applicable
to other medicinal plant and provides important insights for
effectively improving the contents of alkaloids inmedicinal plants
for industrial production.
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