
Binary TTC: A Temporal Geofence for Autonomous Navigation

Abhishek Badki1,2 Orazio Gallo1

1NVIDIA

Jan Kautz1

2UC Santa Barbara

Pradeep Sen2

Abstract

Time-to-contact (TTC), the time for an object to collide

with the observer’s plane, is a powerful tool for path plan-

ning: it is potentially more informative than the depth, ve-

locity, and acceleration of objects in the scene—even for

humans. TTC presents several advantages, including re-

quiring only a monocular, uncalibrated camera. However,

regressing TTC for each pixel is not straightforward, and

most existing methods make over-simplifying assumptions

about the scene. We address this challenge by estimating

TTC via a series of simpler, binary classifications. We pre-

dict with low latency whether the observer will collide with

an obstacle within a certain time, which is often more criti-

cal than knowing exact, per-pixel TTC. For such scenarios,

our method offers a temporal geofence in 6.4 ms—over 25×
faster than existing methods. Our approach can also esti-

mate per-pixel TTC with arbitrarily fine quantization (in-

cluding continuous values), when the computational budget

allows for it. To the best of our knowledge, our method is

the first to offer TTC information (binary or coarsely quan-

tized) at sufficiently high frame-rates for practical use.

1. Introduction

Path planning, whether for robotics or automotive appli-

cations, requires accurate perception, which in turn, bene-

fits from depth information. Many modalities exist to infer

depth. Strategies such as lidar estimates depth accurately

but only at sparse locations, in addition to being expen-

sive. Depth can also be estimated with strategies such as

stereo [34], but these introduce issues such as calibration

drift over time.

An alternative is to use a monocular camera—an at-

tractive, low-cost solution, with light maintenance require-

ments. The motion of the camera induces optical flow be-

tween consecutive frames, which carries information on the

scene’s depth. Depth, however, can only be estimated in the

constrained case of static scenes. For dynamic scenes, the

2D flow of a pixel is a function of its depth, its velocity, and

the velocity of the camera. Disentangling these three com-

ponents is an under-constrained and challenging problem.

This work was done while A. Badki was interning at NVIDIA.

Project page: https://github.com/NVlabs/BiTTC

I0

I1

Q

C B

τ ≤ 2 s

I0

I1

Q

C B

τ ≤ 0.8 s

m
o
v
in

g
to

w
ard

s

m
o
v
in

g
aw

ay

Figure 1: Given I0 and I1, our binary time-to-contact (TTC) es-

timation acts as a temporal geofence detecting objects that will

collide with the camera plane within a given time, B . It only

takes 6.4 ms to compute. Our method can also output quantized

TTC, Q , and continuous TTC, C .

Previous approaches either ignore dynamic regions [35], or

use strong scene priors [26, 44, 46, 43, 25] to hallucinate

their depth. Do we really need to disentangle them? The

role of perception is to inform decisions. An object mov-

ing towards the camera is more critical than another that is

potentially closer, but moving away from the camera. Dif-

ferently put, predicting the time at which an object would

make contact with the camera may be more valuable than

knowing its actual depth, velocity, or acceleration [22].

In fact, time-to-contact (TTC), the time for an object to

collide with the camera plane under the current velocity

conditions, is a traditional concept in psychophysics [38,

14] as well as computer vision [37, 5]. TTC can be esti-

mated from the ratio of an object’s depth and its velocity

relative to the camera, even when the problem of regressing

either one independently is ill-posed. However, TTC esti-

mation has its own challenges, forcing most of the existing

approaches to severely constrain their scope. For instance,

they assume that the scene is static, or that a mask for dy-

namic objects is provided [16, 32]. The recent approach

by Yang and Ramanan tackles some of these challenges by

learning a mapping between optical flow and TTC directly,

thus producing a per-pixel TTC estimate [42]. However,

it relies on accurate optical flow estimation and inherits its

limitations, including its heavy computational load.

Unlike most existing approaches, we side-step the need

to explicitly compute the optical flow. Our learning-based

approach estimates per-pixel TTC directly from images.

We leverage the relationship between an object’s TTC and

the ratio of the size of its image in different frames [5, 15].

12946

However, because regressing this scale factor exactly is

challenging, we focus on whether the size of the object’s

image is increasing, indicating a collision at some time in

the future, or decreasing, indicating that the object is mov-

ing away.

More concretely, inspired by Badki et al. [1], we per-

form a series of binary classifications with respect to dif-

ferent scale factors, each corresponding to a specific TTC.

Each classification yields a binary TTC map with respect to

the desired time threshold, Figure 1, insets B . Our binary

map, efficient to compute, acts as a temporal geofence in

front of the camera: it identifies objects within a given TTC,

in 6.4 ms.1 This is useful when a quick reaction time is im-

portant. We can also estimate per-pixel TTC with arbitrary

quantization, as shown in Figure 1, insets Q , or contin-

uous, Figure 1, insets C . These different levels of quan-

tization, from binary to continuous, can be predicted with

the same core network. In fact, quantization levels can be

added, removed, or moved dynamically at inference time,

based on the current needs of the autonomous agent. Given

the scarcity of TTC ground truth data, to impose additional

inductive bias to our network we also introduce binary op-

tical flow estimation as an auxiliary task. We achieve com-

petitive performance for TTC estimation against existing

methods, even stereo-based methods, but we are from 25×
to several orders of magnitude faster.

2. Related Work

While valuable for navigation, 3D information about the

scene is challenging to gather with a monocular camera.

Existing methods assume the scene to be static [9, 39, 17,

24], or estimate single-image relative depth, rather than

metric depth [8, 11, 13, 10, 33]. Single-image relative depth

can be “upgraded” to metric by computing the optical flow

between multiple images [26, 44, 46, 43, 25], but this re-

quires strong priors, and it is brittle for complex, large mo-

tions. Nevertheless, with depth maps and optical flow we

can estimate scene flow, which captures both depth and ve-

locity [36]. A recent approach by Hur and Roth elegantly

combines these principles by learning scene priors to de-

compose the depth and the velocity directly from the esti-

mated optical flow information [18].

Instead of regressing depth and velocity, we focus on es-

timating their ratio directly from images, which yields time-

to-contact (TTC). We do this via multiple binary classifica-

tions. Here we discuss the state-of-the-art in terms of these

two axes—TTC and regression via classification.

2.1. Time­to­Contact

Time-to-contact (TTC) was studied in psychophysics

and psychology, even before it attracted the attention of the

1On an NVIDIA Tesla V100 for 384×1152 images.

computer vision community. Early work by Lee, for in-

stance, suggested that TTC is sufficient for making deci-

sions about braking, and is likely to be picked up by the

driver faster than distance, speed, or acceleration of objects

in the scene [22]. From a computational standpoint, TTC is

appealing because it only depends on the ratio of depth and

velocity, which can be estimated directly from images, even

when estimating either one is an ill-posed problem [16].

Several traditional approaches have been proposed to es-

timate TTC from the estimated optical flow [31, 32, 3].

Horn et al. proposed a direct method for TTC estimation

that only uses the constant brightness assumptions [15, 16].

While these approaches estimate the TTC for an object that

is moving relative to the camera, they require masks for dy-

namic objects, which limits their practical impact.

We propose a learning-based approach for TTC estima-

tion that handles multiple dynamic objects—without need-

ing any segmentation—and estimates per-pixel TTC. The

elegant, closely related work by Yang and Ramanan esti-

mates optical flow, uses it to compute the scaling factor

of objects, and maps it to TTC [42]. Xu et al. also es-

timate the scaling of objects, but do so by modeling the

change of objects’ size explicitly for optical flow estima-

tion [41]. However, computing the full optical flow is time-

consuming, and estimating TTC from optical flow inher-

its its limitations. Instead, following Horn et al. [16], we

compute TTC directly from the input images, side-stepping

optical flow computation altogether. Moreover, inspired by

Badki et al. [1], we solve TTC estimation via a series of bi-

nary classifications. Each binary classification can be com-

puted independently of the others at over 150 fps. This can

be thought of as a temporal geofence, detecting pixels or

objects within a given TTC. For existing methods, includ-

ing the method by Yang and Ramanan [42], this can only be

achieved by computing the TTC for all the pixels or objects

in the scene, and then thresholding it.

2.2. 3D Inference as a Classification Problem

The idea of posing 3D regression as a classification task

has a rich history. Several learning-based approaches esti-

mate depth via a multi-class classification task [21, 4, 45,

20]. These are more accurate than other learning-based ap-

proaches that pose the problem as a regression task [29, 7].

Badki et al. introduced a method that allows us to control

the trade-off between latency and accuracy [1]. Instead of

posing depth as a multi-class classification problem, they

solve it via multiple binary classifications. Each classifi-

cation provides useful information about the scene at high

frame-rates. Our approach is based on the same intuition.

We are the first learning-based approach to estimate per-

pixel TTC directly from the input images, and to pose it as

a (binary) classification problem.

12947

I
0

I
1

I0 I1

α < 1

α ≈ 1

(a) Inputs

I
0

I
α
i

1

I0 I
αi

1

α < αi

α > αi

(b) Scaled inputs (c) Temporal geofence

Figure 2: Intuition. Given two images of a dynamic scene, I0 and I1, we define a temporal geofence to detect objects expected to cross

the camera plane before a given time τi from the time of capture of I0. Compare I0 and I1, (a). The images of the orange and blue cars

are smaller in I0 (α < 1), while the image of the purple car is roughly unchanged. This allows us to predict that only the first two cars will

collide with the camera plane. We propose to perform this comparison after scaling the source image by a factor αi (corresponding to TTC

value τi). The orange car is still larger in I
αi
1

(α < αi), indicating that it will cross the camera plane before the specified τi. On the other

hand, the blue and purple cars will not. Rather than regressing the exact scale factor, we classify a pixel as making contact before or after

τi by classifying if the objects scale up or down in I
αi
1

with respect to I0. This yields a binary TTC probability map for τi, (c).

3. Method

Despite some time-to-contact (TTC) estimation methods

dating back to the 1990s [37, 5], TTC never rose to the pop-

ularity of other techniques that are now mainstream, such

as optical flow or stereo estimation. This is due in part to

its intrinsic limitations and to the challenges it poses, which

we discuss below. Note that in the rest of the paper we of-

ten attribute the properties of objects to the corresponding

pixels, to simplify the discussion. For instance, we talk of

“a pixel’s velocity” to indicate the projection on the image

plane of the velocity of the object imaged by that pixel.

3.1. A Review on Time­to­Contact

Consider two frames of a static scene captured by a mov-

ing camera. Pixel-level correspondences allow us to com-

pute depth, if the camera information is known. In the more

realistic case of dynamic scenes, however, the problem be-

comes ill-posed: the displacement of a pixel is the result of

its depth, its velocity, and the camera velocity, all of which

cannot be disambiguated without strong priors. In this case,

the concept of time-to-contact (TTC) comes to the rescue.

Given an object O, the TTC τ , i.e., the time at which object

O will (or did) cross the camera plane, can be written as

τ = −ZO

/

dZO

dt
= −ZO/ŻO, (1)

where the origin is at the camera, and we assume that the

current velocity conditions will continue. ZO is the depth

of the object from the camera plane, and ŻO its relative

velocity. Equation 1 shows the first appealing feature of

TTC: even if the depth and the velocity of the object cannot

be estimated independently, τ can be computed from their

ratio.

However, we are interested in computing the TTC from

pixel displacements alone. To do that we need an additional

piece of information: the location of the focus-of-expansion

(FOE). Given two frames of a static scene captured by trans-

lating the camera, all the pixels in the image move along

lines originating from the FOE, the image of the point to-

wards which the camera is moving. Under the same as-

sumptions, the FOE coincides with the epipole. The rela-

tionship between the TTC, τ , and the velocity of the pixel

is given by

ẋ =
x− x0

τ
and ẏ =

y − y0
τ

, (2)

where (x0, y0) is the FOE. Equation 2 can be easily derived

by differentiating the projection of a 3D point onto the im-

age plane with respect to time [15]. Note that the velocity

(ẋ, ẏ) can be computed from the optical flow (u, v), which

allows us to write

τ =
x− x0

u
· T and τ =

y − y0
v

· T, (3)

where T is the time elapsed between the two frames.

Equation 3 shows a second compelling reason to use

TTC: its estimation does not require the camera calibra-

tion.2 There are also challenges, however. If a rigid object is

dynamic and translates with respect to the scene, its pixels

move along lines centered around a different FOE. To esti-

mate the TTC using Equation 3, then, we need to localize

the FOE of each dynamic object. Moreover, if an object is

deformable, the FOE varies with each pixel, and for general

motion, we need to further compensate for rotations. This is

why traditional approaches had to rely on oversimplifying

assumptions.

However, we can compute the size of the image of a

fronto-parallel, planar non-deformable object of size SO at

distance ZO as [15]

sO = fSO/ZO, (4)

where f is the focal length of the camera. Since f and SO

are constant, differentiating Equation 4 yields

ZO/ŻO = −sO/ṡO, (5)

2We assume a pin-hole camera model.

12948

Inputs Probability maps Bτi
(x, y)

Figure 3: Binary TTC maps. Our method can directly identify

the pixels that will contact the camera plane before a given time.

From top to bottom, we show results for four TTC values for a

case of highway driving and for a camera that rotates.

which, plugged into Equation 1, allows us to estimate the

TTC using only information about the size of an object’s

image and its rate of change:

τ = sO/ṡO. (6)

Note that both Equation 3 and 6 effectively look at scaling.

However, the latter is independent of the point with respect

to which the scaling is performed, whereas for the former,

that point is the FOE. Of course, under more realistic condi-

tions (e.g., non-planar, fronto-parallel objects), Equation 6

becomes an approximation, which requires proper handling,

as we show later.

3.2. TTC via Multiple Binary Classifications

In this section, we first provide the intuition motivating

our method. We then describe binary TTC, the core of our

method, which detects pixels predicted to collide with the

camera plane within a given time. We further show how an

arbitrary number of binary classifications can be combined

to estimate, for each pixel, a quantized version of the TTC.

To simplify the description, here we assume positive TTCs,

i.e., we focus on objects moving towards the camera rather

than away from it. In Section 4, we describe a small adapta-

tion of our method that allows us to seamlessly remove this

distinction.

3.2.1 Intuition

Given two images captured at times t0 and t1, Equation 1

can be approximated as

τ = −Z(t0)

/(

Z(t1)− Z(t0)

t1 − t0

)

=
t1 − t0

1− Z(t1)
Z(t0)

. (7)

If we assume fronto-parallel and planar objects that do not

rotate, we can combine Equations 7 and 4, thus expressing

the TTC as a function of observations in image space:

τ =
t1 − t0

1− s(t0)
s(t1)

=
t1 − t0
1− α

, (8)

I0

I1

f0

f1

∗

φ

Ψ

GT

L

Task ∗ φ Ψ L GT

TTC

binary scaling αi Bτi
BCE ✶τ∗>τi

quantized scaling {αi} {Bτi
} BCE {✶τ∗>τi

}

continuous scaling {αi} {Bτi
}, τ BCE, SL1 {✶τ∗>τi

}, τ∗

Optical flow
horizontal shifting ui Bui

BCE ✶u∗>ui
vertical shifting vi Bvi

BCE ✶v∗>vi

Figure 4: Architecture. We perform all of our tasks with minor

modifications to the same backbone. We preprocess the input im-

ages by extracting features and applying a task dependent opera-

tion, ∗ , to the features of the second image. The input parameter

φ, the loss, L, the ground truth, GT, and the output, Ψ for each

task are listed in the table. Note that {·} indicates a set, and 1 the

indicator function.

where s is the size of the image of an object or region in

the scene. In other words, with Equation 8, the TTC can be

computed from the scale factor α. This simplifies our task,

compared with having to estimate per-pixel FOEs and op-

tical flow. However, regressing α for each pixel explicitly,

which requires defining the size of objects or image regions

and tracking its change over time, is not straightforward. In-

stead, we consider a pair of images, I0 and I1, and compute

Iαi

1 , a version of I1 scaled by a factor αi. This scaling fac-

tor αi corresponds to a unique TTC τi. The regions whose

size matches between I0 and Iαi

1 will collide with the cam-

era plane exactly at τi. Furthermore, we can expect regions

that are larger (or smaller) in Iαi

1 to collide with the camera

before (or after) τi, see Figure 2.

Instead of regressing the scale factor α directly, then, we

propose to train a neural network to take such pairs of im-

ages and classify regions in Iαi

1 as being larger or smaller

than the corresponding regions in I0, where the correspon-

dence is learned implicitly. Our approach is inspired by the

work of Badki et al. [1] for stereo. They also learn to clas-

sify the disparity of a pixel as being larger or smaller than a

given disparity, instead of regressing the disparity directly.

3.2.2 Binary TTC

The inputs to our method are two images and scale fac-

tor αi corresponding to the TTC we want to analyze. We

first extract features f0 and f1 from both images, and scale

f1 by αi, to obtain fαi

1 . Rather than classifying the ob-

jects as scaling up or down between f0 and fαi

1 , we train

a lightweight network to directly classify whether each

pixel’s TTC is larger or smaller than τi, using a binary cross-

entropy loss. That is, the network predicts a probability map

Bτi(x, y) = p(τ(x, y) > τi; f0, f
αi

1), (9)

12949

which can be binarized by simple thresholding. We train

directly to predict binary TTC instead of explicitly detect-

ing if the size of the image of objects is getting larger or

smaller with respect to αi for two reasons. First, ground

truth data for the scale factor α is challenging to even de-

fine beyond a small neighborhood of pixels, unless objects

move rigidly and only translate. Moreover, as discussed be-

fore, Equation 8 is an approximation in the common case of

objects that are not planar, and for non-rectilinear motions.

Equation 7, which establishes the relationship between the

change in depth and the TTC, allows us to generate the

ground truth data from existing datasets, as we explain in

Section 4.1. A network trained to classify the TTC directly

can learn the necessary priors to compensate for the approx-

imations introduced by Equation 8. Our core architecture is

shown in Figure 4. This very architecture is also used for all

the tasks we describe below, with the caveat that the terms

in blue differ for each task.

3.2.3 Quantized TTC

Our core approach naturally extends to estimating a

coarsely quantized TTC for each pixel, which may be more

useful than binary in certain scenarios. We note that Equa-

tion 9 is a complementary cumulative distribution function.

Therefore, for two time-to-contact values, τj > τi, we can

compute

p(τi < τ(x, y) ≤ τj) = Bτi(x, y)−Bτj (x, y). (10)

Consider a set of TTC values {τi}i=1:N , and assume they

are in increasing order. After computing Equation 9 for

each of the N TTC values, we can estimate the quantiza-

tion bin in which the TTC of a pixel falls as

Q(x, y) = argmax
i

(

p
(

τi < τ(x, y) ≤ τi+1

)

)

. (11)

The different TTC values can be spaced non-uniformly.

3.2.4 Continuous and Selective TTC

While our method is specifically designed for binary and

quantized TTC estimation, it can also estimate per-pixel,

continuous TTC. In principle, we can approximate contin-

uous values by predicting quantized TCC (Section 3.2.3)

with a larger set of TTC values {τi}i=1:N . This, how-

ever, fails to exploit the relationship between the bi-

nary classifications for different τi’s, for a pixel. We

slightly modify the approach while still preserving its bi-

nary classification core, as shown in Figure 4. Specif-

ically, instead of taking consecutive pairs of probabil-

ity maps and applying Equation 10, we stack them.

τ1 τ2 τ∗ τN

B
τ i
(x

0,
y
0)

...

For a specific pixel (x0, y0) we

generally see a progression as

in the plot on the right. That

is, Bτi(x0, y0) (the probability

that the object will collide after τi) is consistently high for

τi ≪ τ∗, and low for τi ≫ τ∗, where τ∗ is the correct TTC

value. In the transition region, the network is uncertain,

which is why aggregating information across multiple τi is

beneficial. Badki et al. [1], who obtain a similar curve for

disparity, propose to estimate the transition point, τ∗ in our

case, by computing the area under the curve (AUC),

AUC(x, y) =
∑

i

(τi+1 − τi) ·Bτi(x, y). (12)

To understand why Equation 12 yields the desired result,

consider the case of a step function, i.e., τ∗ aligns with a

quantization boundary: AUC= τ∗ · 1 = τ∗. This relation-

ship holds for the more common case of a smooth transi-

tion region: because the transition is generally symmetric

around τ∗, the red and green areas in the plot have similar

extent and compensate for each other. Because the AUC

is differentiable, we can use it to fine-tune our network so

that combining a set of probability values using the AUC

operation yields continuous TTC values.

3.2.5 A Note on Inference-Time Tradeoff

Binary, quantized, and continuous TTC estimation yield in-

creasingly rich information for navigating an environment.

We note that, when estimating quantized and continuous

TTC, the multiple binary classifications can be run in paral-

lel, as they are independent of each other. Therefore we can

compute quantized and continuous TTC at roughly the same

frame-rate as for binary quantization—just above 150 fps.

If multiple binary classifications cannot be run in parallel

due to hardware limitations, the cost for computing quan-

tized and continuous TTC grows linearly with the number

of levels. In such cases, one can decide the number of quan-

tization levels dynamically to best leverage the trade-off be-

tween accuracy and latency. For situations where a fast re-

sponse time is critical, such as highway driving, binary TTC

may be sufficient. For slower navigation (e.g., for robotics

or for parking lot driving), our method can be adapted to

trade latency for a finer quantization at inference time.

3.3. Dealing with the Lack of Training Data

As for any learning-based method, having access to a

large amount of data is critical to properly train our network.

Unfortunately, there are no datasets with TTC ground truth

data and few scene flow datasets that we can use to infer it

(Section 4.1). To increase the training data, we leverage a

closely related task: binary optical flow estimation. We use

the same binary approach, but we shift the features (hori-

zontally and vertically) rather than scaling them. We then

12950

Inputs TTC Optical flow

Figure 5: Optical flow as an auxiliary task. We estimate optical

flow as an auxiliary task to improve our TTC estimation. Like for

continuous TTC, we estimate optical flow via a series of binary

classifications. While optical flow is not a goal for us, this figure

shows that our prediction is reasonable.

classify the direction of the shift (left/right or up/down). For

horizontal shifts, we seek to predict a probability map rela-

tive to a given shift ui

Bui
(x, y) = p(u(x, y) > ui; f0, f

ui

1), (13)

where fui

1 are the features extracted from the second im-

age and shifted by ui. The equation for the vertical shift vi
is analogous. Using optical flow to pre-train our network

and continuing using it as an auxiliary task yields a stronger

inductive bias, as we discuss in Section 5. Although opti-

cal flow is an auxiliary task, we show results in Figure 5 to

allow for a visual evaluation.

4. Implementation Details

4.1. TTC Data Generation

A dataset providing per-pixel TTC ground truth does not

exist. However, we can use ratio of the depth in different

frames to compute the TTC with Equation 7. This ratio

can be computed from datasets offering per-pixel scene flow

[X(t0), Y (t0), Z(t0)] → [X(t1), Y (t1), Z(t1)]. To train

for TTC estimation we use the Driving dataset from the

SceneFlowDatasets [28]. We also use the KITTI15 [29]

dataset to train for TTC estimation. We split the train-

ing dataset of KITTI15 into train and validation split, and

show analysis on the validation part of the dataset. To pre-

train our network for the task of binary optical flow, we

use the FlyingChairs2 [7, 19] and the FlyingThings3D [28]

datasets. We also use optical flow data available from Driv-

ing [28] and KITTI15 [29], and train our network for both

binary optical flow and TTC estimation.

4.2. Working in the Inverse TTC Domain

We are interested in objects predicted to collide within τi
seconds. However, τ ∈ (−∞,∞), with positive and neg-

ative values indicating objects moving towards and away

from the camera, respectively. That is, some of the pixels

whose TTC is smaller than τi will never collide with the

camera plane. In practice, then, we seek to identify the pix-

els such that

(τ(x, y) ≤ τi) ∩ (τ(x, y) > 0), (14)

which introduces an additional complication. Moreover, the

effect of TTC in the image space in not linear. A simple

solution is to work with the ratio-of-depths, the inverse of

the TTC domain:

η =
Z(t1)

Z(t0)
= 1−

t1 − t0
τ

. (15)

Yang and Ramanan termed it motion-in-depth [42]. Thanks

to Equation 15, the effect of TTC is linear in image space

and Equation 14 simply reduces to

η(x, y) ≤ ηi. (16)

For binary TTC, then, we simply scale the features of the

source image by a factor αi = ηi.
Similarly, for continuous estimation, we sample planes

uniformly in the inverse TTC domain. We apply uniformly

spaced scale factors to the features of the source image:

{αi}i=1:N = {α0 + i∆α}i=1:N . The AUC of the result-

ing segmentation gives us the map η(x, y), which we then

covert to a TTC map.

4.3. Architecture

Figure 4 shows our architecture. The feature extraction

module uses spatial pyramid pooling layers as PSMNet [4].

The resulting 32-channel feature maps are at one-third the

input image resolution. We then apply a task-dependent op-

erator, ∗ , parametrized by φ, to f1 and generate fφ
1 . For

instance, when estimating the horizontal component of bi-

nary optical flow, ∗ shifts the features by a horizontal shift

ui, and for binary TTC, it scales them by αi. The full list

for each task is in the table in Figure 4. To avoid cropping

out features, we zero-pad f0 and fφ
1 to 1.5× the feature

map resolution. The concatenation of f0 and fφ
1 is fed to

a 2D encoder-decoder network with skip connections. This

module has three heads—one for binary TTC, one for bi-

nary horizontal optical flow, and one binary vertical optical

flow. We apply a sigmoid to each output to obtain the re-

spective probability maps. Intuitively, this network tells us

if the features in fφ
1 are scaling up/down, shifting right/left,

or shifting up/down with respect to the corresponding fea-

tures in f0.

4.4. Training

We pre-train our network for the binary optical flow task

on the FlyingChairs2 dataset and train it further on the

FlyingThings3D dataset [28] using a binary cross-entropy

12951

Inputs Ground Truth Hur and Roth [18] Yang and Ramanan [42] Ours

Figure 6: Comparison on continuous TTC estimation. We show the predicted TTC and the error map (red and green indicate high and

low error, respectively) for all methods. Our method and Yang and Ramanan’s method explicitly train for TTC estimation and provide

better results than the monocular scene flow method of Hur and Roth. Note the lower error in the TTC estimation for our method.

(BCE) loss with respect to a thresholded version of the

ground truth. The TTC head is left unsupervised in this

stage. We then fine-tune our network for estimating binary

TTC first on the Driving [28] and then on the KITTI15 [29]

datasets. Since both datasets also offer optical flow data,

in this second stage we train for both binary optical flow

and binary TCC. In Section 5 we discuss the impact of this

choice on the quality of the results. We use relative weights

of 0.8 and 0.2 for binary TTC and binary optical flow tasks

respectively. For training on the KITTI15 dataset, we use

the same split as Yang and Ramanan [42].

For the continuous version, we pre-train the network as

before, and fine-tune it on FlyingThings3D for continuous

optical flow. For each training image pair we uniformly

sample horizontal and vertical shifts and stack the maps

corresponding to each shift. We use the resulting volumes

to compute continuous optical flow via the AUC operation

described in Section 3.2.4. We can then continue training

the network using a BCE loss on the individual probability

maps, and a Smooth-L1 (SL1) [12] regression loss on the

output of the AUC module. We use relative weights of 0.1
and 0.9 respectively. To fine-tune our network for contin-

uous TTC estimation, we follow a similar strategy as for

the binary segmentation training. We continue training the

network for the task of continuous optical flow and con-

tinuous TTC estimation on the Driving and the KITTI15

datasets. However, this time we form three volumes, two

corresponding to optical flow and one to TTC. As discussed

in Section 4.2, we work in the inverse TTC domain and uni-

formly sample scale factors. The network trained on the

entire KITTI15 dataset is used for scene flow estimation

on KITTI15 benchmark images, as explained in Section 5.

We refer the reader to our Supplementary for the additional

training details.

5. Evaluation and Results

In this section we discuss qualitative and quantitative re-

sults for our method. First, to validate the importance of

the training strategy described in Section 3.3, we compare

three training strategies: (1) we train our network only to

estimate binary TTC, (2) we pre-train it to estimate binary

optical flow (OF) and then binary TTC, and (3) we pre-train

with binary OF, and then continue training with both binary

OF and binary TTC (our method). As shown in Table 1,

our final method achieves a percentage error of 1.013 and

a mean intersection-over-union (mIOU) of 0.9525. If we

only train for TTC estimation after pre-training for OF, we

observe an increase in percentage error to 1.174 and a drop

in mIOU to 0.9453. Removing the binary OF estimation al-

together, leads to an additional increase in percentage error

to 2.670 and an additional drop in mIOU to 0.8808.

We also thoroughly validate our approach numerically

on the KITTI15 validation set. We compare to Yang and

Ramanan [42], who proposed the only existing approach

that computes per-pixel TTC from a monocular camera, un-

der practical assumptions. They too look at how the size

of objects changes, but they estimate it explicitly (and lo-

cally) from the optical flow between frames. We also mea-

sure against PRSM [40] and OSF [29], both of which per-

form 3D scene flow estimation using stereo cameras. They

represent images as a collection of planar super-pixels and

jointly solve for geometry and 3D motion, which informs

about the change of depth over time (Section 4.1). This can

be used to estimate motion-in-depth for each pixel, η(x, y),
using Equation 15, which can then be thresholded. Our final

comparison is against Hur and Roth [18], a state-of-the-art

monocular scene flow estimation approach. We compare

against their best model, which uses a combination of self-

supervised learning on the KITTI15 raw dataset and super-

vised learning on the entire KITTI15 training dataset. Note

that this approach is already fine-tuned on our validation set.

Table 1 shows that our continuous TTC estimation,

yields the lowest motion-in-depth error:

MiD = ||log(η)− log(ηGT)||1 · 10
4. (17)

However, our fundamental innovation is the ability to de-

fine a temporal geofence, i.e., detecting pixels with a TTC

smaller than a given τi without the need to estimate the full

TTC first. On this task we perform on par with Yang and

Ramanan, but our binary TTC is around 26× faster. OSF

12952

performs better than our approach in terms of binary TTC,

though, again, it uses a richer input. Moreover, OSF and

PRSM, implemented on a CPU, take 390 s and 300 s re-

spectively. The approach by Hur and Roth struggles despite

fine-tuning the model on the validation set. However, un-

like ours and Yang and Ramanan’s approaches, they do not

use a synthetic dataset to pre-train, nor train for a better-

posed TTC estimation task. Instead, they focus on the more

difficult task of monocular scene flow estimation.

We further evaluate our method on the KITTI15 bench-

mark [30] with the same strategy as Yang and Ra-

manan [42]: we use our motion-in-depth estimation to com-

pute scene flow, the 3D motion [X(t0), Y (t0), Z(t0)] →
[X(t1), Y (t1), Z(t1)] corresponding to each pixel. The

first two scene flow components can be estimated by back-

projecting the optical flow for each pixel. For the Z com-

ponent, traditional approaches use stereo information. We

can estimate the third component from the motion-in-depth

ratio if we are given the depth in one frame. After com-

puting the depth at t0 with GANet [45] (evaluated by D1 in

Table 2) and combining it with our TTC estimate, we can

compute the depth for each pixel at time t1. Therefore, D2

in Table 2 effectively measures the quality of our results.

The other numbers in the table evaluate other components

and are reported for completeness. While our method is

not designed to estimate scene flow, it performs on par, or

slightly better than methods specifically optimized for it.

In certain scenarios, binary TTC can be more informa-

tive than depth. For instance, the top row of Figure 1 shows

a car driving away from the camera, and one that is far-

ther, but driving towards the camera. The latter, detected

by our binary TTC, is potentially more impactful—in the

true sense of the word!—for the ego vehicle path planning.

The last row of Figure 3 shows that, as discussed in Sec-

tion 3.2.2, our method can compensate for camera rotation,

even if that breaks some of our assumptions. This is also

visible for continuous TTC in the first row of Figure 5.

We show quantized TTC estimation results in Figure 1

Q . Note that even just 9 TTC quantization levels (8 bi-

nary classifications) provide a meaningful representation of

the scene. Moreover, the underlying binary classifications

can be run in parallel as they are independent of each other.

Therefore, quantized TTC can be run at roughly the same

frame-rate as the binary TTC.

We show a visual comparison with Hur and Roth [18],

and Yang and Ramanan [42] on continuous TTC for

KITTI15 images in Figure 6. Note the lower for our ap-

proach. In Figure 7 we show qualitative result of our ap-

proach on the Citiscapes dataset [6]. We show two failure

cases on this dataset, one due to the sudden vertical motion

caused by a road bump and another due to an object rotat-

ing significantly. Broadly, our method struggles for motions

under-represented in the training dataset.

Binary (200 ms – 2 s) Continuous

mIOU (↑) % error (↓) MiD (↓)

Stereo
PRSM [40] 0.9365 1.339 124.0

OSF [29] 0.9556 0.941 115.0

Mono
Hur & Roth [18] 0.9418 1.233 115.13

Yang & Ramanan [42] 0.9525 1.012 75.00

Ours 0.9525 1.013 73.55

Table 1: Comparison on the validation set of KITTI15 for both bi-

nary TTC (averaged over a set {αi} uniformly sampled in the in-

terval τ ∈ [0.02s, 2s]) and continuous TTC. Note that PRSM and

OSF both use richer input data (stereo vs mono). MiD, motion-in-

depth, directly evaluates TTC.

D1-all D2-bg D2-fg D2-all Fl-all SF-all

UberATG-DRISF [27] 2.55 2.90 9.73 4.04 4.73 6.31

ACOSF [23] 3.58 3.82 12.74 5.31 5.79 7.90

ISF [2] 4.46 4.88 11.34 5.95 6.22 8.08

Yang&Ramanan [42] 1.81 3.39 8.54 4.25 6.30 8.12

Ours 1.81 3.84 9.39 4.76 6.31 8.50

Table 2: Top 5 published methods on the KITTI scene flow bench-

mark. Our method performs reasonably well, despite not being

designed for scene flow, see text.

Figure 7: Unseen dataset. Our predicted TTC map on Citis-

capes [6]. The first row shows an example of a car moving towards

us and another where the car in the adjacent lane is speeding away.

The bottom two rows show failures due to a drastic rotation and a

road bump, respectively.

6. Conclusions

In certain scenarios, time-to-contact (TTC) information

can be more useful than depth. However, existing TTC es-

timation methods either make impractical assumptions, or

cannot be run in real time. We presented a framework to

estimate time-to-contact (TTC) from a monocular input. In

just 6.4 ms, our approach computes a temporal geofence

to detect objects predicted to collide with the camera plane

within a given TTC. By computing a number of such ge-

ofences, it can also estimate TTC with arbitrary quantiza-

tion, including continuous TTC. We show that our method

achieves competitive performance for TTC estimation—

even when other methods use richer input data.

Acknowledgments

The authors would like to thank Stan Birchfield for

the inspiring discussions on the theory of time-to-contact,

Gengshan Yang and Junhwa Hur for their kind help in the

comparisons with previous works, and anonymous review-

ers and ACs for their helpful suggestions.

12953

References

[1] Abhishek Badki, Alejandro Troccoli, Kihwan Kim, Jan

Kautz, Pradeep Sen, and Orazio Gallo. Bi3D: Stereo depth

estimation via binary classifications. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2020.

[2] Aseem Behl, Omid Hosseini Jafari, Siva

Karthik Mustikovela, Hassan Abu Alhaija, Carsten Rother,

and Andreas Geiger. Bounding boxes, segmentations and

object coordinates: How important is recognition for 3D

scene flow estimation in autonomous driving scenarios? In

IEEE International Conference on Computer Vision (ICCV),

2017.

[3] Ted Camus. Calculating time-to-contact using real-time

quantized optical flow. Technical Report, 1995.

[4] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[5] Roberto Cipolla and Andrew Blake. Surface orientation and

time to contact from image divergence and deformation. In

European Conference on Computer Vision (ECCV), 1992.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[7] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. FlowNet:

Learning optical flow with convolutional networks. In IEEE

International Conference on Computer Vision (ICCV), 2015.

[8] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems (NeurIPS), 2014.

[9] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-

SLAM: Large-scale direct monocular slam. In European

Conference on Computer Vision (ECCV), 2014.

[10] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[11] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian Reid.

Unsupervised cnn for single view depth estimation: Geom-

etry to the rescue. In European Conference on Computer

Vision (ECCV), 2016.

[12] Ross Girshick. Fast R-CNN. In IEEE International Confer-

ence on Computer Vision (ICCV), 2015.

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.

[14] Heiko Hecht and Geert Savelsbergh. Time-to-contact. Else-

vier, 2004.

[15] Berthold KP Horn, Yajun Fang, and Ichiro Masaki. Time

to contact relative to a planar surface. In IEEE Intelligent

Vehicles Symposium, 2007.

[16] Berthold KP Horn, Yajun Fang, and Ichiro Masaki. Hier-

archical framework for direct gradient-based time-to-contact

estimation. In IEEE Intelligent Vehicles Symposium, 2009.

[17] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra

Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view

stereopsis. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018.

[18] Junhwa Hur and Stefan Roth. Self-supervised monocular

scene flow estimation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[19] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas

Brox. Occlusions, motion and depth boundaries with a

generic network for disparity, optical flow or scene flow

estimation. In European Conference on Computer Vision

(ECCV), 2018.

[20] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So

Kweon. DPSNet: End-to-end deep plane sweep stereo. In-

ternational Conference on Learning Representations (ICLR),

2019.

[21] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

[22] David N Lee. A theory of visual control of braking based on

information about time-to-collision. Perception, 1976.

[23] Congcong Li, Haoyu Ma, and Qingmin Liao. Two-stage

adaptive object scene flow using hybrid cnn-crf model. In

International Conference on Pattern Recognition (ICPR),

2020.

[24] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G Narasimhan,

and Jan Kautz. Neural RGB → D sensing: Depth and uncer-

tainty from a video camera. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019.

[25] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei

Xu, Ram Nevatia, and Alan L. Yuille. Every Pixel Counts

++: Joint learning of geometry and motion with 3D holistic

understanding. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2020.

[26] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,

and Johannes Kopf. Consistent video depth estimation. In

ACM Transactions on Graphics (SIGGRAPH), 2020.

[27] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[28] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016.

[29] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.

[30] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-

ject scene flow. ISPRS Journal of Photogrammetry and Re-

mote Sensing (JPRS), 2018.

12954

[31] François Meyer and Patrick Bouthemy. Estimation of time-

to-collision maps from first order motion models and normal

flows. In IEEE International Conference on Pattern Recog-

nition (ICPR), 1992.

[32] François G Meyer. Time-to-collision from first-order mod-

els of the motion field. IEEE Transactions on Robotics and

Automation (TRA), 1994.

[33] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladlen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (TPAMI), 2020.

[34] Daniel Scharstein and Richard Szeliski. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. International Journal of Computer Vision (IJCV),

2002.

[35] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

[36] René Schuster, Oliver Wasenmüller, and Didier Stricker.

Dense scene flow from stereo disparity and optical flow.

arXiv preprint arXiv:1808.10146, 2018.

[37] Muralidhara Subbarao. Bounds on time-to-collision and

rotational component from first-order derivatives of image

flow. Computer Vision, Graphics, and Image Processing,

1990.

[38] James R Tresilian. Empirical and theoretical issues in the

perception of time to contact. Journal of Experimental Psy-

chology: Human Perception and Performance, 1991.

[39] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. DeMoN: Depth and motion network for learning

monocular stereo. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.

[40] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3D

scene flow estimation with a piecewise rigid scene model.

International Journal of Computer Vision (IJCV), 2015.

[41] Li Xu, Zhenlong Dai, and Jiaya Jia. Scale invariant optical

flow. In European Conference on Computer Vision (ECCV),

2012.

[42] Gengshan Yang and Deva Ramanan. Upgrading optical flow

to 3D scene flow through optical expansion. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2020.

[43] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-

ing of dense depth, optical flow and camera pose. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[44] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,

and Jan Kautz. Novel view synthesis of dynamic scenes

with globally coherent depths from a monocular camera. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2020.

[45] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and

Philip H.S. Torr. GA-Net: Guided aggregation net for end-

to-end stereo matching. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[46] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Un-

supervised joint learning of depth and flow using cross-task

consistency. In European Conference on Computer Vision

(ECCV), 2018.

12955

