
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 113

Binder 2.0 - Reproducible, interactive, sharable

environments for science at scale

Project Jupyter‡†, Matthias Bussonnier‖†, Jessica Forde‡†, Jeremy Freeman‡‡†, Brian Granger§†, Tim Head¶†, Chris

Holdgraf‖∗, Kyle Kelley†††, Gladys Nalvarte∗∗†, Andrew Osheroff‡‡†, M Pacer†††, Yuvi Panda‖†, Fernando Perez‖†,

Benjamin Ragan-Kelley∗∗†, Carol Willing§†

https://youtu.be/KcC0W5LP9GM

✦

Abstract—Binder is an open source web service that lets users create sharable,

interactive, reproducible environments in the cloud. It is powered by other core

projects in the open source ecosystem, including JupyterHub and Kubernetes

for managing cloud resources. Binder works with pre-existing workflows in the

analytics community, aiming to create interactive versions of repositories that

exist on sites like GitHub with minimal extra effort needed. This paper details

several of the design decisions and goals that went into the development of the

current generation of Binder.

Index Terms—cloud computing, reproducibility, binder, mybinder.org, shared

computing, accessibility, kubernetes, dev ops, jupyter, jupyterhub, jupyter note-

books, github, publishing, interactivity

Binder is a free, open source, and massively publicly available

tool for easily creating sharable, interactive, reproducible environ-

ments in the cloud.

The scientific community is increasingly unified around re-

producibility. A survey in 2016 of 1,576 researchers reported that

90% of respondents believed there exists a reproducibility crisis in

the scientific community. A majority of respondents also reported

difficulty reproducing the work of colleagues [Bak16]. Similar

results have been reported in the cell biology community [The]

and the machine learning community [Pin17]. Making research

reproducible requires pursuing two sub-goals, both of which are

difficult to achieve:

• technical reproducibility:

making reproducible scientific results possible at all

• practical reproducibility:

enabling others to reproduce results without difficulty

Both technical and practical reproducibility depend upon the

software and technology available to researchers at any moment

in time. With the growth in open source tools for data analysis,

† These authors contributed equally.

‡ Project Jupyter

|| UC Berkeley

‡‡

§ Cal Poly, San Luis Obispo

¶ Wild Tree Tech, Switzerland

* Corresponding author: choldgraf@berkeley.edu

†† Netflix

** Simula Research Lab

Copyright © 2018 Project Jupyter et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

as well as the “data heavy” approach many fields are adopting,

these problems become more complex yet more tractable than

ever before.

Fortunately, as the problem has grown more complex, the

open source community has risen to meet the challenge. Tools for

packaging analytics environments into “containers” allow others to

re-create the computational environments needed to run analyses

and evaluate results. Online communities make it easier to share

and discover scientific results. A myriad of open source tools

are freely available for doing analytics in open and transparent

ways. New paradigms for writing code and displaying results in

rich, engaging formats allow results to live next to the prose that

explains their purpose.

However, manual implementation of this processes is complex,

and reproducing the full stack of another person’s work is too

labor intensive and error-prone for day-to-day use. A recent study

of scientific repositories found that citation of "both visualization

tools as well as common software packages (such as MATLAB)

was a widespread failure" [SSM18]. As a result, the technical

barriers limit practical reproducibility. To lower the technical

barriers of sharing computational work, we introduce Binder 2.0,

a tool that we believe makes reproducibility more practically

possible.

An overview of Binder

Binder consists of a set of tools for creating sharable, interactive,

and deterministic environments that run on personal computers

and cloud resources. It manages the technical complexity around:

• creating containers to capture a code repository and its

technical environment;

• generating user sessions that run the environment defined

in those containers; and

• providing links that users can share with others to allow

them to interact with these environments.

Binder is built on modern-day tools from the open source

community and is itself fully open source for others to use.

You can access a public deployment of Binder at mybinder.org,

a web service that the Binder and JupyterHub teams run as a

demonstration of the BinderHub technology and as digital public

infrastructure for those who wish to share Binder links so that

others may interact with their code repositories. It is meant to be a

https://youtu.be/KcC0W5LP9GM
mailto:choldgraf@berkeley.edu
https://mybinder.org

114 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

testing ground for different use cases in the Binder ecosystem

as well as a public service for the scientific and educational

community. mybinder.org serves nearly 9,000 daily sessions,

and has already been used for reproducible publishing1, sharing

interactive course materials2, at the university and high-school

level, creating interactive package documentation in Python3 with

Sphinx Gallery, and sharing interactive content that requires a

language-specific kernel in order to run4.

Binder continues in the tradition of promoting "the complete

software development environment and the complete set of in-

structions which generated the figures" [BD95] by effortlessly

providing these tools to the general public in the cloud. The first

iteration of Binder was released in 2016 [FO16] and provided

a prototype that managed reproducible user environments in the

cloud. In the years since, there have been several advances in

technology for managing cloud resources, serving interactive user

environments, and creating reproducible containers for analytics.

Binder 2.0 utilizes these new tools, and it is more scalable and

maintainable, is easier to deploy, and supports more analytic

and scientific workflows than before. While previous work has

specified methods or file formats for the sharing of research

[BD95] [GL07] [LV15], Binder only requires configuration files

typically seen in contemporary software development. Related on-

line platforms for reproducibility also have specific front ends for

presenting research and commands for running code [AESM17]

[LV15] [SHP12], while Binder flexibly allows users to inter-

act with a repository using modern data science tools such as

RStudio, Jupyter Notebok, and JupyterLab. By containerizing the

environment and using these front-end data science tools, Binder

prioritizes an interactive user experience so that "someone else can

discover it for themselves" [Som18].

At the highest level, Binder is a particular combination of

open source tools to achieve the goal of sharable, reproducible

environments. This paper lays out the technical vision of Binder

2.0, including the guiding principles and goals behind each piece

of technology it uses. It also discusses the guiding principles

behind the new open source technology that the project has

created.

Guiding Principles of Binder

Several high-level project goals drive the development of Binder

2.0. These are outlined below:

Deployability. Binder is driven by open source technology,

and the BinderHub server should be deployable by a diverse

representation of people in the scientific, publishing, and data

analytic communities. This often means that it must be maintained

by people without an extensive background in cloud management

and dev-ops skills. BinderHub (the underlying technology behind

Binder) should thus be deployable on a number of cloud frame-

works, and with minimal technical skills required.

Maintainability. Deploying a service on cloud resources is

important but happens less frequently than maintaining those

cloud resources all day, every day. Binder is designed to utilize

modern-day tools in cloud orchestration and monitoring. These

1. https://github.com/minrk/ligo-binder

2. https://www.inferentialthinking.com/chapters/01/3/plotting-the-
classics.html

3. https://sphinx-gallery.readthedocs.io/en/latest/advanced_configuration.
html#binder-links

4. http://greenteapress.com/wp/think-dsp/

tools minimize the time that individuals must spend ensuring that

the service performs as expected. Recognizing the importance

of maintainability, the Binder team continues to work hard to

document effective organizational and technical processes around

running a production BinderHub-powered service such as my-

binder.org. The goal of the project is to allow a BinderHub service

to be run without specialized knowledge or extensive training in

cloud orchestration.

Pluggability. Binder’s goal is to make it easier to adopt and

interact with existing tools in the open source ecosystem. As

such, Binder is designed to work with a number of open source

packages, languages, and user interfaces. In this way, Binder acts

as glue to bring together pieces of the open source community,

and it easily plugs into new developments in this space.

Accessibility. Binder should be as accessible as possible to

members of the open source, scientific, educational, and data

science communities. By leveraging pre-existing workflows in

these communities rather than requiring people to adopt new

ones, Binder increases its adoption and user acceptance. Input

and feedback from members of those communities guide future

development of the technology. As a key goal, Binder should

support pre-existing scientific workflows and improve them by

adding sharability, reproducibility, and interactivity.

Usability. Finally, the Binder team wants simplicity and fast

interaction to be core components of the service. Minimizing

the number of steps towards making your work sharable via

Binder helps provide an effective user experience. Consumers

of shared work must be able to quickly begin using the Binder

repository that another person has put together. To achieve these

goals, creating multiple ways in which people can use Binder’s

services is key. For example, easily sharing a link to the full

Binder interface and offering a public API endpoint to request and

interact with a kernel backed by an arbitrary environment increase

usability.

In the following sections, we describe the three major technical

components that the Jupyter and Binder teams have developed for

the Binder project—JupyterHub, repo2docker, and BinderHub. All

are open source, and rely heavily on other tools in the open source

ecosystem. We’ll discuss how each feeds into the principles we’ve

outlined above.

Scalable interactive user sessions

Binder runs as either a public or a private web service, and it

needs to handle potentially large spikes in user sessions as well

as sustained user activity over several minutes of time. It also

needs to be deployable on a number of cloud providers in order

to avoid locking in the technology to the offerings of a single

cloud service. To accomplish this Binder uses a deployment of

JupyterHub that runs on Kubernetes, both of which contribute to

BinderHub’s scalability and maintainability.

JupyterHub, an open source tool from the Jupyter commu-

nity, provides a centralized resource that serves interactive user

sessions. It allows definition of a computational environment

(e.g. a Docker image) that runs the Jupyter notebook server.

A core principle of the Jupyter project is to be language- and

workflow-agnostic, and JupyterHub is no exception. JupyterHub

can be used to run dozens of languages served with a variety of

user interfaces, including Jupyter Notebooks [Bus18], JupyterLab

[Pro17b], RStudio [Pro17a], Stencila [RN18], and OpenRefine

[Hea18].

https://mybinder.org
https://github.com/minrk/ligo-binder
https://www.inferentialthinking.com/chapters/01/3/plotting-the-classics.html
https://www.inferentialthinking.com/chapters/01/3/plotting-the-classics.html
https://sphinx-gallery.readthedocs.io/en/latest/advanced_configuration.html#binder-links
https://sphinx-gallery.readthedocs.io/en/latest/advanced_configuration.html#binder-links
http://greenteapress.com/wp/think-dsp/
https://mybinder.org
https://mybinder.org

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 115

Fig. 1: Two example user interfaces that users can run within Binder. Because BinderHub uses a JupyterHub for hosting all user sessions,
one can specify an environment that serves any Jupyter-supported user interface, provided that it can run via the browser. A. Examining image
data from Ross et al. on Binder with JupyterLab [RHDV17]. JupyterLab provides access to the file system (left column), a notebook interface
(middle column), as well as traditional script files and interactive kernels (right column). B. An RStudio interface running the modern RStudio
and tidyverse stack. In both cases, users can explore the code and make their own modifications from within the Binder session, without
any need to manually install dependencies.

Another key benefit of JupyterHub is that it is straightforward

to run on Kubernetes, a modern-day open source platform for

orchestrating computational resources in the cloud. Kubernetes

can be deployed on most major cloud providers, self-hosted

infrastructure (such as OpenStack deployments), or even on an

individual laptop or workstation. For example, Google Cloud

Platform, Microsoft Azure, and Amazon AWS each have managed

Kubernetes clusters that run with minimal user intervention. Thus,

it is straightforward to deploy JupyterHub on any major cloud

provider.

Kubernetes is designed to be relatively self-healing, often

automatically resolving problems that would normally disrupt the

service. It also has a declarative syntax for defining the cloud re-

sources that are needed to run a web service. Thus, maintainers can

update a JupyterHub running on Kubernetes with minimal changes

to configuration files for the deployment, providing the flexibility

to configure the JupyterHub as needed, without requiring a lot of

hands-on intervention and tinkering.

Finally, Kubernetes is both extremely scalable and battle-tested

because it was originally developed to run Google’s web services.

A cloud orchestration tool that can handle the usage patterns of

a service like GMail can almost certainly handle the analytics

environments that are served with Binder. In addition, by using

Kubernetes, Binder (with JupyterHub) leverages the power of

Kubernetes’ strong open source community. As more companies,

organizations, and universities adopt and contribute to the tool, the

Binder community will benefit from these advances.

There are several use-cases of JupyterHub being used for

shared, interactive computing. For example, UC Berkeley hosts

a Foundations in Data Science [Ber] course that serves nearly

1,000 interactive student sessions simultaneously. The Wikimedia

foundation also uses JupyterHub to facilitate users accessing the

Wikipedia dataset [Wik], allowing them to run bots and automate

the editing process with a Jupyter interface. Finally, organizations

such as the Open Humans Project provide a JupyterHub for their

community [Ope] to analyze, explore, and discover interesting

patterns in a shared dataset.

Deterministic environment building - Repo2Docker

Docker [Doc] is extremely flexible, and has been used through-

out the scientific and data science community for standardizing

environments that are sharable with other people. A Docker

image contains nearly all of the pieces necessary to re-run an

analysis. This provides the right balance between flexibility (e.g.

a Docker image can contain basically any environment) and being

lightweight to deploy and store in the cloud. JupyterHub can serve

an arbitrary environment to users based off of a Docker image, but

how is this image created in the first place?

While it is possible (and common) to hand-craft a Docker

image using a set of instructions called a Dockerfile, this step

requires a considerable amount of knowledge about the Docker

platform, making it a high barrier to the large majority of scientists

and data analysts. Binder’s goal is to operate with many different

workflows in data analytics, and requiring the use of a Dockerfile

to define an environment is too restrictive.

At the same time, the analytics community already makes

heavy use of online code repositories, often hosted on websites

such as GitHub [Git] or Bitbucket [Atl]. These sites are home

to tens of thousands of repositories containing the computational

work for research, education, development, and general commu-

nication. Best practices in development already dictate storing the

requirements needed (in text files such as environment.yml)

along with the code itself (which often lives in document structures

such as Jupyter Notebooks or RMarkdown files). As a result, in

many cases the repository already contains all the information

needed to build the required environment.

Binder’s solution to this is a lightweight tool called

“repo2docker” [Pro17c]. It is an open source command line tool

that converts code repositories into a Docker image suitable for

running with JupyterHub. Repo2docker:

1) is called with a single argument, a path to a git repository,

and optionally a reference to a git branch, tag, or commit

hash. The repository can either be online (such as on

GitHub or GitLab) or local to the person’s computer.

2) clones the repository, then checks out the reference that

it has been passed (or defaults to “master”).

116 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

3) looks for one or more “configuration” files that are used

to define the environment needed to run the code inside

the repository. These are generally files that already exist

in the data science community. For example, if it finds

a requirements.txt file, it assumes that the user

wants a Python installation and installs everything inside

the file. If it finds an install.R file, it assumes the user

wants RStudio available, and pre-installs all the packages

listed inside.

4) constructs a Dockerfile that builds the environment

specified by the configuration files, and that is meant to

be run via a Jupyter notebook server.

5) builds an image from this Dockerfile, and then regis-

ters it online with a Docker repository of choice.

Repo2docker aims to be flexible in the analytics workflows it

supports, and it minimizes the amount of effort needed to support a

new workflow. A core building block of repo2docker is the “Build

Pack” - a class that defines all of the operations needed to construct

the environment needed for a particular analytics workflow. These

Build Packs have a detect method that returns True when a par-

ticular configuration file is present (e.g. requirements.txt

will trigger the Python build pack). They also have a method called

get_assemble_scripts that inserts the necessary lines into

a Dockerfile to support this workflow.

For example, below we show a simplified version of the

Python build pack in repo2docker. In this case, the detect

method looks for a requirements.txt file and, if it exists,

triggers the get_assemble_scripts method, which inserts

lines into the Dockerfile that install Python and pip. Binder uses

repo2docker to build repository images dynamically.

class PythonBuildPack(CondaBuildPack):

"""Setup Python for use with a repository."""

def __init__(self):

...

def get_assemble_scripts(self):

"""Return build-steps specific to this repo."""

assemble_scripts = super().get_assemble_scripts()

KERNEL_PYTHON_PREFIX is the env with the kernel

whether it's distinct from the notebook

or the same.

pip = '${KERNEL_PYTHON_PREFIX}/bin/pip'

install requirements.txt in the kernel env

requirements_file = self.binder_path(

'requirements.txt')

if os.path.exists(requirements_file):

assemble_scripts.append((

'${NB_USER}',

'{} install --no-cache-dir -r "{}"'.format(

pip, requirements_file)

))

return assemble_scripts

def detect(self):

"""Check if repo builds w/ Python buildpack."""

requirements_txt = self.binder_path(

'requirements.txt')

return os.path.exists(requirements_txt)

Repo2docker also supports more generic configuration files that

are applied regardless of the particular Build Pack that is detected.

For example, a file called “postBuild” will be run from the shell

after all dependencies are installed. This is often used to pre-

compile code or download datasets from the web.

Fig. 2: The BinderHub user interface. Users input a link to a public
git repository. Binder will check out this repository and build the
environment needed to run the code inside. It then provides you a link
that can be shared with others so that they may run an interactive
session that runs the repository’s code.

Finally, in the event that a particular setup is not natively

supported, repo2docker will also build a Docker image from a

plain Dockerfile. This means users are never blocked by the

design of repo2docker.

By modularizing the environment generation process in this

fashion, it is possible to mix and match environments that are

present in the final image. Repo2docker’s goal is to allow for a

fully composable analytics environment. If a researcher requires

Python 2, 3, RStudio, and Julia, simultaneously for their work,

repo2docker should enable this.

In addition, by capturing pre-existing workflows rather than

requiring data analysts to adopt new ones, there is a minimal

energy barrier towards using repo2docker to deterministically

build images that run a code repository. For example, if the

following requirements.txt file is present in a repository,

repo2docker will build an image with Python 3 and the packages

pip installed.

$ cat requirements.txt

numpy

scipy

matplotlib

While the following file name/content will install RStudio with

these R commands run before building the Docker image.:

$ cat binder/install.R

install.packages("ggplot2")

$ cat binder/runtime.txt

r-2017-10-24

In this case, the date specified in runtime.txt instructs

repo2docker to use a specific MRAN repository [Mic] date. In

addition, note that these files exist in a folder called binder/

(relative to the repository root). If repo2docker discovers a folder

of this name, it will build the environment from the contents of

this folder, ignoring any configuration files that are present in the

project’s root. This allows users to dissociate the configuration

files used to build the package from those used to share a Binder

link.

By facilitating the process by which researchers create these

reproducible images, repo2docker addresses the “works for me”

problem that is common when sharing code. There are no longer

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 117

Fig. 3: The BinderHub architecture for interactive GUI sessions. Users connect to the Binder UI via a public URL. All computational
infrastructure is managed with a Kubernetes deployment (light green) managing several pods (dark green) that make up the BinderHub
service. Interactive user pods (blue squares) are spawned and managed by a JupyterHub.

breaking differences in the environment of two users if they are

running code from the same image generated by repo2docker.

Additionally, researchers can use repo2docker to confirm that all

of the information needed to recreate their analysis is contained

within their configuration files, creating a way to intuitively define

“recipes” for reproducing one’s work.

A web-interface to user-defined kernels and interactive ses-

sions - BinderHub

JupyterHub can serve multiple interactive user sessions from

pre-defined Docker images in the cloud. Repo2docker generates

Docker images from the files in a git repository. BinderHub is the

glue that binds these two open source tools together. It uses the

building functionality of repo2docker, the kernel and user-session

hosting of JupyterHub, and a Docker registry that connects these

two processes together. BinderHub defines two primary patterns

of interaction with this process: sharable, interactive, GUI-based

sessions; and a REST API for building, requesting, and interacting

with user-defined kernels.

The BinderHub User Interface

The primary pattern of interaction with BinderHub for an author

is via its “build form” user interface. This form lets users point

BinderHub to a public git repository. When the form is filled in

and the “launch” button is clicked, BinderHub takes the following

actions:

1) Check out the repository at the version that is specified.

2) Check the latest commit hash. BinderHub compares the

version specified in the URL with the versions that have

been previously built for this repository in the registry (if

a branch is given, BinderHub checks the latest commit

hash on this branch).

3) If the version has not been built, launch a repo2docker

process that builds and registers an image from the repos-

itory, then returns a reference to the registered image.

4) Create a temporary JupyterHub user account for the

visitor, with a private token.

5) Launch a JupyterHub user session that sources the

repo2docker image in the registry. This session will serve

the environment needed to run the repository, along with

any GUI that the user specifies.

6) Clean up the user session. Once the user departs,

Binder destroys the temporary user ID for the user’s

unique session, as well as their temporary files from their

interactive session (steps 4 and 5). The Docker image for

the repository persists, and will be used in subsequent

launch attempts (as long as the repository commit hash

does not change).

Once a repository has been built with BinderHub, authors can

then share a URL that triggers this process. URLs for BinderHub

take the following form:

<bhub-url>/v2/<repoprovider>/<org>/<reponame>/<ref>

For example, the URL for the binder-examples repository

that builds a Julia environment is

mybinder.org/v2/gh/binder-examples/julia-python/master

When a user clicks on this link, they will be taken to a brief loading

page as a user session that serves this repository is created. Once

this process is finished, they can immediately start interacting with

the environment that the author has created.

The BinderHub REST API

While GUIs are preferable for most human interaction with a

BinderHub, there are also situations when a programmatic or

text-based interaction is preferable. For example, someone may

wish to use BinderHub to request arbitrary kernels that power

computations underlying a completely different GUI. For these

use cases, BinderHub also provides a REST API that controls all

of the steps described above.

BinderHub currently provides a single REST endpoint that

allows users to programmatically build and launch Binder reposi-

tories. It takes the following form:

<bhub-url>/build/<provider>/<spec>

This follows a similar pattern to BinderHub’s sharable URLs. For

example, the following API request results in a Binder environ-

ment for the JupyterLab example repository on mybinder.org:

mybinder.org/build/gh/binder-examples/jupyterlab/master

Accessing this endpoint will trigger the following events:

1) Check if the image for this URL exists in the BinderHub

cached image registry. If yes, launch it.

2) If it doesn’t exist in the image registry, check if a build

is currently running. If there is not, then start a build

process. If there is, then attach to the pre-existing build

process.

https://mybinder.org

118 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: play.nteract.io [nte16] is a GUI front-end that connects to the
mybinder.org REST API. When a user opens the page, it requests
a kernel from mybinder.org according to the environment chosen in
the top-right menu. Once mybinder.org responds that it is ready, users
can execute code that will be sent to their Binder kernel, with results
displayed on the right.

3) Stream logs from the build process to the user.

4) If the build succeeds, contact the JupyterHub API, telling

it to launch a user server with the environment that has

just been built.

5) Once the server is launched, display a message showing

the URL where they can connect to the notebook server

(and thus connect with the Jupyter Notebook Server

REST API).

Information about the process above is streamed to the user

via a persistent HTTP connection with structured JSON messages

via the EventStream protocol. Here’s an example of the output for

the above build:

data: {"phase": "built",

"imageName": "gcr.io/binder-prod/r2d-051...",

"message": "Found built image, launching..."}

data: {"phase": "launching", "message": "Launching...}

data: {"phase": "ready",

"message": "server running at <POD-URL>",

"url": "<POD-URL>",

"token": "<POD-TOKEN>"}

In this case, the user can then access the value in url: to use

their Binder session (either via their browser, or programmatically

via the notebook server REST API served at this URL).

There are already several examples of services that use Binder-

Hub’s REST API to run webpages and applications that utilize

arbitrary kernel execution. For example, thebelab [Min] makes it

possible to deploy HTML with code blocks that are powered by a

BinderHub kernel. The website creator can define the environment

needed to run code on the page, and the end user can generate

interactive code output once they visit the webpage. There are also

several applications that use BinderHub’s kernel API to power

their computation. For example, the nteract [nte16] project uses

BinderHub to run an interactive code sandbox that serves an

nteract interface and can be powered by arbitrary kernels served

by BinderHub.

BinderHub is permissively licensed and intentionally modular

in order to serve as many use cases as possible. Our goal is

to provide the tools to allow any person or organization to

provide arbitrary, user-defined kernels that run in the cloud. The

Binder team runs one such service as a proof-of-concept of the

technology, as well as digital public infrastructure that can be used

to share interactive code repositories. This service runs at the URL

mybinder.org and will be discussed in the final section.

Mybinder.org: Maintaining and sustaining a public service

In addition to providing a showcase for the technical components

of the BinderHub, repo2docker, and JupyterHub architecture,

the Binder project is also a case study in the maintenance and

deployment of an open-source service. Managing and providing

a site such as mybinder.org is not trivial, with challenges in

team operations, maintaining service stability without any full-

time staff, and exploring models for keeping the project financially

sustainable over time. This final section describes recent efforts to

address some of these questions, and to explore possible outcomes

for others.

The Binder team (and thus mybinder.org) runs on a model

of transparency and openness in the tools it creates as well

as the operations of mybinder.org. The Binder team has put

together several group processes and documentation to facilitate

maintaining this public service, and to provide a set of resources

for others who wish to do the same. For example, the Binder Site

Reliability Guide5 is continuously updated with team knowledge,

incident reports, helper scripts, and a description of the technical

deployment at mybinder.org. There are also several data streams

that the Binder team routinely makes available for others who are

interested in deploying and maintaining a BinderHub service. For

example, the Binder Billing6 repository shows all of the cloud

hardware costs for the last several months of mybinder.org oper-

ation. In addition, the Binder Grafana board7 shows a high-level

view of the status of the BinderHub, JupyterHub, and Kubernetes

processes underlying the service.

Cost of running the public Binder service

The Binder team has designed the public service to be as cost

effective as possible. mybinder.org restricts users to one CPU and

two GB of RAM. We save a great deal by not providing users with

persistent storage across sessions. Users can only access public git

repositories and are restricted in the kinds of network I/O that can

take place. In addition, a BinderHub deployment efficiently uses

its resources in order to avoid over-provisioning cloud resources.

The decision to avoid the notion of a user "identity" in partic-

ular has strong effects on the cost of running a BinderHub server.

Because users do not require persistent storage (e.g. the content

of any changes they make to Jupyter Notebooks throughout a

session), a significant cost of running a JupyterHub is avoided.

In addition, a BinderHub deployment can efficiently use the

resources available to it in order to avoid over-provisioning cloud

resources as much as possible.

Currently, the hosting bill for mybinder.org runs at a cost of

around $180 per day and around 7,000 users per day. This comes

out to around 180×30
7000×30 ≈ 3 cents per user. The mybinder.org team

publishes its daily hosting costs in a public repository on GitHub

[Jup18]. It hopes that this serves to encourage other organizations

to deploy BinderHub for their own purposes, since it is possible

to do so in a cost-effective manner.

Finally, because Kubernetes is an open source system for

managing containers, it has been deployed on a number of cloud

providers as well as on self-owned hardware and virtual machines.

5. http://mybinder-sre.readthedocs.io/en/latest/

6. https://github.com/jupyterhub/binder-billing

7. https://grafana.mybinder.org

https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
http://mybinder-sre.readthedocs.io/en/latest/
https://github.com/jupyterhub/binder-billing
https://grafana.mybinder.org

BINDER 2.0 - REPRODUCIBLE, INTERACTIVE, SHARABLE ENVIRONMENTS FOR SCIENCE AT SCALE 119

Fig. 5: Cloud computing costs for running mybinder.org in 2018.
The x axis shows one point per day. The number of daily unique
users has consistently grown over this time, while modifications to the
BinderHub codebase (as well as the cloud resources used) have kept
costs relatively flat. As a result, mybinder.org currently operates
at about 3 cents per user per day.

While mybinder.org currently runs on the Google Cloud Platform,

a BinderHub can run on any typical deployment of Kubernetes

with minimal hardware requirements. This flexibility helps avoid

vendor lock-in and is crucial for an open source tool such as

BinderHub and JupyterHub. It also makes it possible for my-

binder.org (or other BinderHub deployments) to seek the most

cost-effective option for its needs.

Models for sustainability

The Binder team is exploring multiple models for sustaining

the public digital infrastructure of mybinder.org, the team re-

quired to operate it, and the broader Binder ecosystem. At its

current rate, the annual hosting cost of mybinder.org is around

$180×365 ≈ $66,000, an amount that could be sustainable with

a grant-funded model. Operating and supporting the public digital

infrastructure of mybinder.org requires several staff members

distributed globally to provide reasonable coverage across time

zones for user support and incident response. This means salary

costs will require a significant amount of funding.

The Binder team is actively exploring a federation model for

BinderHub servers. Other organizations, companies, or univer-

sities can deploy their own BinderHubs for their own users or

students, either on their own hardware or on cloud providers such

as Google, Amazon, or Microsoft. These organization-specific

deployments could require authentication or provide access to

more complex cloud resources. In this case, mybinder.org could

serve as a hub that connects this federated network of BinderHubs

together, directing the user to an organization-specific BinderHub

provided that they have the proper credentials on their machine.

The future of Binder

This paper outlines the technical infrastructure underlying my-

binder.org and the BinderHub open source technology, including

the guiding design principles and goals of the project. Binder is

designed to be modular, to adapt itself to pre-existing tools and

workflows in the open source community, and to be transparent in

its development and operations.

Each of the tools described above is open source and permis-

sively licensed, and we welcome the contributions and input from

others in the open source community. In particular, we are excited

to pursue Binder’s development in the following scenarios:

1) Reproducible publishing. One of the core benefits of

BinderHub is that it can generate deterministic environ-

ments that are linked to a code repository stored in a long-

term archive like Zenodo8. This makes it useful for gen-

erating static representations of the environment needed

to reproduce a scientific result. Binder has already been

used alongside scientific publications ([LIG], [RHDV17],

[CR18], [HRM+17], [RT16], [NHKvdW18]) to provide

an interactive and reproducible document with minimal

added effort. In the future, the Binder project hopes

to partner with academic publishers and professional

societies to incorporate these reproducible environments

into the publishing workflow.

2) Education and interactive materials. Binder’s goal is

to lower the barrier to interactivity, and to allow users to

utilize code that is hosted in repository providers such as

GitHub. Because Binder runs as a free and public service,

it could be used in conjunction with academic programs

to provide interactivity when teaching programming and

computational material. For example, the Foundations

in Data Science course at UC Berkeley already utilizes

mybinder.org to provide free interactive environments for

its open source textbook. The Binder team hopes to find

new educational uses for the technology moving forward.

3) Access to complex cloud infrastructure. While my-

binder.org provides users with restricted hardware for

cost-savings purposes, a BinderHub can be deployed on

any cloud hardware that is desired. This opens the door

for using BinderHub as a shared, interactive gateway that

provides access to an otherwise inaccessible dataset or

computational resource. For example, the GESIS Institute

for Social Sciences provides a JupyterHub and Binder-

Hub [GES] for their users at the university. The Binder

team hopes to find new cases where BinderHub can be

used as an entrypoint to provide individuals access to

more sophisticated resources in the cloud.

Binder is a free, open source, and massively publicly available

tool for easily creating sharable, interactive, reproducible environ-

ments in the cloud. The Binder team is excited to see the Binder

community continue to evolve and utilize BinderHub for new uses

in reproducibility and interactive computing.

REFERENCES

[AESM17] André Anjos, Laurent El-Shafey, and Sébastien Marcel. BEAT:
An Open-Source Web-Based Open-Science platform. April
2017. URL: http://arxiv.org/abs/1704.02319, arXiv:1704.
02319.

8. https://zenodo.org

https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
https://mybinder.org
http://arxiv.org/abs/1704.02319
http://arxiv.org/abs/1704.02319
http://arxiv.org/abs/1704.02319
https://zenodo.org

120 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

[Atl] Atlassian. Bitbucket. https://bitbucket.org. Accessed: 2018-5-
24. URL: https://bitbucket.org.

[Bak16] Monya Baker. 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604):452–454, May 2016. URL: http://dx.doi.
org/10.1038/533452a.

[BD95] Jonathan B Buckheit and David L Donoho. WaveLab and
reproducible research. In Anestis Antoniadis and Georges
Oppenheim, editors, Wavelets and Statistics, pages 55–81.
Springer New York, New York, NY, 1995. URL: https:
//doi.org/10.1007/978-1-4612-2544-7_5.

[Ber] Berkeley Division of Data Sciences. Foundations of data
science. http://data8.org/. Accessed: 2018-5-23. URL:
http://data8.org/.

[Bus18] Matthias Bussonnier. I python, you r, we julia. https://medium.
com/@mbussonn/baf064ca1fb6, April 2018. Accessed: 2018-
5-23. URL: https://medium.com/@mbussonn/baf064ca1fb6.

[CR18] Neil Cornish and Travis Robson. The construction and use of
LISA sensitivity curves. March 2018. URL: http://arxiv.org/
abs/1803.01944, arXiv:1803.01944.

[Doc] Docker, Inc. Docker. https://www.docker.com/. Accessed:
2018-5-24. URL: https://www.docker.com/.

[FO16] Jeremy Freeman and Andrew Osheroff. Toward
publishing reproducible computation with binder.
https://elifesciences.org/labs/a7d53a88/toward-publishing-
reproducible-computation-with-binder, May 2016. Accessed:
2017-12-11. URL: https://elifesciences.org/labs/a7d53a88/
toward-publishing-reproducible-computation-with-binder.

[GES] GESIS – Leibniz Institute for the Social Sciences. GESIS
notebooks (beta). https://notebooks.gesis.org/. Accessed:
2018-5-23. URL: https://notebooks.gesis.org/.

[Git] GitHub. GitHub. URL: https://github.com.
[GL07] Robert Gentleman and Duncan Temple Lang. Statistical

analyses and reproducible research. J. Comput. Graph. Stat.,
16(1):1–23, 2007. URL: http://www.jstor.org/stable/27594227.

[Hea18] Tim Head. openrefineder, 2018. URL: https://github.com/
betatim/openrefineder.

[HRM+17] Christopher R Holdgraf, Jochem W Rieger, Cristiano Micheli,
Stephanie Martin, Robert T Knight, and Frederic E Theunis-
sen. Encoding and decoding models in cognitive electrophys-
iology. Front. Syst. Neurosci., 11:61, September 2017. URL:
http://dx.doi.org/10.3389/fnsys.2017.00061.

[Jup18] JupyterHub. binder-billing, 2018. URL: https://github.com/
jupyterhub/binder-billing.

[LIG] LIGO Scientific Collaboration. LIGO open science center.
https://losc.ligo.org/tutorials/. Accessed: 2017-12-12. URL:
https://losc.ligo.org/tutorials/.

[LV15] Percy Liang and Evelyne Viegas. CodaLab worksheets for
reproducible, executable papers, December 2015. URL: https:
//nips.cc/Conferences/2015/Schedule?showEvent=5779.

[Mic] Microsoft. Microsoft R application network. URL: https://
mran.microsoft.com/.

[Min] R K Min. Thebelab. https://github.com/minrk/thebelab. Ac-
cessed: 2018-6-13. URL: https://github.com/minrk/thebelab.

[NHKvdW18] Mark C Neyrinck, Johan Hidding, Marina Konstantatou, and
Rien van de Weygaert. The cosmic spiderweb: equivalence
of cosmic, architectural and origami tessellations. Royal

Society Open Science, 5(4):171582, April 2018. URL: http:
//rsos.royalsocietypublishing.org/content/5/4/171582.

[nte16] nteract contributors. nteract, 2016. URL: https://play.nteract.
io/.

[Ope] Open Humans Foundation. Personal data notebooks. https://
www.openhumans.org/activity/personal-data-notebooks/. Ac-
cessed: 2018-5-24. URL: https://www.openhumans.org/
activity/personal-data-notebooks/.

[Pin17] Joelle Pineau. Reproducibility in deep reinforcement learning
and beyond, December 2017. URL: https://twitter.com/xtimv/
status/938917013086380032.

[Pro17a] Project Juptyer Contributors. Using R with jupyter / RStudio
on binder, 2017. URL: https://github.com/binder-examples/r.

[Pro17b] Project Jupyter Contributors. jupyterlab-demo, 2017. URL:
https://github.com/jupyterlab/jupyterlab-demo.

[Pro17c] Project Jupyter Contributors. repo2docker, 2017. URL: https:
//github.com/jupyter/repo2docker/.

[RHDV17] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-
Velez. Right for the right reasons: Training differentiable
models by constraining their explanations. In Proceedings of

the Twenty-Sixth International Joint Conference on Artificial

Intelligence, pages Pages 2662–2670., March 2017. URL:
https://www.ijcai.org/proceedings/2017/371.

[RN18] RK, Min and Daniel Nüst. nbstencilaproxy, 2018. URL: https:
//github.com/minrk/nbstencilaproxy.

[RT16] Hanno Rein and Daniel Tamayo. Second-order variational
equations for n-body simulations. Monthly Notices of the Royal

Astronomical Society, 459(3):2275–2285, July 2016. URL:
https://academic.oup.com/mnras/article/459/3/2275/2595117.

[SHP12] V Stodden, C Hurlin, and C Pérignon. RunMyCode.org: A
novel dissemination and collaboration platform for executing
published computational results. In 2012 IEEE 8th Interna-

tional Conference on E-Science, pages 1–8, October 2012.
URL: http://dx.doi.org/10.1109/eScience.2012.6404455.

[Som18] James Somers. The scientific paper is obsolete. The At-

lantic, April 2018. URL: https://www.theatlantic.com/science/
archive/2018/04/the-scientific-paper-is-obsolete/556676/.

[SSM18] Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. An
empirical analysis of journal policy effectiveness for com-
putational reproducibility. Proc. Natl. Acad. Sci. U. S. A.,
115(11):2584–2589, March 2018. URL: http://dx.doi.org/10.
1073/pnas.1708290115.

[The] The American Society for Cell Biology. ASCB
member survey on reproducibility. Technical report.
URL: http://www.ascb.org/wp-content/uploads/2015/11/final-
survey-results-without-Q11.pdf.

[Wik] Wikimedia. PAWS: A web shell. https://wikitech.wikimedia.
org/wiki/PAWS. Accessed: 2018-5-23. URL: https://wikitech.
wikimedia.org/wiki/PAWS.

https://bitbucket.org
https://bitbucket.org
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1038/533452a
https://doi.org/10.1007/978-1-4612-2544-7_5
https://doi.org/10.1007/978-1-4612-2544-7_5
http://data8.org/
http://data8.org/
https://medium.com/@mbussonn/baf064ca1fb6
https://medium.com/@mbussonn/baf064ca1fb6
https://medium.com/@mbussonn/baf064ca1fb6
http://arxiv.org/abs/1803.01944
http://arxiv.org/abs/1803.01944
http://arxiv.org/abs/1803.01944
https://www.docker.com/
https://www.docker.com/
https://elifesciences.org/labs/a7d53a88/toward-publishing-reproducible-computation-with-binder
https://elifesciences.org/labs/a7d53a88/toward-publishing-reproducible-computation-with-binder
https://elifesciences.org/labs/a7d53a88/toward-publishing-reproducible-computation-with-binder
https://elifesciences.org/labs/a7d53a88/toward-publishing-reproducible-computation-with-binder
https://notebooks.gesis.org/
https://notebooks.gesis.org/
https://github.com
http://www.jstor.org/stable/27594227
https://github.com/betatim/openrefineder
https://github.com/betatim/openrefineder
http://dx.doi.org/10.3389/fnsys.2017.00061
https://github.com/jupyterhub/binder-billing
https://github.com/jupyterhub/binder-billing
https://losc.ligo.org/tutorials/
https://losc.ligo.org/tutorials/
https://nips.cc/Conferences/2015/Schedule?showEvent=5779
https://nips.cc/Conferences/2015/Schedule?showEvent=5779
https://mran.microsoft.com/
https://mran.microsoft.com/
https://github.com/minrk/thebelab
https://github.com/minrk/thebelab
http://rsos.royalsocietypublishing.org/content/5/4/171582
http://rsos.royalsocietypublishing.org/content/5/4/171582
https://play.nteract.io/
https://play.nteract.io/
https://www.openhumans.org/activity/personal-data-notebooks/
https://www.openhumans.org/activity/personal-data-notebooks/
https://www.openhumans.org/activity/personal-data-notebooks/
https://www.openhumans.org/activity/personal-data-notebooks/
https://twitter.com/xtimv/status/938917013086380032
https://twitter.com/xtimv/status/938917013086380032
https://github.com/binder-examples/r
https://github.com/jupyterlab/jupyterlab-demo
https://github.com/jupyter/repo2docker/
https://github.com/jupyter/repo2docker/
https://www.ijcai.org/proceedings/2017/371
https://github.com/minrk/nbstencilaproxy
https://github.com/minrk/nbstencilaproxy
https://academic.oup.com/mnras/article/459/3/2275/2595117
http://dx.doi.org/10.1109/eScience.2012.6404455
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
http://dx.doi.org/10.1073/pnas.1708290115
http://dx.doi.org/10.1073/pnas.1708290115
http://www.ascb.org/wp-content/uploads/2015/11/final-survey-results-without-Q11.pdf
http://www.ascb.org/wp-content/uploads/2015/11/final-survey-results-without-Q11.pdf
https://wikitech.wikimedia.org/wiki/PAWS
https://wikitech.wikimedia.org/wiki/PAWS
https://wikitech.wikimedia.org/wiki/PAWS
https://wikitech.wikimedia.org/wiki/PAWS

	An overview of Binder
	Guiding Principles of Binder
	Scalable interactive user sessions
	Deterministic environment building - Repo2Docker
	A web-interface to user-defined kernels and interactive sessions - BinderHub
	The BinderHub User Interface
	The BinderHub REST API

	Mybinder.org: Maintaining and sustaining a public service
	Cost of running the public Binder service
	Models for sustainability

	The future of Binder
	References

