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Abstract

Binaural sound source localization is an important and widely used perceptually based method and it has been

applied to machine learning studies by many researchers based on head-related transfer function (HRTF). Because the

HRTF is closely related to human physiological structure, the HRTFs vary between individuals. Related machine

learning studies to date tend to focus on binaural localization in reverberant or noisy environments, or in conditions

with multiple simultaneously active sound sources. In contrast, mismatched HRTF condition, in which the HRTFs used

to generate the training and test sets are different, is rarely studied. This mismatch leads to a degradation of

localization performance. A basic solution to this problem is to introduce more data to improve generalization

performance, which requires a lot. However, simply increasing the data volume will result in data-inefficiency. In this

paper, we propose a data-efficient method based on deep neural network (DNN) and clustering to improve binaural

localization performance in the mismatched HRTF condition. Firstly, we analyze the relationship between binaural

cues and the sound source localization with a classification DNN. Different HRTFs are used to generate training and

test sets, respectively. On this basis, we study the localization performance of DNN model trained by each training set

on different test sets. The result shows that the localization performance of the same model on different test sets is

different, while the localization performance of different models on the same test set may be similar. The result also

shows a clustering trend. Secondly, different HRTFs are divided into several clusters. Finally, the corresponding HRTFs

of each cluster center are selected to generate a new training set and to train a more generalized DNN model. The

experimental results show that the proposed method achieves better generalization performance than the baseline

methods in the mismatched HRTF condition and has almost equal performance to the DNN trained with a large

number of HRTFs, which means the proposed method is data-efficient.
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1 Introduction
Sound source localization is to estimate the direction of

the sound source and is an important and widely used

technique in many fields such as speech enhancement,

video conferencing, and human-robot interaction [1].

Sound source localization algorithms have been widely

researched so far, and they can be categorized into two

classes. The first one is based on microphone array signal

processing, which contains three kinds of algorithms:
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the algorithms based on the time difference of arrival

(TDOA)[2], the algorithms based on beamforming [3],

and the algorithms based on high-resolution spectral

method [4, 5]. The second one is the binaural local-

ization algorithms based on head-related transfer func-

tion (HRTF). Each algorithm has its own advantages and

disadvantages.

Humans are able to localize the sound source with just

two ears, and this remarkable binaural localization capa-

bility is largely attributed to the different filtering effects

of listener’s heads, pinna, and torse on the sounds from

different directions in the frequency domain, which is

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-020-0171-y&domain=pdf
http://orcid.org/0000-0002-3653-9951
mailto: wangjing@bit.edu.cn
http://creativecommons.org/licenses/by/4.0/


Wang et al. EURASIP Journal on Audio, Speech, andMusic Processing          (2020) 2020:4 Page 2 of 16

described by the HRTF. The HRTF dataset of one subject

consists of the HRTF pairs of the left and right ears mea-

sured at different directions. The time domain equivalent

HRTF is called the head-related impulse response (HRIR).

Due to the different individual physiological structures,

the HRTF datasets of different subjects are varied.

Over the past decades, many binaural sound source

localization methods have been proposed, and some are

based on the “Duplex Theory” [6] proposed by Jeffress

et al. Among these methods, two binaural cues extracted

from the HRTFs are frequently used: interaural time dif-

ference (ITD) and interaural level difference (ILD). The

ITD represents the time difference between the sounds

arriving at the left and right ears, and the ILD represents

the intensity difference between the sounds received by

left and right ears. Those two binaural cues vary with

the direction of the sound. Due to these factors, ITD and

ILD are important for binaural localization. The key idea

of these methods is to extract the ITDs and the ILDs

corresponding to each direction from HRTFs which are

saved as the ITD templates and ILD templates and then

the ITD and ILD extracted from the sound are estimated

and compared with the ITD templates and ILD templates.

The best matching template can be found corresponding

to the direction of the sound. In [7], Li et al. propose a

three-layer Bayes rule-based hierarchical system, in which

several possible locations are selected in the first layer and

further narrowed down by ILD in the second layer, and the

final decision is made by spectral cues in the third layer. In

[8], Willert et al. put forward with a biologically inspired

system to separately measure ITD and ILD to generate a

probability map that is further combined over frequencies

and binaural cues to estimate the sound location. Those

methods achieve good performance, but the HRTFs for

generating the templates and the test sets are recorded

by the same subject or dummy head. In this paper, we

refer to this condition as the matched HRTF condition

and the condition that the HRTFs recorded by different

heads as the mismatched HRTF condition. In the mis-

matched HRTF condition, the localization performance of

the methods above may decline.

In [9], Raspaud et al. introduce an individual paramet-

ric model for each HRTF based on the simple geometric

consideration. The ITD and ILD are modeled as the prod-

uct of a function of frequency and a function of azimuth

and then are jointly estimated and compared with tem-

plates for localization. Besides, the individual parametric

models of each HRTF are averaged, which may improve

the generality in the mismatched HRTF condition, but

the simple average parametric model may not accu-

rately learn the complex relationship between the binaural

cues and the sound locations. Based on [9], Parisi et al.

[10] propose cepstrum prefiltering for robustness in the

reverberant environment. Pang et al. [1] put forward with

reverberation weighting and a more generalized paramet-

ric model to further improve the localization performance

in the reverberant and noisy environments. A full-sphere

binaural localization method is proposed in [11], which

applies the Interaural Phase Difference (IPD) for lateral

localization and spectral cues for polar angle localization.

Although the HRTFs for the training and test sets are cap-

tured in different rooms, the models of the dummy head

are the same.

Besides the methods based on ITD and ILD templates,

some other ones are based on HRTF templates. The key

idea of those methods is to identify the HRTF pair cor-

responding to a certain sound direction, to operate with

the left and right channels of the binaural sound respec-

tively, and to achieve the maximal correlation between the

results of the left and right channels. A matched filtering

approach is proposed in [12]. For a certain sound direc-

tion, it exchanges the left channel and right channel of

the corresponding HRTF pair, and then respectively filters

the left and right channel of the binaural sound.The cor-

relation between the result of the left and right channels

shows that the HRTF pair with the maximal correla-

tion corresponds to the direction of the sound. However,

the inversion of the HRTF may be unstable. In [13], the

source cancelation algorithm is proposed to be an exten-

sion of the matched filtering approach without inversion.

It divides the left channel and right channel of the HRTF

pairs to obtain the templates, and then the division result

of the left channel and right channel of the sound in the

frequency domain is calculated and matched with those

templates. In [14, 15], a cross channel method is proposed,

it convolutes the binaural sounds with the HRIR pair cor-

responding to a certain direction crosswise. Specifically, it

convolutes the right channel of sound with the left chan-

nel of the HRIR pair and the left channel of sound with the

right channel of the HRIR pair. Then the calculated cor-

relation between the result of the two channels indicates

the HRIR pair with the maximal correlation corresponds

to the sound direction. In [16], a two-step method is pro-

posed to estimate a coarse direction by ITD and the final

result by the cross channel method. It improves the accu-

racy in a noisy environment and decreases the complexity.

These HRTF templates based methods also perform good

but only work in the matched HRTF condition.

Besides the template-matching-based methods, some

other methods are based on statistical models. The key

idea of those methods is mapping the binaural features

to the posterior probability of the sound source in each

direction by the statistical models. In [17], Gaussian Mix-

tureModel (GMM) is used to estimate themultiple source

localization in the reverberant and noisy environments by

ITD and ILD cues. The HRTF is assumed to be known,

which means it works in the matched HRTF condition.

By combining DNN and head movements, a multiple
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source localization method robust against the noisy and

reverberant environment is proposed in [18], which is

proved to generalize well on the test set generated by

another HRTF. However, this method does not consider

the performance in the mismatched HRTF condition. In

[19], a convolutional neural network (CNN) with multi-

task learning-based method is proposed to localize the

azimuth and elevation simultaneously. It achieves better

performance than the method in [18]. While it works

in the matched HRTF condition. In [20], a CNN-based

sound localization method is proposed and proved to

be robust to inter-subject and measurement variability,

but this study only focuses on elevation localization. In

[21], an end-to-end binaural sound localization approach

is proposed, which estimates the azimuth directly from

the waveform by CNN. This approach is robust to the

reverberate condition; however, the performance in the

HRTF-mismatched condition is not studied.

In this paper, we focus on the binaural localization in

the mismatched HRTF condition rather than the rever-

berant and noisy conditions. Although in [9] and [1]

a parametric model is proposed and the parameters of

different HRTFs are considered to improve the general-

ization performance, the model may be relatively simple

and may not be able to accurately analyze the localiza-

tion mechanism. Due to the powerful modeling capability,

DNN is effective in many areas. In [18], the DNN is

introduced and shows significant performance. However,

this work only focuses on the localization performance

in noisy and reverberate environments rather than mis-

matched HRTF condition, which shows that the DNN

trained by one HRTF generalize well on the test set gen-

erated by another HRTF. While we think this result may

require further study, here, we consider the binaural local-

ization problem as a classification problem, and we use

DNN to map the binaural cues to the sound localization.

Firstly, we use DNN to learn the relationship between

binaural cues and the localization of the sound source

and then compare the localization performance in the

matched and mismatched HRTF conditions. The result

shows that the localization performance in the matched

HRTF condition is good, but the performance varies with

the HRTF in the mismatched HRTF condition and the

result shows a clustering trend. To improve the gener-

alization performance, a basic idea is to introduce more

HRTFs in training sets; however, this may result in data-

inefficiency. Secondly, on this basis, clustering analysis is

applied to the localization similarity between each HRTF.

Different HRTFs are divided into several clusters. The

result shows that the HRTF corresponding to each clus-

ter center is a reasonable approximation of other HRTFs

in the same cluster. Finally, the HRTFs corresponding to

each cluster center are selected to generate a new train-

ing set and to train a more generalized DNN model.

Compared with the baseline methods in [1, 2, 9, 18] in the

mismatched HRTF condition, our method achieves bet-

ter performance. Compared with the DNN trained by all

HRTFs, our method achieves similar performance with

low data computation, which means it is data-efficient.

The remainder of this paper is organized as follows.

The localization performance of the method proposed in

[18] is further studied in Section 2. Based on the result in

Section 2, the proposed method is described in detail in

Section 3. Section 4 presents the binaural sound source

localization experiments and the analyses. Finally, the

conclusion is drawn in Section 5.

2 Localization performance in thematched and
mismatched HRTF conditions

In the binaural localization work based on DNN proposed

byMa et al. [18], the DNNmodel is trained by the training

set generated by only one HRTF in the training stage, and

the model is tested by the test set generated by two other

HRTFs in the testing stage. The result shows that when

the localization error tolerance is 5◦, i.e., the estimation is

considered correct, and if the error between the azimuth

estimated by DNN model and the ground truth azimuth

is less than or equal to 5◦, the DNN model is considered

to generalize well on the test sets. In this section, we carry

out research on the localization performance at a lower

localization error tolerance.

In Ma’s work, the training set is generated by the HRTF

recorded by the KEMAR dummy head, therefore we

choose the 45th HRTF in the CIPIC database [22] which

is also recorded by KEMAR dummy head and trains the

DNN model similar to that in Ma’s work. Different test

sets are generated by each HRTF in CIPIC. On this basis,

we analyze the localization performance of the DNN

model in the matched and mismatched HRTF conditions.

The localization performance of the trained model on

each test set is shown in Fig. 1, and the localization error

tolerance is 0◦, 5◦ and 10◦ respectively. More details about

data sets generation and network parameters setting are

shown in Section 4. As we can see in Fig. 1, when toler-

ance is 5◦ and 10◦, the localization accuracy of the DNN

model on the test set generated by the 45th HRTF is 100%,

which indicates that the DNN model performs very well

in the matched HRTF condition; the localization accu-

racy on the test sets generated by other HRTFs is also

high, which shows that the DNN model generalized well

in the mismatched HRTF conditions when the tolerance

is 5◦ and more. This result is similar to that in Ma’s work.

When the tolerance is 0◦, the localization performance

in the matched HRTF condition remains good. However,

the localization accuracies on the test sets generated by

other HRTFs decrease, which means that the localiza-

tion performance will decline in the mismatched HRTF

condition. In addition, it can be seen that the localization
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Fig. 1 The localization accuracy of Ma’s method on different test sets

accuracies on many test sets generated by mismatched

HRTFs are greatly decreased, while the localization accu-

racies on the test sets generated by a small part of HRTFs,

such as the 4th, 10th, 12th and 21st HRTFs, are still

high, especially on the test set generated by the 12th

HRTF, the localization accuracy of which is also 100%.

This result shows that if a DNN model has been trained

by the 45th HRTF, the binaural sound generated by the

12th HRTF could be accurately localized by the existing

model, instead of training a new model by the 12th HRTF.

In fact, the 12th and the 45th HRTF in CIPIC database

are all recorded by KEMAR dummy head, therefore the

two HRTFs are similar, which indicate that each one of

the DNN localization models trained by a pair of similar

HRTFs respectively may take the place of the other one.

Similarly, the models trained by the 45th HRTF on the test

sets generated by the 4th, 10th, and 21st HRTFs all achieve

high performance, so the models trained by them respec-

tively could replace each other to some extent. Based on

this result, we think that by selecting the most represen-

tative HRTF among the similar HRTFs to train a DNN

model, we can accurately localize the binaural sounds

generated by mismatched but similar HRTFs. Therefore,

we propose a DNN- and clustering-based binaural sound

source localization method to improve the localization

performance in the mismatched HRTF condition.

3 The proposedmethod
3.1 Overview

The diagram of the proposed method is shown in Fig. 2.

The method consists of three stages.

In stage 1, we study the localization similarity between

HRTFs. Specifically, we study the localization perfor-

mance of the DNNmodel in thematched andmismatched

HRTF conditions. Firstly, we select the individual HRTF

of the ith subject in the HRTF database and denote it as

HRTF i; then, the clean speech signals are filtered by the

HRTF data in each direction of HRTF i to generate the

training set i and the test set i. Secondly, a DNN model

is trained by the features and labels extracted from the

training set i and denoted as DNN i. Finally, the DNN i is

evaluated by the test set j, and the localization accuracy is

denoted as Acc(i, j).

In stage 2, the clustering analysis is applied to HRTFs.

Specifically, we apply the clustering analysis to the local-

ization accuracy of each DNN model on each test set, i.e.,

the Acc(i, j) obtained in stage 1, and then different HRTFs

are divided into k clusters.

In stage 3, we improve the generalization ability of the

DNNmodel. Specifically, we select central HRTFs, i.e., the

HRTFs corresponding to the center of each cluster, to gen-

erate a new training set and train a more generalized DNN

model.

3.2 Localization similarity analysis based on DNN

In stage 1, we study the localization similarity between

HRTFs based on DNN. The diagram of the DNN-based

binaural localizationmethod is shown in Fig. 3, and it con-

sists of two modules: the feature extraction and the DNN

classification. In the feature extraction module, the bin-

aural features are extracted from the binaural sound as

the input features, and the corresponding azimuths are

Fig. 2 The diagram of the proposed method
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Fig. 3 The flowchart of the DNN-based localization method

converted into the one-hot vectors which are often used

in DNN classification tasks as the output features. For

the DNN classification module, in the training stage, the

DNN is trained by the input features and output features.

After the DNN model is well trained, the input features

extracted from the binaural sound to be estimated are fed

into the DNNmodel in the test stage. The posterior prob-

ability of the sound source in each azimuth is obtained,

and the azimuth corresponding to the highest probability

is taken as the estimated azimuth.

3.2.1 Binaural feature extraction

The ITD and ILD are commonly used as the binaural

features in the related works of binaural localization, while

in the recent work of Ma et al. [18], it is shown that nor-

malized cross-correlation function (CCF) [23] contains

more information than ITD, and the combined features

of CCF and ILD perform better than those of ITD and

ILD. Therefore, we combine the CCF and ILD as the

input features. In Ma’s work, the multiple sound source

localization is studied based on the assumption that each

time-frequency point is dominated by only sound source

[24]. The binaural sound signals are filtered by Gamma-

tone [25] filter bank to obtain several subbands, and then

the binaural features are extracted from each subband

and employed to train a DNN model, respectively. In this

paper, we study the localization of single sound source;

therefore, we extract the binaural features from the whole

frequency band.

To extract the features from the binaural sound, we

divide the signal in each channel into frames, and then the

CCF feature is calculated as follows:

CCF(t, τ) =

∑
m

(xt,l(m) − x̄t,l)(xt,r(m − τ) − x̄t,r)

√∑
m

(xt,l(m) − x̄t,l)
2
√∑

m
(xt,r(m − τ) − x̄t,r)

2
,

(1)

where xt,l and xt,r refer to the signals; t refers to the time

frame index; l and r refer to the left and right chan-

nel, respectively; m refers to the sample index; τ refers

to the time lag; and x̄t,l and x̄t,r refer to the mean val-

ues in one frame. Considering the radius of the human’s

head and the speed of sound, the range of τ is [−1, 1]ms.

For the signals sampled at 16 kHz, the range of the sam-

ple lag is [−16, 16]; therefore, the dimension of the CCF

feature is 33.

The ILD feature of the tth frame is calculated as follows:

ILD(t) = 10log10

∑
m

x2t,l(m)

∑
m

x2t,r(m)
, (2)

and the dimension of the ILD feature is 1.

Finally, we combine the CCF and ILD to obtain the 34-

dimensional input feature:

I(t) =[ CCF,ILD] . (3)

For DNN classification tasks, the category of the sam-

ple is usually converted to a one-hot vector as the output

feature. Specifically, if the number of the categories is n,

the dimension of the one-hot vector is also n. Assuming

that all samples could be classified into n categories and

a sample belongs to the ith category, the ith value of the

corresponding one-hot vector is set to 1 and others are

set to 0.

3.2.2 The DNN architecture

The architecture of the DNN is shown in Fig. 4, which

consists of an input layer, three hidden layers, and an out-

put layer. The number of the nodes in the input layer is 34,

which is equal to the dimension of the input feature. The

number of the nodes in each hidden layer is determined

by subsequent experiments. After each hidden layer, the

Rectified Linear Unit (ReLU) [26] is used as the activation

function, and after ReLU the dropout [27] layer is applied

to prevent over-fitting. The number of nodes in the out-

put layer is determined by the number of azimuths. After

the output layer, a softmax activation function is applied.

In the training stage, the Adam [28] optimizer is used to

minimize the cross-entropy loss between the ground truth

and the estimated result:

Fig. 4 The architecture of the DNN
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Loss =
1

T

T∑

t=1

(
−

D∑

d=1

O(t, d) log Ô(t, d)

)
, (4)

where the O(t, d) and Ô(t, d) refer to the ground truth

and the estimated output feature, respectively; the t and T

refer to the frame index and the number of frames in one

batch; and the d and D refer to the dimension index and

the dimension size.

In the test stage, the input feature I(t) is extracted from

the binaural sound to be estimated and fed into the well-

trained DNN model, and then the posterior probability

P(θ |I(t)) of the sound source in each azimuth is obtained.

After that the average posterior probability of T frames is

calculated as follows:

P(θ) =
1

T

T∑

t=1

P(θ |I(t)). (5)

Finally, the azimuth corresponding to the maximum

posterior probability is taken as the localization result:

θ̂ = argmax
θ

P(θ). (6)

The localization performance is measured by the local-

ization accuracy and the localization error. The localiza-

tion accuracy is calculated as follows:

Acc =

N∣∣∣θ̂−θg

∣∣∣≤�

N
, (7)

where N refers to the number of the binaural sounds;

the θg and θ̂ refer to the ground truth azimuth and the

estimated azimuth, respectively; and the � refers to the

localization error tolerancementioned in Section 2.When

the error between the estimated azimuth and the ground

truth azimuth is less than or equal to the threshold, the

estimation is considered correct; otherwise, it is consid-

ered incorrect. In this paper, we set � = 0◦, which

means that the estimation is considered correct only when

the estimated azimuth and the ground truth azimuth

are exactly equal. The localization error is calculated as

follows:

Err =

N∑
n

′
=1

|θ̂ − θg |

N
, (8)

where N, θg , and θ̂ refer to the number of the sounds,

the ground truth azimuth, and the estimated azimuth,

respectively; the n
′
refers to the index of the sound.

3.2.3 Localization similarity between HRTFs

When training the DNN, the size of the training set, the

number of the nodes in the hidden layer and the num-

ber of the hidden layers will affect the performance of

the model. Therefore, we compare the localization per-

formance of the DNN models corresponding to different

training set sizes and different hidden layer nodes. To gen-

erate the training sets of different sizes, we select the first

HRTF in the CIPIC database, and use 100 and 1000 clean

speech to convolve with the HRIR pair corresponding to

each azimuth, respectively. Then, a training set containing

2500 binaural sounds and a training set containing 25,000

binaural sounds are obtained. For the number of nodes in

the hidden layer, three cases are investigated: 200, 500, and

1000, and the number of nodes in the output layer is 25.

More detailed settings are presented in Section 4.

Figure 5 shows the effect of different training set sizes

on localization performance when the number of nodes

in the hidden layer is fixed. It can be seen that the trained

DNNmodel performs well on the test set generated by the

first HRTF, while the localization accuracy of themodel on

the test set generated by themismatched HRTF decreases.

When the number of the nodes in the hidden layer is fixed,

the localization performance will be slightly improved

with a larger training set size.

Figure 6 shows the effect of the number of nodes in

the hidden layer on localization performance when the

size of the training set is fixed. It can be seen that when

the size of the training set is fixed, the localization per-

formance will also be slightly improved with more nodes

in the hidden layer. The average localization accuracy of

the DNN model corresponding to different training sets

sizes and hidden layer nodes are shown in Table 1. From

Table 1, it can be seen that the larger the training set and

the more nodes in the hidden layer, the better the localiza-

tion performance; however, the improvement is limited.

We further study the influence of the number of hidden

layers and hidden layer nodes on localization accuracy.

The results are shown in Table 2, which indicates that

these two factors have limited impact on the performance.

Considering the work of Ma [18], we set the number of

binaural sounds in the training set to 2500, the number of

nodes in the hidden layer to 200, and the number of layers

to 3 in the subsequent experiments.

From Fig. 5, it can also be seen that the DNN model

trained by the HRTF 1 achieves high performance on the

test sets generated by the HRTF 1, HRTF 10, HRTF 19,

and HRTF 43, respectively. Figure 7 shows the localiza-

tion performance of the DNNs trained by HRTF 1 and

HRTF 10 on the test sets generated by different HRTFs.

Figure 7 indicates that the localization accuracy of the

trained DNN in thematchedHRTF condition is 100%, and

the DNN trained by HRTF 10 also performs well on test

sets generated by the HRTF 19 and HRTF 43, respectively.

This indicates that if two DNNs are trained by a pair of

similar HRTFs respectively, the localization performances

of them on the same test set are also similar, and there is a

certain clustering trend between different HRTFs.

Figure 8 shows the localization accuracies of the differ-

ent DNNs on different test sets. For the jth row in ith
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Fig. 5 The localization performance of the DNN trained with different training set size on different test sets. The training set is generated by the first

HRTF in CIPIC

column, it means a DNN is trained by the training set

generated by the HRTF i and then evaluated on the test

set generated by the HRTF j. It can be seen that local-

ization accuracies between different HRTFs are different,

and the accuracies on the diagonal line correspond to the

matched HRTF condition and all reach to 100%. Besides

the diagonal line, the localization accuracy at (21,12) is

also 100%, which indicates that the similarity between the

HRTF 12 and HRTF 21 is very high and the DNNs trained

by them respectively can be substituted for each other.

The localization accuracy at (6,27) is the lowest, reaching

to 2.64%, which indicates that there is a great difference

between the HRTF 6 andHRTF 27. For the HRTF 6, HRTF

7, and HRTF 38, the localization accuracies among them

are relatively high. However, the localization accuracies

between each of them and other HRTFs are low, which

may be due to the special physiological structure of the

corresponding subjects which are different from that of

most subjects.

3.3 Clustering analysis based on affinity propagation

Figure 8 shows the localization accuracies of the DNNs

trained by each HRTF respectively on different test sets

generated by different HRTFs, and it also reflects the

localization similarity between HRTFs. Therefore, the

cluster analysis could be applied based on this similar-

ity matrix to find the most representative HRTFs. The

DNN trained by a representative HRTF will perform

Fig. 6 The localization performance of the DNN with different numbers of nodes in hidden layers on different test sets. The training set is generated

by the first HRTF in CIPIC
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Table 1 The average localization performance of the DNN

trained with different training set sizes and nodes number in the

hidden layer

200 nodes 500 nodes 1000 nodes

25,000 sounds 42.08% 42.15% 42.41%

2500 sounds 41.32% 41.39% 42.23%

well on the test sets generated by the unmatched but

similar HRTFs.

In stage 2, we apply the clustering analysis to the sim-

ilarity matrix based on the affinity propagation (AP)

algorithm. Compared with the common clustering algo-

rithms such as K-means and hierarchical clustering, the

AP algorithm has many unique advantages that meet the

requirements in this paper:

• When clustering the HRTFs based on localization

accuracy, we have no prior information about the

number of clusters. With the AP algorithm, the

number of the clusters does not need to be specified

beforehand like the K-means.
• After clustering, the HRTFs corresponding to the

centers of each cluster are selected to train a more

generalized DNN model. If we use the K-means

algorithm, the center of the cluster may be the

average of multiple sample points instead of an

existing sample point, which will lead to a result that

the center may not correspond to a real HRTF, so

that the stage 3 of the proposed method cannot be

carried out. The AP algorithm treats all sample points

as the potential cluster center, and the center of the

cluster is an existing sample point, therefore the

center corresponds to a real HRTF.
• When testing, the accuracy of the DNN model

trained by HRTF i on the test set generated by HRTF

j may not equal to the accuracy of the DNN model

trained by HRTF j on the test set generated by HRTF

i, in other words, for the similarity matrix, there may

be Acc(i, j) �= Acc(j, i), which limits the application

of the K-means and hierarchical algorithms, etc.

However, the AP algorithm can be applied to the

Table 2 The average localization performance of the DNN

trained with different number of hidden layers and different

number of nodes in the hidden layer

Number of nodes
Number of hidden layers

1 2 3

25 42.10% 41.66% 41.57%

50 41.60% 41.05% 41.35%

100 41.34% 41.44% 41.55%

problems where the similarity matrix is not

symmetric.

With these advantages, the AP algorithm is used in

stage 2.

3.3.1 Affinity propagation

For the sample points to be clustered, the AP algorithm

takes the similarity between each pair of sample points

as an input and the cluster center of each sample point

as an output. At the beginning of clustering, the AP

algorithm treats each sample point as a potential clus-

ter center, searches the cluster center of each point by

exchanging messages between sample points and updates

the affiliation between the sample point and the data

center. Then, the data set is divided according to the

affiliation, and the cluster center C
(
i
′
)
of each sample

point is obtained. There are two kinds of messages to be

exchanged, namely “responsibility” and “availability.” The

responsibility is represented by R
(
i
′
, k

′
)
, and it is sent

from the point i
′
to the candidate cluster center point k

′
,

which indicates the evidence for how appropriate it would

be for the point k
′
served as the cluster center of the

point i
′
. The availability is represented by A

(
i
′
, k

′
)
, and

it is sent from the candidate cluster center point k
′
to the

point i
′
, which shows the evidence for how appropriate

it would be for the point i
′
to choose the point k

′
as the

cluster center.

Initially, the availabilities are set to zero: A
(
i
′
, k

′
)

= 0.

Then, the responsibilities are updated as follows:

R
(
i
′
, k

′
)

← S
(
i
′
, k

′
)

− max
j
′
:j
′
�=k

′

{
A

(
i
′
, j

′
)

+ S
(
i
′
, j

′
)}

, (9)

where the S
(
i
′
, k

′
)
is the similarity which indicates how

well the sample point k
′
is suited to be the cluster center

for sample point i
′
. For k

′
= i

′
, the S

(
k

′
, k

′
)
refers to the

“preference” and is denoted as p. The larger the value of p,

the point k
′
is more likely to be chosen as the cluster cen-

ter. The number of clusters is influenced by p. In general,

the p could be the median of the similarity matrix, which

leads to a moderate number of clusters.

The availabilities are updated as follows:

A
(
k

′
, k

′
)

←
∑

j
′
:j
′
�=k

′

max
{
0,R

(
j
′
, k

′
)}

, (10)

A
(
i
′
, k

′
)
←min

⎧
⎨
⎩0,R

(
k

′
, k

′
)

+
∑

j
′
:j
′
�∈{i

′
,k

′
}

max
{
0,R

(
j
′
, k

′
)}

⎫
⎬
⎭ . (11)
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Fig. 7 The localization performance of the DNNs trained by HRTF 1 and HRTF 10 respectively on different test sets

The cluster centers of each sample point are updated as

follows:

C
(
i
′
)

← argmax
k
′

R
(
i
′
, k

′
)

+ A
(
k

′
, i

′
)
. (12)

To avoid parameter oscillation during the iterations, the

AP algorithm introduces a damping coefficient λ between

0.5 and 1 when updating the messages. The value of each

message is weighted by its last updated value and current

value:

Rv+1

(
i
′
, k

′
)

← (1 − λ)Rv+1

(
i
′
, k

′
)

+ λRv

(
i
′
, k

′
)
, (13)

Av+1

(
i
′
, k

′
)

← (1 − λ)Av+1

(
i
′
, k

′
)

+ λAv

(
i
′
, k

′
)
. (14)

In each iteration of the AP algorithm, the responsibil-

ity and availability are updated; then, the result is updated.

The iteration will be terminated if any of the following

three conditions occurs:

• The preset number of the iterations is reached.
• Changes in the messages fall below a threshold.

Fig. 8 Localization similarity between HRTFs

• The local decisions stay constant for some number of

iterations.

3.3.2 Result of clustering analysis

For the AP algorithm, the two most important param-

eters are the preference p and the damping coefficient

λ. The number of clusters is influenced by the values of

the preferences and the message-passing procedure. λwill

affect the convergence of the algorithm. Figure 9 shows

the number of clusters corresponding to different values

of p and λ, where p ranges from − 5 to 5 with the step of

0.01, and λ ranges from 0.5 to 0.95 with the step of 0.05.

It can be seen that the larger the value of p, the more the

number of clusters, and the smaller the value of p, the

fewer the number of clusters. Besides, the change of λ has

little effect on the number of clusters, while the change of

p has a greater influence on the number of clusters. Based

on this result, the clustering results at λ = 0.5 will be

further studied in stage 3.

Figure 10 shows the effect of the p on the number of

clusters at λ = 0.5. When the value of p is small, for exam-

ple, when p = − 4.6, the number of clusters is 1, which

means all HRTFs belong to the same cluster. When the

value of p is large, for example, when p = 1.1, the num-

ber of clusters is 45, which means each HRTF belongs to a

separate cluster. When the value of p is set to the median

of the similarity matrix, the number of clusters is 7, and

the corresponding clustering results are shown in Table 3.

It can be seen that the number of HRTFs in each clus-

ter is different. The largest cluster is the cluster 3 with 11

HRTFs, and the smallest cluster is the cluster 7 with only

3 HRTFs.

Table 4 shows the average localization accuracy of each

DNN trained by the HRTF corresponding to the center

of each cluster respectively on each test set generated by

all HRTFs in each cluster respectively. It shows that the

DNN trained by the HRTF corresponding to the center

of a certain cluster performs better on the test set gener-

ated by the HRTFs from the same cluster than on the test

sets generated by the HRTFs from other clusters. On the
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Fig. 9 Cluster numbers of different p and different λ

diagonal line, six of seven localization accuracies are more

than 80%, which indicates that the HRTF corresponding

to the cluster center obtained by AP algorithm is a reason-

able approximation of other HRTFs in the same cluster,

and the DNN model trained by the HRTF correspond-

ing to the cluster center can provide good localization

performance for the test sets generated by HRTFs in the

cluster.

3.4 Improving the generalization performance

Generally speaking, in deep learning, the more diverse

the data used for training, the better the generalization

Fig. 10 Cluster numbers of different p at λ = 0.5

performance of the trained model. Therefore, in stage 3,

we propose to generate a new training set by multiple

HRTFs to train the DNNmodel. However, using all HRTFs

to train a DNN may lead to data-inefficiency. Consider-

ing that the DNN trained by the HRTF corresponding to

each cluster center has better localization performance on

the test sets generated by the HRTFs in the same cluster,

we select the HRTF corresponding to each cluster center

to generate a new training set jointly. Therefore, a more

generalized DNN model will be obtained by just a few

HRTFs.

To compare the generalization performance of DNN

trained by the HRTFs corresponding to the cluster center

(central HRTF) and DNN trained by the HRTFs not corre-

sponding to the cluster center (non-central HRTF), we set

p as the median of the similarity matrix, and the result of

clustering is shown in Table 3. Then, we choose seven cen-

tral HRTFs to train the DNN model, and the indexes are

4, 10, 13, 14, 24, 33, and 38. After that we select the same

number of non-central HRTFs to train the DNN model

in the same way. We repeat the experiment three times.

The first group of non-central HRTF comes from all clus-

tering respectively, and the indexes are 3, 6, 16, 20, 30,

34, and 39; the second group comes from the cluster 2,

and the indexes are 1, 12, 15, 19, 21, 34, and 43; the third

group comes from the third cluster 3, and the indexes are

5, 26, 31, 32, 35, 36, and 44, respectively. In the test stage

of each comparison, the test sets are generated by the

HRTFs which have not been used for training the DNN
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Table 3 The cluster result when the number of clusters is 7

Cluster index HRTF number HRTF index Central HRTF indexes

Cluster 1 5 4,16,18,23,45 4

Cluster 2 8 1,10,12,15,19,21,34,43 10

Cluster 3 11 5,13,25,26,30,31,32,35,36,42,44 13

Cluster 4 5 3,8,11,14,17 14

Cluster 5 7 9,24,28,37,39,40,41 24

Cluster 6 6 2,20,22,27,29,33 33

Cluster 7 3 6,7,38 38

model, therefore the test sets in the three comparison

experiments are different. Then, the average localization

accuracy on all test sets is calculated.

Figure 11 shows the results of the experiments. It can be

seen that the localization accuracy of DNNmodel trained

by central HRTFs is always better than that of the DNN

model trained by non-central HRTF. This is because the

central HRTF is more representative than the non-central

HRTF, and the DNN trained by the central HRTF will be

more generalized.

4 Experiments and analyses
4.1 Dataset generation

In this paper, the HRTFs used to generate the binau-

ral sound come from the CIPIC database and RIEC

database[29]. The CIPIC database contains HRTFs of 45

subjects. Those HRTFs are measured at the distance of

1mwith 25 different azimuths and 50 different elevations,

resulting in 1250 HRTF pairs for each subject. Here, we

will focus on the binaural localization on the frontal hori-

zontal azimuth plane, so we consider 25 azimuths sampled

at − 80◦, − 65◦, − 55◦, from − 45◦ to 45◦ in steps of 5◦, at

55◦, 65◦, and 80◦.

The speech samples used to generate the binaural

sounds come from the TIMIT database [30], and the sam-

pling rate is 16kHz. To match the sampling rate of the

HRTFs in CIPIC, the speech samples are upsampled to

44.1 kHz and convolved with HRIR pair corresponding

to a certain azimuth to generate the binaural sounds,

and then the binaural sounds are downsampled to

16 kHz.

In stage 1, according to the conclusion of section 3.2.3,

for the HRTF i, we select 100 speech samples to convolve

them with the HRIR pair corresponding to each azimuth

respectively to generate the training set i, and we select

50 different speech samples for the validation set i and 50

different speech samples for the test set i. Therefore, there

is no overlap among the training set, the validation set and

the test set.

In stage 3, we set the number of clusters to 7, and com-

bine the training sets corresponding to the central HRTFs

to generate a new training set. The new validation set is

generated in the same way. In the test stage, the new DNN

is tested on each test set generated by the HRTFs which

have not been used for training DNN.

To further test the generalization performance of the

proposed method on other HRTF database, we also select

the HRTF of the first 50 subjects in the RIEC database

to generate the RIEC test sets. The generation procedure

of RIEC test sets is similar to that of CIPIC test sets.

Although the HRTF in RIEC library is recorded in the

spherical coordinate system, and the HRTF in CIPIC is

recorded in the binaural polar coordinate system, these

two coordinate systems are equivalent on the horizontal

Table 4 The average localization performance of the DNNs trained by the central HRTF in each cluster

Test set
Central HRTF

HRTF 4 HRTF 10 HRTF 13 HRTF 14 HRTF 24 HRTF 33 HRTF 38

Cluster 1 81.22% 51.58% 36.75% 27.10% 43.82% 18.62% 38.86%

Cluster 2 51.22% 84.42% 40.51% 30.18% 39.71% 25.62% 40.09%

Cluster 3 41.64% 46.90% 82.38% 59.60% 66.88% 54.07% 19.11%

Cluster 4 27.49% 31.78% 60.03% 84.38% 41.50% 54.40% 19.70%

Cluster 5 49.83% 40.90% 62.58% 41.49% 83.38% 46.49% 18.33%

Cluster 6 26.67% 26.55% 70.73% 61.75% 57.83% 86.81% 8.03%

Cluster 7 31.97% 26.77% 11.47% 12.51% 15.57% 5.28% 76.83%

Each test set is generated by the HRTFs in the same cluster
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Fig. 11 The average localization performance of the DNNs trained by

central HRTFs and non-central HRTFs respectively on all test sets

frontal plane. For each subject, we select the HRIR pairs

corresponding to the same 25 azimuths to be convolved

with 50 speech samples to get the RIEC test sets.

4.2 Experimental setting

The architecture of the DNN is determined in stage 1. The

number of nodes in each hidden layer is 200, and the num-

ber of layers is 3. In the training stage, the parameters of

DNN are randomly initialized, and then the input and out-

put features are extracted from the training set to train

DNN. The number of samples is set to 200 in each batch,

and the learning rate is set to 10−4. To prevent over-fitting,

the dropout rate is set to 20%, and the early stop strategy

is adopted. The training is stopped if the best validation

accuracy has not been updated for 10 epoch.

4.3 Baseline methods

In this paper, the proposed method is denoted as Pro-

posed. For comparison, we choose four existing methods

as the baseline methods: the average parameter model

method proposed by Raspaud [9], Pang’s generalized

parameter model method [1] based on Raspaud [9], Ma’s

[18] method based on DNN, and the convention method

based on TDOA [2]. The basic procedure of Raspaud’s

method is firstly, ITD and ILD cues are modeled as the

product of a function of azimuth and a function of fre-

quency; then, in the offline stage, ITD and ILD cues

corresponding to each azimuth are extracted from the

HRTF of each subject in CIPIC database and fed into the

model to calculate the parameter corresponding to each

subject; and finally, in the test stage, the ITD and ILD

cues which are extracted from the sounds are to be esti-

mated, and ILD cue is fed into the average parameter

model to estimate the correct ITD, and then the correct

ITD is fed into the parameter model to estimate the sound

source localization. Based on Raspaud’s method, Pang’s

method introduces reverberation weighting to improve

the performance in reverberation environment. At the

same time, the least square method is used to replace

simple averaging operation when calculating the model

parameters. The procedure ofMa’s method is firstly, Gam-

matone filter bank is used to divide the sound into several

frequency bands in the training stage; then, the features

of each frequency band are extracted to train a DNN

model respectively; and after that, in the test stage, the

features are extracted from the test sounds and fed into

the model, at the same time head movement strategy is

combined to reduce the front-back confusion. The pro-

cedure of TDOA is firstly, the time delay between the

signal in left and right channels is estimated by general-

ized cross-correlation phase transform; then, the sound

source localization is calculated by geometry equations.

In subsequent experiments, these methods are denoted as

Raspaud, Pang, Ma, and GCC-PHAT, respectively.

When we reproduce the Raspaud method and the Pang

method, we refer to the parameter settings in Pang’s work

[1]. The sound speed is set to 344m/s, and the head radius

γ is set to 7 cm, which is the mean head radius in the

CIPIC database. Besides, it is mentioned in Pang’s work

that appling reverberation weighting on anechoic binau-

ral sound would reduce localization performance. So in

this paper, we don’t reproduce the reverberation weighting

module in Pang’s method. When reproducing the method

of Ma, one DNN is trained for each subband, and a total

of 32 DNNs are trained. The number of nodes in the hid-

den layer of the network is consistent with the proposed

method. The localization on the horizontal frontal plane

is studied in this paper and there is no front-back confu-

sion, so we do not reproduce the head movement module

in Ma’s method. In the training stage, we use the training

set generated by the HRTF 45 to train the DNNs in Ma’s

method. As for GCC-PHAT, the head radius is considered;

therefore, the geometry equation is as follows:

(θg + sin θg)γ = �tc, (15)

where the θg refers to the ground truth azimuth, the �t

refers to the time delay, the γ refers to the head radius,

and the c refers to the sound speed. For consistency with

Pang’s work [1], we set the head radius to 7 cm and the

sound speed to 344m/s.

For GCC-PHAT, the estimated azimuth may not be one

of the 25 existing azimuths, and we choose the closest one

from the existing azimuths as the final azimuth.

4.4 Experimental results

Figure 12 shows the localization accuracy and the error

of the proposed DNN- and clustering-based binaural

localization method and the baseline methods on the

CIPIC test sets in the mismatched HRTF conditions. The
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Fig. 12 The localization performance of the proposed method and the baseline methods. The test sets are generated by the HRTFs other than the

HRTF 4, 10, 13, 14, 24, 33, 38, and 45

test sets are generated by the HRTFs other than the HRTF

4, 10, 13, 14, 24, 33, 38, and 45. Such HRTFs have not

been used for training the DNN of the proposed method

and Ma’s method. It can be seen that the methods based

on HRTF or DNN are better than GCC-PHAT, which is

because TDOA is relatively simple and it may not be able

to describe the mechanism of the binaural localization

precisely. Compared with Raspaud and Pang’s methods,

our method has higher localization accuracy and lower

error onmost test sets than those parametricmodel meth-

ods. This is because the parametric model methods only

describe binaural cues as the product of frequency and

azimuth functions, that is, the parametric model is rela-

tively simple, while DNN is powerful in modeling, and it

can perform better in learning the non-linear relationship

between localization features and azimuth.

Compared with the method ofMa, our method achieves

higher localization accuracy and lower error on most test

sets, while Ma’s method is better on a few test sets (e.g.,

test sets generated by the HRTF 12 and 21). It is because

Ma’s method only considers the HRTF 45 which has a

higher localization similarity to the HRTF 12 and 21 and

just performs well on such kind of test sets. However,

the HRTF 45 has a relatively low localization similarity to

other kind of HRTFs. So on other test sets, the localization

accuracy of Ma’s method will decline and the localiza-

tion error will increase. The proposed method uses the

HRTFs corresponding to the cluster centers which are

more representative to generate the training sets and also

improve the diversity of data in training sets. Therefore,

the DNN model trained by the central HRTFs together

can learn the common characteristics and achieves better

generalization performance than the DNNmodels trained

by the central HRTF alone.

Figure 13 shows the distribution of the ground truth

azimuth versus the estimated azimuth. The point on

the diagonal line means the correct estimation that the

ground truth azimuth is equal to the estimated azimuth,

and the point not on the diagonal line means the wrong

estimation. In each graph, the probability of point (X,Y )

for all test sets is calculated as follows:

P
′
(X,Y ) =

∑
j

Nθg=X ,̂θ=Y

∑
j

Nθg=X
, (16)

where the P
′
refers to the probability, the X and the Y refer

to the coordinate values in the graph, and the N is the

number of the sounds that meet with a certain condition.

The θg , θ̂ and j refer to the ground azimuth, the estimated

azimuth and the index of the test set, respectively. The

larger the point, the higher the probability. It can be seen

that the distributions of the Proposed and Ma’s methods

are better than the others, especially when the azimuth

value is larger and the probability of the wrong estima-

tion is lower. This indicates that the DNN-based method

is more powerful in modeling.

Table 5 shows the comparison of the average localiza-

tion accuracy and error between the proposed method

and the baseline methods on test sets generated by all

the mismatched HRTFs from the CIPIC database. It can

be seen that the proposed method achieves higher local-

ization accuracy and lower error than other methods,

which also indicates that the proposed method has better

generalization performance.

In stage 2, the AP clustering analysis is applied, and

different parameters correspond to the different num-

ber of central HRTFs. Therefore, in stage 3, the number

of the central HRTFs in training sets will be different

when training new DNN model. We study the effect of

the numbers of the central HRTFs with the proposed

method. Figure 14 shows the localization performance
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Fig. 13 The distribution of the ground truth azimuth and the estimated azimuth. The larger the point in the graph, the greater the probability

of the proposed method which is evaluated on the test

sets generated by all HRTFs from CIPIC database, and

then the average localization accuracy is calculated. Con-

sidering the better performance of the Pang’s and Ma’s

methods within the baseline methods, we only compare

the proposedmethod with such goodmethods here. It can

be seen that the proposed method is always better than

the baseline methods. This is because the DNN model

can learn the non-linear relationship between localization

features and azimuth more accurately than the paramet-

ric model in Pang’s method. By introducing the central

HRTFs in the training sets, we find that the generaliza-

tion performance of our method is better than that of

the Ma’s method which uses non-central HRTF. When

the number of central HRTFs is 1, the proposed method

has achieved good localization performance. With the

increase in the number of central HRTFs, the localiza-

tion performance has been further improved. It is because

that among the test sets the proportion of the HRTF that

appeared in the training set is gradually increasing, while

the proportion of HRTF that did not appear is gradu-

ally decreasing. Therefore, the performance of the DNN

on all CIPIC test sets is getting better. The localization

performance when the number of the central HRTFs is

40 is slightly lower than that when the number of the

central HRTFs is 35. This may be because when the num-

ber of the central HRTFs changes from 35 to 40, the

newly introduced HRTFs are quite different from most

HRTFs in CIPIC database. During the training procedure,

to fit the distribution of the data set generated by the

newly introduced HRTFs, we adjust the existing distribu-

tion which is similar to most of the HRTFs. Although the

DNNmodel improves the localization performance on the

Table 5 The average localization performance of the proposed

method and the baseline methods

Method Average accuracy Average error (°)

Proposed 60.43% 2.60

Pang 54.37% 3.67

Raspaud 46.11% 4.42

Ma 50.62% 3.17

GCC-PHAT 27.74% 7.19

newly introduced HRTFs, the localization performance of

other HRTFs is reduced, which leads to the decline of the

overall localization performance.

Figure 15 shows the average localization accuracy of

the proposed method on RIEC test sets under differ-

ent numbers of central HRTFs. It can be seen that our

method is still better than Pang’s method, which indi-

cates that the proposed method also has good general-

ization performance on different HRTF databases. When

the number of clusters is 1, our method still has good

performance. With the increase of the number of cen-

tral HRTFs, the localization performance does not show

the overall trend of improvement as shown in Fig. 14, but

first decreases and then increases. This may be because,

in the CIPIC database, the HRTFs of European and Amer-

ican races are the majority, while in the RIEC database,

the HRTFs of East Asian races are the majority. Differ-

ences between the two races lead to different HRTFs in

the CIPIC database and the RIEC database. In the exper-

iment of this paper, when the number of clusters is 1,

the central HRTF may achieve a balance between Euro-

pean and American races and east Asian races. As the

number of central HRTFs increases to 20 under which

conditionmore central HRTFs of European and American

races may be introduced to the training set, the differences

between the newly introduced HRTFs and the HRTFs in

Fig. 14 The average localization performance of the DNN trained by

different numbers of central HRTFs on all CIPIC test sets
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Fig. 15 The average localization performance of the DNN trained by

different numbers of central HRTFs on all RIEC test sets

the RIEC test sets may be larger, which decreases the

average localization performance on the RIEC test sets.

When the number of central HRTFs increases to 45, the

balance between European and American races and East

Asian races is achieved once again, which improves the

average localization performance. However, as the num-

ber of the central HRTFs increases, the changes of the

localization performance are small. Because each central

HRTF is a reasonable approximation of other HRTFs in

the same cluster, the DNN trained by the central HRTFs

could achieve similar generalization performance to the

DNN trained by any other HRTFs in the same cluster. This

result indicates that the proposedmethod is data-efficient.

5 Conclusion
In this paper, we study the binaural localization in themis-

matched HRTF condition and propose a binaural sound

localization method based on DNN and clustering. Firstly,

we introduce the existing binaural localization methods

and point out that the performance of these methods will

decline in the mismatched HRTF condition. Then, we

study the performance of the classification-based DNN

localization method in the matched and mismatched

HRTF conditions. The results show that in the mis-

matched HRTF condition, the DNNmodel has poor local-

ization performance on the test sets generated by most

HRTFs. However, it still has good localization perfor-

mance on the test sets generated by several HRTFs, which

indicates that there is the similarity between HRTFs.

Then, we analyze the localization similarity among all

HRTFs. Specifically, we train the DNNs by the training set

generated by each HRTF respectively and test them on the

test sets generated by each HRTF, respectively. The results

show that there is a clustering trend among HRTFs. We

also cluster HRTFs according to the localization similarity

between HRTFs. All HRTFs are clustered into several

clusters. The localization similarity between the HRTFs

from the same cluster is very high, while the localization

similarity between the HRTFs from different clusters is

low. The HRTF corresponding to each cluster center is

a reasonable approximation of other HRTFs in the same

cluster. Finally, we select the HRTFs corresponding to

the center of the clusters to train a new DNN model to

improve the generalization performance. The comparison

between the proposed method and the baseline meth-

ods shows that the proposed binaural localization method

based on DNN and clustering has better generalization

performance in the mismatched HRTF condition. In our

future work, we plan to conduct in-depth research on

more efficient neural network structures and the localiza-

tion in more complex mismatched conditions such as the

condition in which the noise type, the reverberation time,

and the HRTF are all mismatched.
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