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Abstract This paper introduces a multiple-input multiple-output (MIMO) channel model for 

characterization of a binder of telephone lines.  This model is based on multiconductor transmission 

line theory and uses parameters that can be obtained from electromagnetic theory or measured data.  

The model generates frequency-dependent channel/binder transfer function matrices as a function of 

cable type, geometric line-spacing and twist-length parameters, and source-load configurations.  

The model allows extraction of the magnitude and the phase of individual NEXT, FEXT, split-pair, 

and phantom transfer functions from the transfer function matrix of the binder.  These individual 

crosstalk transfer functions are often found to be very sensitive to small imperfections in the binder.  

Examples of category 3 twisted pair American telephone lines and “quad” telephone cables appear. 

 Index Terms— MIMO systems, Crosstalk, Multiconductor transmission lines, Twisted pair 

cables, Subscriber loops 
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I. INTRODUCTION 

         Twisted pair telephone line models in use to date have largely been of an individual line’s insertion 

loss and transfer function.  These models have served the DSL and 10/100/G Ethernet communities well.  

However, with new vectored and/or bonded DSL systems for mitigating and possibly exploiting the 

crosstalk between multiple lines [1][2], models for a binder of twisted pairs need significant 

improvement.  This paper introduces a multiple-input multiple-output (MIMO) model for telephone lines 

that allows computation of both the magnitude and phase of all the possible energy transfer functions 

within a binder, be the direct-line transfer function or the various types of crosstalk.  The intent of the 

model is to enable more accurate and dependable characterization of the various MIMO methods that can 

be applied to binders of twisted pairs to increase data rates, and in particular to model use of telephone 

lines for bandwidths of 100s of Megabits per second or possibly even a Gigabit per second, while 

allowing 100m Category 5e, 6, and 7 transmission of 10Gbps Ethernet data rates (i.e., 10GBASE-T). 

         The focus of this work will be to extend the well-known Resistance-Inductance-Capacitance- 

Conductance (RLCG) [3] models for individual twisted pairs to matrix RLCG models, and to obtain the 

necessary parameters for MIMO transmission methods.  The matrix RLCG models have been examined 

for general electromagnetic coupling by C. Paul [4], while the steady state solutions for multi-terminal 

transmission lines were found by Rice [5].  This work focuses on a multiple-twisted pair binder with 

N pairs or equivalently  wires.  Such a binder has can be modeled by voltages.  When a cable 

has a shield, there will be 2N+1 conductors and the general theory presented in this paper still applies 

except that a different geometrical description of cable is needed [6].  This paper introduces load and 

source matrices, and the potential of matrix-matched load impedances, which is conceptually similar to 

the single-line case but greatly differs in implementation for MIMO binders.  This paper also illustrates 

the proper extraction of individual NEXT, FEXT, and other interesting transfer functions (like phantom 

and split-pair transfer functions) from the MIMO matrix model and provides simple explanations of some 

observed effects in measured NEXT and FEXT. 

N2 12 −N

         The limitations of previous research justify this additional work.  Past transmission practice within 

binder cables was based on differential excitation of individual pairs. Thus, channel studies focused on 
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characterizing wire-pairs under differential excitations.  These studies did not treat cable binders as 

MIMO channels.  Nevertheless, previous research generated many interesting results and methods that 

prepare us for the binder MIMO model of this paper: particularly, methods on modeling twisting for 

twisted pair cables [7][8], on the importance of cable imperfections [9][10], and empirical power-sum 

crosstalk characterization [11].  This paper’s proposed binder MIMO model extends previous twisting 

models from single twisting rate per pair to a cable binder comprising lines with different twisting rates, 

and incorporates cable imperfections.  It presents systematic methods to obtain the MIMO channel matrix 

from basic cable parameters and source-load impedance configurations. 

         This paper is organized as follows:  Section 2 introduces the modeling of wires or N2 N pairs.  

Matrix RLCG models are used to characterize an incremental section following Paul’s [4] general 

treatment of this subject.  Terminology is introduced that directly parallels the well-known scalar RLCG 

models.  Section 2 also investigates the appropriate matrix sources and loads and their construction, 

definition, and relation to traditional N independent differential excitations.  An interesting result is that 

traditional, scalar, differential source and load matching corresponds to an unusual singular situation that 

is not well-matched in the MIMO case.  Section 2 then also lays a foundation for cascades of binder 

sections that not only allow modeling of traditional gauge changes and “bridged-taps” but also allow 

modeling of twisting and binder imperfections like twist-rate variation and pair-center-separation 

variation.  Section 3 shows that perfect twisting indeed almost entirely eliminates any crosstalk and that 

imperfect twisting causes actual measured crosstalk to be several orders larger than what would be 

produced by perfect twisting.  Section 3 also includes a few basic comparisons of actual measured 

channel transfer characteristics and computed characteristics, providing a strong indication of the model’s 

potential use in modeling of MIMO binder transmission.  Section 4 concludes the paper. 

II. BINDER MIMO CHANNEL  

         The goal of the binder MIMO channel model is to obtain channel characteristics for closely packed 

pairs in a binder.  Using MIMO theory, the channel response can be expressed as: 

       ,                                                                                                (1) NHXY +=
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where is an input column vector, Y  is an output column vector, and N  denotes noise components 

including impulse noise, radio frequency noise, and other background noise.  The binder MIMO channel 

model provides a method to calculate H  from physical system parameters.  The direct-line transfer 

function, NEXT, and FEXT for the commonly used differential excitation and reception can be easily 

calculated using . 

X

H

         The binder MIMO channel model uses two concepts: circuit theory and cable geometric modeling. 

The circuit theory is used to derive voltage-current input-output relations for a cable system.  Such 

derivations require per-unit-length circuit elements that will be provided by cable geometry modeling. 

This section first presents the circuit theory for a binder MIMO channel, followed by a treatment of the 

cable geometry modeling.  

A. Circuit Theory for a Binder MIMO Channel 

         The circuit theory for a binder MIMO channel is based on multiconductor transmission line (MTL) 

theory [4].  This approach elucidates that proper source or load matrices may be more appropriate at both 

ends of the cable if possible to implement.  To apply the theory, a cable loop is treated as a cascade of 

many segments.  Within each segment, the positions of the conductors are fixed, and the positions can 

vary between segments in order to incorporate twisting and cable imperfections in the model.  This 

subsection first applies MTL theory to a cable segment to obtain voltage-current input-output relations for 

such a segment; then, the binder MIMO transfer matrix for the system can be calculated for the given 

source-load configuration.  A designer may then cascade sections, multiplying matrix transfer functions 

to generate the individual NEXT, FEXT, and direct-line transfer functions for the entire binder. This 

subsection also includes a discussion of split-pair and phantom transfer functions.  All these theories 

assume that certain matrix resistance (R), inductance (L), capacitance (C), and conductance (G) values 

are known for each segment.  Models for these matrices appear at the end of this subsection.  Methods to 

obtain R, L, C, and G for given geometry configuration are also included.  

1) MTL Theory for a Cable Segment 

         In multiconductor transmission line theory, the small segment of cable shown in Fig. 1(a) can be 

characterized by matrix parameters R, L, C, and G.  Four conductor wires are used in the following 
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discussions for simplicity of illustration.  All results and formulae are easily extendable to more wires.  In 

a four-wire cable, one wire can be selected as a common reference; then, the input-output characteristics 

for the cable can be completely modeled using 3 voltages and 3 currents. To describe this transmission 

line, 4 incremental resistances, 6 capacitances, 6 inductances, and 6 conductances are required.  Fig. 1(a) 

shows the labeling and indexing of these circuit elements.   

         The input-output voltage and current relations for a cable segment can be characterized by a transfer 

matrix Φ  as in the following formulae: 
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where  and are column vectors, is the starting position of the cable segment and d is the 

length of the segment under consideration. A, B, C, and D are 

)(zV )(zI z

33×  matrices which are functions of the 

resistance, inductance, conductance, capacitance, the cable geometry and its physical properties. The 

position and frequency dependence of A, B, C, D, V, I, and Φ  are explicitly shown in these formulae. 

The position dependence becomes important when twisting (See Fig. 1(b)) and cable imperfections are 

included in the model.  Due to the position dependence, these matrices will vary from segment to 

segment.  In the rest of the paper, notation for explicit frequency dependence is dropped for convenience.  

Furthermore, without loss of generality, 0=z  is assumed. 

         In general, a cable segment can be described by a position-dependent transmission-line equation. In 

practical cable systems, L, C, and G are slowly varying with distance along the cable, thus a 

position-independent transmission line equation can be used for each segment.  For channel-modeling 

purposes, the position-invariant transmission-line equations for each segment are [5][4]: 
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where LRZ ωj+=  is the symmetric per unit length impedance matrix, and CGY ωj+=  is the 

symmetric per unit length admittance matrix.  The explicit matrix forms of R, L, C, and G are given in 

Fig. 1(a).  The input-output relation for voltage and current, as well as Φ  can be solved for each segment 

by extending the well known two-port theory results [12][13]: 
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where  is the characteristic impedance matrix and 0Z γ  is the propagation constant matrix for the 

segment.  The matrices  and  0Z γ  are position dependent and vary between segments.  The A, B, C, and 

D matrices for one segment, defined in equation (3), can be obtained by a one-to-one mapping with 

equation (5). 

         A complete cable can be treated as a cascade of segments both for mathematical convenience and to 

model a practical cable structure.  By modeling a complete cable loop as a cascade of segments, the 

input-output transfer function for the cable is then: 
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where  describes the input-output transfer function for one segment,  is the length of a full cable, and 

is the total number of segments under consideration.  If each section of the cable has the same length , 

then  .  Again, an overall Φ  can be written in terms of the A, B, C, and D matrices, which are 

equal-size square matrices 
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)

       Once A, B, C, D, and Φ  are obtained, it is easy to obtain the MIMO channel transfer function as 

shown in the sequel. 

2) MIMO Channel Transfer Function 

         To calculate the MIMO channel transfer function, an input-output voltage transfer function needs to 

be calculated.  The input-output voltage matrix transfer function T for a cable is defined by: 

)0()( VTV ⋅=l  ,                                       (11) 

where  is the input voltage vector to the cable, and  is the output voltage vector of the cable.  

The output voltage vector is related to output current vector by the load admittance matrix by 

)0(V ( )lV

LY

)()( ll L VYI ⋅=  .                                        (12) 

Using equations (9)-(12), T can be computed as 

( 1−+= LBYAT .                                             (13) 

         This formula uses the admittance matrix instead of the impedance matrix because the impedance 

matrix does not exist under the traditional differential load.  To get the voltage transfer function between 

a source and a load, a voltage divider between the source admittance and the input admittance to the cable 

needs to be considered.  The input admittance  is defined by 1Y )0()0( 1 VYI ⋅= , where  and  

are the input current and voltage vectors to cable.  The formula for the input admittance is given by: 

)0(I (0)V
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         The transfer function  between an input voltage supply vector (with a finite internal series 

impedance matrix ) and the output voltage (= ) can be calculated by considering ,  and 

T: 

)( fH SV

SZ LV )(dV SY 1Y

( ) SS YYYTH ⋅+⋅= −1
1  .                                           (15) 

       This formula generates the MIMO channel transfer function H as in  if the input and 

output are voltage vectors.  When one wire is chosen as a common reference in a system with 

NHXY +=
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N2 conductor wires, this method produces a )12()12( −×− NN MIMO channel.  The channel derived in 

this way is referred to as a Common Mode MIMO channel.  The MIMO channel model works for any 

source and load admittance (  and ) (or impedance  and )  provided the matrix inverses in 

equations (13), (14), and (15) exist.  An interesting choice of load and source impedance matrices is:  

SY LY SZ LZ

      = , Load matches the matrix characteristic impedance, or  LZ )(0 lZ

      = , Source matches the matrix characteristic impedance,   sZ )0(0Z

where  is the matrix characteristic impedance of cable at the load end, and  is the matrix 

characteristics impedance at the source end. 

)(0 lZ )0(0Z

         These matching matrices are particularly meaningful when  is independent of cable position as 

for perfect “quad” cables when neighboring quads are neglected

0Z

1.  In such cables, load matrix matching 

completely removes the well-known ripples in NEXT vs. frequency curves.  In general,  and  in 

these formulas depend on frequency.  However, for real cable systems, is almost purely resistive 

above a few hundred kilohertz.  Therefore it is easy to obtain matrix impedance matching at frequencies 

above a few hundred kilohertz.  For twisted pair cable, because  is position dependent,  =  

or  =  only ensures the load or source impedance matching for either at the load end or source 

end, but  not for whole cable.  In general, load matrix matching cannot completely remove ripples in 

NEXT vs. frequency curves as it does for the “quad” cable. For both the “quad” cable and the twisted pair 

cable, a simpler load-source configuration is to choose  and  to be diagonal matrices.   

LZ sZ

0Z

0Z LZ )(0 lZ

sZ )0(0Z

LZ sZ

         The common-mode MIMO channel is intuitively the default MIMO channel for a binder cable; but 

a practical communication system that uses such channel may be complicated to implement and may 

require sophisticated noise cancellation methods under noisy conditions.  A simpler MIMO model for the 

binder cable exists based on differential excitations and receptions, where sources and loads are 

individually applied to each pair of conductor wires.  The differential excitations and receptions 

combined with twisting of pairs also significantly reduce crosstalk and noise coupling.  In this 

 
1 “quad” cables are used in France, Germany, and other countries 
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configuration, FEXT can be defined between pairs and a direct transfer function can be defined for each 

pair.  For a cable system with N pairs (or 2N wires), a NN × channel matrix can be defined for such a 

source-load configuration.  In the channel matrix, the direct transfer functions for pairs are in the diagonal 

positions and FEXT is in the off-diagonal positions.  The channel derived in this way is referred to as a 

Simplified Differential Mode MIMO Channel.  For example, with four conductor wires forming two 

differential pairs, the differential mode MIMO channel matrix  is: sdH

⎥
⎦

⎤
⎢
⎣

⎡
=

221

121

TFEXT
FEXTT

sdH ,                                                           (16) 

where and , are direct transfer functions of each pair, and  and  are the FEXT transfer 

functions induced by one pair to the other pair.  In practice, implementing a  differential mode 

MIMO system is less complicated than implementing a

1T 2T 12FEXT 21FEXT

NN ×

)12()12( −×− NN common-mode MIMO 

system.  The tradeoff is that the system formed by  conductor wires has higher channel capacity if the 

system is modeled as a 

N2

)12()12( −×− NN  channel rather than an NN ×  channel [1][2].  

         Since the source-load voltage relation is given by matrix transfer function H, FEXT as well as 

NEXT and the direct-line transfer functions can be calculated from H under differential loads and 

sources.        

3) Computation of Scalar Direct-line and Crosstalk Transfer Functions with Differential Source and 

Load Impedances 

         Fig. 2 illustrates a typical situation where excitations are scalar voltages, and load and source 

impedances are differential for two lines.   is the admittance of the loads placed across each and every 

pair, and other quantities are defined by the equations at the bottom of Fig. 2.   is a 

pY

PY 22 ×  admittance 

matrix specified in the figure for the two-port network between wires 2 and 3.  The known admittance 

matrix  (defined in Fig. 2) can be used to calculate all scalar transfer functions.  The basic circuit 

equation is 

1Y

          ,                                                                                                  (17) ( )112122 VPPP ⋅+⋅=⋅− YVYVY

from which one obtains  
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( )             .                                                                                                    (18) ( ) 1121
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which is singular. The relation between the scalar source voltage and the network’s input voltage is  
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Then, the NEXT transfer function is calculated from (18) and (20) as 
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  while the matrix transfer function T from (13) is additionally used to calculate the FEXT transfer 

function 
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and the main source to load transfer function is 
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          The other three NEXT and three FEXT transfer functions can be computed by re-indexing the wires 

and repeating the procedure.  Equations (17)-(20) are valid for any number of lines in which case the 

quantities , , , , and become PV PI PY 22Y 21Y ( )22 −N -dimensional.  The leading vectors on the 

right-hand sides of equations (21) and (22) have the two non-zero entries +1 and -1 in the positions of the 

line into which the crosstalk is being computed.  The leading vector in (23) has all zeros except a 1 in the 

last (right most) position.   

         These methods to extract information for differential loads from a common-mode MIMO channel 

matrix can be applied not only to traditional differential excitation, but also to unconventional differential 

excitations. There are interesting relations among these excitations. 
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4) Relation to Traditional Models Involving Differential Excitations and “Phantom” Components 

      Fig. 3 shows 3 views of the same 2-twisted pair cable: 

           (1) description with all voltages referenced to an external reference (e.g., earth ground)  (top) 

           (2) traditional “symmetric” description using differential excitations and phantom components (left) 

           (3) asymmetric description of this section that allows direct matrix RLCG models (right) – some of  

the direct transfer functions are between the wires of different twisted pair, which are sometimes  

               called “split-pair” transfer functions. 

         The relationship between the models is listed in the figure.  The 3 voltages of the traditional 

symmetric model can be related (input or output) to the 3 voltages of the asymmetric model.  The 

symmetric model includes a 3rd voltage pV∆ that is often colloquially called a ``phantom’’ signal (this 

name is unfortunate because this voltage exists and can be very real in its effects).  The phantom 

component is defined as: pV∆ 12 VVVp ∆−∆=∆ .  The concept of the phantom component is very useful if 

one would like to use the 3rd transmission mode, which is available in the asymmetric voltage model, in 

systems that are already use differential mode transmission.  An extra circuit can be implemented on top 

of the existing differential excitation and reception to utilize this extra mode. For N  pairs, 1N −  

phantom modes could be used along with the existing differential mode transmission in order to 

implement the overall )12()12( −×− NN  MIMO channel, which would otherwise require changing the 

terminations of existing systems completely.  Any transfer functions involving differential and/or 

phantom components in traditional modeling can always be directly related to transfer functions based on 

asymmetric voltages and vice versa (Table 1).  The two are completely equivalent, and no extra 

information appears in one with respect to the other (however, some could be easier to measure or use 

than others in practice).  A 4th voltage occurs in the absolute voltage model (top of Fig. 3) and would 

represent a possible transmission mode with respect to earth ground.  However, this mode is not modeled 

in either symmetric or asymmetric approaches, and is not used in present DSL transmission systems. 

         The above discussions show that for a cable system with given source-load configuration, if the 

channel matrix H is known, the magnitude and the phase of individual NEXT, FEXT, split-pair and 

phantom transfer functions can all be calculated.  Additionally, for a given source-load configuration, if 

the R, L, C, and G matrices are known for each segment, then the channel matrix H can be obtained.  
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Thus, to complete the model, methods to find the R, L, C, and G matrices for each cable segment are 

needed. 

5) Calculations of the R, L, C, and G matrices  

         For a given cable geometry, two methods can be used to obtain the per unit length R, L, C, and G 

matrices.  One method is based on an analytical approach using basic electromagnetic theory; another 

method is based on extracting matrix elements from measured data.  Calculation of R, L, C, and G 

directly from the basic electromagnetic principle inevitably involves some approximations.  Established 

methods with various levels of approximation can be found in [4][13][14].  One disadvantage of the 

calculation approach is that it requires knowing the physical constants σεµ ,, r  (the permittivity, 

permeability and conductivity respectively) of the dielectric filling material of cables and the 

conductivity of metal conductors. These values may not be easy to obtain or to estimate.    In addition, the 

permittivity of the insulation material may also vary across the cable cross-section [23].  The approach 

based on extracting R, L, C, and G from measurements overcomes such difficulties [12].  However, there 

are drawbacks to this approach.  Typically, the frequency-dependent characteristics of a single pair are 

measured for an isolated twisted pair.  In other words, twisted pairs were not in a cable binder, so the 

measured values are not completely suitable for actual twisted pairs inside a cable binder; therefore, this 

approach only works as an alternative approximation.  In actual simulations, both methods can be 

implemented, and when some measured data are available one method may be favored over another.  

Both approaches depend on knowing cable geometric parameters.  Therefore, the proposed binder MIMO 

model includes the following cable geometric models.  

B. Cable Geometric Model  

         To calculate the R, L, C, and G matrices, the actual cable geometry needs to be considered.  Two 

types of geometric configurations are discussed in this section: “quad” cables and twisted pair cables.  It 

can be shown theoretically [10][15], and confirmed by simulations in this work, that cable imperfections 

are important to characterize the channel.  So for each type of cable, geometric modeling also contains 

cable imperfection modeling. 
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1) Geometric Modeling of Quad Cables 

         An ideal “single quad” has nice symmetry properties. The four wires in a perfect quad are parallel to 

each other and the centers of the 4 wires form a square.  This symmetry ensures that crosstalk under 

normal differential excitation is zero when the source and load impedances are setup over one diagonal 

pair and crosstalk is measured over the other diagonal pair.  In real imperfect quads, the centers of the 4 

wires do not form a perfect square.  Thus, the expected symmetry is imperfect.  The quads also rotate 

along the cable.  The rotation does not affect crosstalk characteristics among 4 conductor wires in the 

same quad, but does reduce crosstalk between different quads much like twisting reduces crosstalk 

between twisted pairs.  A description of the geometry of a single quad requires only the positions of the 4 

conductor centers and the conductor radii.  Modeling multiple quads within a binder follows the same 

procedure as described below for twisted pair cables. 

2) Geometric Modeling of the Twisted pair Cable 

            An accurate geometric model of a twisted pair cable is difficult to obtain, therefore, and 

simplifications are inevitable for the purpose of  practical modeling and simulation.  This section presents 

approximations that are used to compare with measurements in this work.  These approximations are 

chosen not only because they are relative simple to implement, but also because simulations based on 

these approximations reveal typical crosstalk characteristics observed in measurements.  

              Modeling the geometry of a twisted pair includes a description of the twisting and the associated 

imperfections.  To describe twisting of a pair, the trajectory of the pair center as well as the relative 

rotations of two wires w.r.t. the pair center are required.  Different levels of approximation have been 

proposed in the past to describe twisting [7][8][16].  For simulation purposes, in this work the single-pair 

discrete-rotation model [16] is extended to multiple-pair discrete rotation [15], where every pair in a 

twisted cable is modeled as discretely rotating.  The modeling of binder-MIMO imperfections in this 

work mainly considers three types of cable imperfections: pair center variations, twist-rate variations and 

non-twisted segment at the cable head or tail.  These effects together can be used to model the variation of 

relative distance between pairs. 

a) Type I Imperfection in Twisted pair Cables: Pair Center Variation   
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The pair-center variation denotes the situation in which the pair centers deviate from the expected 

position.  For an ideal parallel layout of twisted pairs, the centers of any two pairs form parallel straight 

lines and the distance between the two wire centers in each twisted pair is fixed.  This ideal cable is called 

a “perfect twisted pair cable” in this work.  It can be analytically proved that electromagnetic coupling 

between perfect twisted pairs is almost entirely canceled under normal differential excitation [15].  In 

reality, because manufacturing procedures are not perfect and twisted pairs are densely packed inside 

cables, pair centers cannot form straight parallel lines and thus pair center separation varies.  In order to 

model this effect, the centers of the twisted pairs are varied along the cable length, thereby inherently 

capturing the position dependent separation between the different twisted pairs.  The centers of the 

twisted pairs can be modeled as two-dimensional vectors at each distance z  along the cable.  The 

following model applies independently to both components of the pair center vector. 

         Let  denote any component of the center of pair i along the cable of length . ),( zipc z

               ),(),(),( zipczipczipc ∆+= ,                                                                                       (24) 

where i is an index for each pair in a twisted pair cable, ),( zipc is the expected pair center position for 

pair i  at the cable of length  and is the deviation from the expected position.  For non-parallel 

wires within the cable, 

z ),( zipc∆

),( zipc  can be described by known parameters.  In this work, two pair-center 

variation methods are examined and are used to compare with measurements: a random variation method 

and a sinusoidal variation method.  In the case of random variation, 

            )(),(),( 0 ipczizipc ⋅=∆ α ,                                                                                                          (25) 

where ),( ziα is a random function of .  For a practical twisted pair cable structure, it was observed via 

simulations that the value of 

z

),( ziα is most likely in the range of [0, 0.15]; )(0 ipc is the average of the 

pair center position.  For the sinusoidal variation, 

             )()sin(),( 0 ipczkzipc ii ⋅⋅=∆ α ,                                                                                                (26) 

where iα is a constant for a pair and denotes space frequency.  In the case of the single pair discrete 

rotation model, is a reciprocal of the twist rate t

ik

ik r  of the pair.  In this paper, the twist rate of a twisted 
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pair is defined as the average space period of the twisted pair (in the length of meter or inch).  For the two 

pair or the multi-pair discrete-rotation model, can be obtained from the geometric cable structure.  

Simulations show that 

ik

2.00 << iα  works for many practical twisted pair cable structures. A few more 

sophisticated pair-center variation options have been investigated to include the “squeezing” effect from 

the neighboring pairs, however their improvements were negligible and so are not further considered.  

The net effect of pair-center variation is that such variation breaks the electromagnetic-coupling 

cancellation mechanism inside a length of the basic cycle for perfect twisted pairs and thereby increases 

the electromagnetic coupling between pairs.  Equivalently, the pair-center variation increases FEXT to 

levels that are consistent with those measured in practice.  However, pair-center variation alone is not 

enough to explain the measured NEXT, which necessitates another type of variation, called “twist rate 

non-uniformity variation.” 

            b)  Type II Imperfection in Twisted-Pair Cables: Twist Rate Non-Uniformity Variations 

         NEXT is proportional to the constructive reflection when the electromagnetic wave travels along a 

cable.  For a twisted pair cable system with a periodic nature of cable geometry, the effective averaging 

over a basic period of the twisting causes a uniform appearance of the R, L, C, and G matrices.  

Accordingly, the matrix characteristic impedance is uniform.  This implies that that although there can be 

minor reflections of electromagnetic waves inside a section of the cable corresponding to one period, 

there is not much reflection between such periods.  In a real cable, uniformity of the cable is not 

guaranteed.  Consequently, larger section-to-section reflections are often created and lead to the high 

NEXT levels that are usually observed in measurements.  There are a few possible reasons for this 

“uniformity break”:  the first reason is the existence of the neighboring pairs.  However, simulation results 

suggest that neighboring pairs do not induce enough reflection.  A more likely reason is the twist-rate 

non-uniformity.  The twist-rate is defined as the number of twists per unit meter of the pair.  This work 

uses the following approximation to describe twist-rate non-uniformity.  To model the twist-rate 

non-uniformity, a twist-rate distribution function is defined.  Let be the actual probabilistic 

distribution of the twist rate t

)(trPtr

r of the real cable, and  be the ideal probabilistic distribution of the )(' trP tr
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twist rate.  The ideal twist-rate distribution is a delta function, )()(' trtrtrP tr −= δ , where tr is an 

expected twisted rate for the cable.  In a real cable, the twist rate has a non-delta distribution function 

centered at the expected twist rate. Uniform and Rayleigh distributions for the twist rate are used in 

simulations to compare with measurement.  For the uniform distribution, the following 

distribution can be used: )(trPtr

               ],[,2/1)( atratrtratrPtr +−∈= .                                                                                                                 (27) 

For practical purposes, tra ⋅< 2.0  can be chosen.  For the Rayleigh distribution,  is given by:  )(trPtr

2

22

)(
))(2/()(exp()()(

tr
trtrtrtrPtr

⋅−⋅
= ,                                                                                                   (28) 

which has the largest value when tr tr= .  To simulate practical systems, overly short or long twist rates 

can be excluded.  After selecting the twist-rate distribution function, the simulation software randomly 

picks twist rates according to the distribution function and arranges them along the cable until the 

complete cable length is reached.  Partial twists may be needed at the end of the cable if full twists cannot 

exactly match the targeted cable length. 

.    c) Type III Imperfection in Twisted pair Cables: Non-twisted Cable Head or Tail  

         In real cables, non-twisted tail and head sections may occur at connection points (ends of the cable).  

Even though the length of the cable tail or head section might be only a few centimeters (a very short 

length compared to a full cable length), simulations show that such short non-twisted sections may 

significantly affect the overall crosstalk level for the whole cable.  This is because crosstalk from these 

non-twisting tail and head sections do not experience any cancellation.         

III.  CHANNEL CHARACTERISTICS AND NUMERICAL EXAMPLES 

          Based on the preceding circuit theory and cable geometry descriptions, the binder MIMO model can 

be used to calculate channel transfer functions for a binder or cable from basic system parameters.  This 

section contains results for a few numerical examples and discusses general qualitative characteristics of 

these models of binder channels.  These results are also compared with analytical predictions and 



 
 

17

measured data.  The main purpose of these examples is to verify the model.  Since measured data are 

typically available only for differential excitations, this section focuses on examining the simulation 

results for differential excitation. 

         Due to their relative simplicity, crosstalk properties for “single quads” are presented first.  Here, 

crosstalk is shown to be completely cancelled under normal differential excitation.  The crosstalk 

properties for twisted pair cables are then presented with a focus on the effect of cable imperfections.  The 

data shows that crosstalk is almost entirely cancelled for an ideal twisted pair cable but in a real cable, the 

pair-center variation and the twist-rate variation can greatly affect the crosstalk level.  The simulations 

also show that cable imperfections have a substantial impact on crosstalk yet have a relatively small 

impact on the direct transfer function for a twisted pair.  Results on how crosstalk depends on cable length 

will then follow.  Simulation results are shown to match well with measured data. 

A. Crosstalk for both Perfect and Imperfect Single Quads 

          For a perfect basic “single quad,”, the centers of 4 wires form a square.  The distances between 

the 4 wires are denoted as D-D-D-D where D is the diameter of a wire.  For the cable, normal differential 

excitation is used to excite a pair of diagonal wires and crosstalk is measured over the other pair of 

diagonal wires; split-pair differential excitation excites two wires on the same side of a quad and crosstalk 

is measured over other two wires.  It can be shown analytically that crosstalk under normal differential 

excitation is completely cancelled and the cancellation is caused by the perfect geometric symmetry of 

quad cables. If the symmetry is broken, the crosstalk cancellation mechanism of the diagonally excited 

quad is degraded.  Fig. 4 shows crosstalk for a quad where the centers of 4 wires are slightly deviated from 

a perfect square.  The distances of 4 wires are D-1.02D-D-1.02D (2% deviation from a square).  Even 

with such small asymmetry, significant crosstalk under the normal differential excitation is clearly 

observed.  More simulations show that for many practical cables, 2% deviation from a square works as a 

good approximation to compute crosstalk levels that match measurements. 

B. Effects of Cable Imperfection on Crosstalk for Twisted pair Cables 

          Fig. 5 shows the effect of cable imperfections on FEXT and NEXT, as well as upon the direct 

transfer functions between two twisted pairs under normal differential excitation.  Here, the normal 
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differential excitation is referred to as exciting two wires in the same twisted pair, and crosstalk is 

measured for another twisted pair.  The length of the cable is 274 meters, and the type of the cable is 24 

American wire gauge (AWG).  The twist rate for one pair is 4.0inch ( 1.10≈ centimeter) and for another 

pair, it is 6.2 inch ( centimeter).  A parallel layout is used for the simulation, and the expected 

distance between pair centers is 1.7mm.  The figure shows results for 4 different scenarios: perfect 

twisting, with type III imperfection only (untwisted cable head and tail), with type III and type I 

imperfection (pair center variation), and with type III, I, and II (twist rate variation).  Parameters used in 

describing imperfections are: 10% random pair-center variation, 3 cm untwisted cable head and tail, and 

uniform twist-rate distribution, where 

7.15≈

],[,2/1)( atratrtratrPtr +−∈= , tra ⋅= 15.0 .  A few outstanding 

characteristics can be observed in this figure.  First, without cable imperfection, both FEXT and NEXT 

are very small, which illustrates that the crosstalk is mostly cancelled for perfect twisted pairs, but this 

cancellation is not as complete as for the earlier example of the “quad” cables.  This conclusion is 

analytically proved in [15].  Second, imperfections have a big impact on FEXT and NEXT levels; in 

particular, the twist-rate variation causes the NEXT to exhibit irregular patterns of notches and peaks over 

frequency.  Third, the direct-pair transfer function is not significantly affected by imperfections.  Even 

though these simulation results are obtained for the specific parameters used in this example, the general 

trends hold for other parameters.  In general, simulation results suggest that for a twisted pair cable 

system, cable imperfections have great impact on crosstalk under normal differential excitation, but small 

impact on crosstalk under split-pair differential excitation [15].  Here, split-pair differential excitation is 

defined as follows: for two twisted pairs, a source is excited between two wires in different twisted pairs, 

and crosstalk is measured over the remaining two wires.  Additionally, if non-differential excitation is 

used, such as the source and load impedances being matrix matched to the cable binder, cable 

imperfections are shown to have small impact on the crosstalk and direct-line transfer functions [15].   

C.  Crosstalks vs. Cable Length   

         This subsection presents how crosstalk depends on cable length, which had been reported as 

experimental and theoretical results in literature [23][23].  This subsection shows that the model and 

simulation presented in this work can also reveal a similar effect, further proving the usefulness of the 
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model.  Fig. 6(a) shows an example of how NEXT and FEXT, as well as the direct pair transfer function, 

vary under the normal differential excitation when the cable length changes.  This particular cable 

contains two pairs.  The twist rates are 2.0 inch ( m051.0≈ ) and 3.9 inch ( ) for each of two 

twisted pairs.  The figure plots the average direct transfer function, NEXT, and FEXT over the frequency 

range of 0-20 MHz.  In Fig. 6(a), the cable length changes from 274 to 274.2 meter.  As expected, the 

direct transfer function remains almost constant when the cable length has such small variations.  

However, both NEXT and FEXT are very sensitive to the cable length variations, even though the 

variations are smaller than the twist rates.  The effect, named here as the “Large Crosstalk Variations Due 

to Partial Twist”, has been observed in measurements [9][17] and theoretically analyzed in [9][15].  The 

large crosstalk variations due to partial twist effect could have a considerable impact on the 

signal-to-noise ratio (S/N) for twisted pairs under the usual differential excitation when FEXT dominates 

other noises.  Furthermore, simulation results suggest that this effect happens only under the normal 

differential excitation but not under split-pair differential excitation.  Additionally, simulations show that 

a non-twisted cable head or tail can cause a similar effect.  Fig. 6(b) shows a related but different effect.  It 

shows how the direct-line transfer function and crosstalk vary with large cable length changes. The 

simulation uses same parameters as in Fig. 6(a) except that the cable length changes from 20 meters to 

1200 meters.  As can be seen from the figure, the direct transfer function monotonically decreases as the 

cable length increases, but the crosstalk does not decrease monotonically.  The non-monotonic decrease 

of crosstalk is not all caused by the partial-twist effect.  This is because the non-monotonic dependence on 

cable length is still observed even if the cable length is carefully chosen such that the partial twist is 

completely removed.  Consequently, the S/N can vary by a few dB when the cable length increases.  

Therefore, a receiver closer to the source might have worse S/N than a receiver at a greater distance, with 

the usual differential excitation. 

m099.0≈

D. Simulation vs. Measured Data 

         Fig. 7(a) shows the measured values of the direct transfer function of a pair, NEXT and FEXT 

between two pairs in a real cable system.  The cable consists of 25 twisted pairs (24AWG) of 274 meters 

length.  The selected pairs are surrounded by neighboring pairs.  The data was measured using a Network 
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Analyzer (Agilent 4395A); 50 to 100 Ohm baluns were used when needed.  Fig. 7(b) shows the 

simulation results with 10% random pair-center variation and uniform twist-rate distribution, 

],[,2/1)( atratrtratrPtr +−∈=  where tra ⋅= 15.0  are used.  The simulation assumed two adjacent 

24AWG pairs, each of length 274 meters.  The two pairs are initially parallel.  These two pairs are isolated 

in the air.  100 ohm source and load impedances are used in each pair.  Physical constants σεµ ,, r  (the 

permittivity, permeability and conductivity respectively) of the dielectric filling material of cables and 

resistance of cable are extracted [15].  They are all frequency dependent.  The simulation results depend 

on the random-number generator (each random output of which of course represents a specific cable).  

The figure shows the result for one specific random number generator, which matches the measured data 

well suggesting that this particular random number is a good match to the specific cable. Note that the 

simulated FEXT is still “smoother” than measured data.  The “roughness” of the measured FEXT can be 

caused by neighboring pairs and other cable imperfections, which were not included in the simulation. 

         The numerical results generated by the simulations in this paper depend on specific sets of cable 

parameters and in some cases, the random number generators. These results should be considered as more 

exploratory than definitive.  In addition to the above examples, the binder MIMO model has been used to 

generate power sum for all crosstalk components in a cable binder, and simulation results have been 

compared with empirical results [12].  Results for practical achievable data rates using the common-mode 

MIMO channel are reported in [18].  The complete simulation software suites are available upon request. 

IV. CONCLUSION 

         In this paper, a binder MIMO channel model is proposed to characterize the physical channels 

including all transfer functions and crosstalk couplings of multi-wire communication systems. The model 

is flexible in that it can accommodate various kinds of practical cables with different cable geometries, 

source-load configurations, and different types of cable imperfections. The model can be used not only to 

calculate NEXT and FEXT when a cable is used under (traditional) differential excitations, but also to 

calculate a MIMO channel matrix H when the system uses MIMO transmission methods.  Once the 

channel matrix H is revealed, the achievable data rate of multi-wire communication systems can be 
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calculated.  The model builds a relationship between the channel matrix H and the actual physical 

parameters such as source-load configurations, cable types, and geometry parameters; therefore, it can 

relate the achievable data rate with these parameters and provide helpful insights in real system designs.  

The proposed model does not include the effect of cable shielding or bridge taps, which are left for future 

work. 
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Figure 1(a), A segment of cable binder can be described with R, L, C, G and V, I 
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Figure 4, Crosstalk for 2 Meter Imperfect Quad Cable
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Figure 5, Effect of Cable Imperfection on Crosstalk under Normal Differential Excitation. 274 m, 24 AWG. 
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                                                    (a)                                                                  (b) 

Figure 6, Crosstalk as Function of Partial Twist and Cable Length 
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                                                (a)                                                                          (b) 

Figure 7, Simulation vs. Measurement 
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Table 1 

15 Transfer functions of interest for 3x3 Case – G is used for NEXT and H for FEXT  
(first subscript is output and second subscript is input) 
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Table 1, Results for Symmetric and Asymmetric Mode 
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