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ABSTRACT 

The paper represents "a state of the art" on sustainability in construction materials. The 

authors propose different solutions to make the concrete industry environmentally friendly 

in order to reduce greenhouse gases emissions and consumption of non-renewable 

resources. The part 1 of present paper focuses on the use of binders alternative to Portland 

cement, including sulfoaluminate cements, alkali-activated materials and geopolymers. Part 

2 will be dedicated to traditional Portland-free binders and waste management and recycling 

in mortar and concrete production.



 

Introduction 

With the dawn of twenty-first century, the world has entered into an era of sustainable 

development. As a consequence of this, concrete industry has to face two antithetically 

needs: how it can feed the growing population needs being – at the same time - sustainable?  

Sustainability in construction industry can be achieved through three different routes (Fig.1): 

reduction in consumption of gross energy, in polluting emissions and in not renewable 

natural resources. Different strategies can be identified along these three routes to make 

concrete sector more environmentally friendly (Fig.2): a) using alternative fuels and raw 

materials to reduce CO2 emissions to produce Portland cement; b) replacing Portland 

cement with low-carbon supplementary cementitious materials (SCMs); developing 

alternative low-carbon binders (alkali-activated materials, geopolymers and calcium 

sulphoaluminate cements); c) reducing natural resource consumption through to waste 

management and recycling (1–3). 

The part 1 of present paper deals with use of binders alternative to Portland cement. Part 2 

will be dedicated to waste management and recycling in mortar and concrete production.   

1. Alternative binders to Portland cement 

Different alternative binders to traditional Portland cement have been proposed: 

sulfoaluminate cements, activated alkaline binders and geopolymers. 

1.1. Sulphoaluminate cements 

Calcium SulphoAluminate cements (CSA) were applied since the end of the 1950’s (4). 

Then in the mid-1970s, CSA cement was produced in an industrial scale in China by 

burning limestone, bauxite and gypsum at 1300 ~ 1350°C (5). In China, CSA cements are 

treated as a special binder with rapid setting, shrinkage compensation and high early-age 

strength. The main phase of CSA is tetracalcium trialuminate sulphate or ye’elimite 

(C4A3S̅). The amount of ye’elimite in CSA cement usually varies from 20% to 70%. Apart 



 

from ye’elimite, belite (C2S) is another main phase in CSA cement; while secondary phases 

may include C4AF, C3A, C12A7 and C6AF2 (6). CSA cement is a sustainable cement when 

compared with OPC (7,8), since less limestone is required due to the low CaO content in 

ye’elimite phase (7,9,10). Moreover, more gypsum or anhydrite (CaSO4) is needed to 

prepare CSA cement; therefore, the CO2 released in CSA cement production process is 

much less than that for OPC production (11). Secondly, its calcination temperature is 100 

~ 150°C lower than that of OPC, which helps reduce 15% coal consumption with respect 

to OPC (12). Thirdly, CSA clinker is porous, which makes it easier to be ground (13) and 

this further reduces energy consumption. However, the use of CSA cement to replace OPC 

100% might encounter some adversities such as over-short setting time (12), low pH (14), 

high price (15) and expansion risk (7). Thereby, blending CSA with OPC might  combine  

their  advantages  and improve properties such as expansion and setting time (16), 

passivation ability of steel and porosity (14).  

The hydration process of CSA cement has been studied (17–21). The first hydration 

reaction in the presence of gypsum (CS̅H2) is: 

C4A3S̅ + 2CS̅H2 + 34H → C6AS̅3H32 + 2AH3  

The formation of ettringite (C6AS̅3H32), AFt, mainly takes place in the first hours (22). When 

gypsum is depleted, ye’elimite forms monosulphate (C6AS̅3H12): AFm. Hydration of belite 

occurs at later age due to its low reactivity. Because the hydration products of ye’elimite 

contain amorphous AH3, reaction of belite in the presence of AH3 will form stratlingite 

(C2ASH8) rather than C-S-H (23). Most of the ye’elimite and gypsum react in first 7 days; 

while most of belite could be unhydrated even at 90 days (7).  In case of blended CSA/OPC 

cement, their hydration products highly depend on the ratio of OPC/CSA. For low OPC/CSA 

ratio, the hydration of OPC takes place in several days later after casting (24). Alite (C3S) in 

OPC cement can react with AH3, that is the hydration product of ye’elimite at early stage, to 

form stratlingite (C2ASH8) and portlandite (CH) at early stage (16). For high OPC/CSA ratio, 



 

alite can bring about C-S-H and portlandite; then the portlandite together with gypsum may 

change the hydration reaction of ye’elimite to form 3C6AS̅3H32. The short setting time of CSA 

concrete is due to the quick and large formation of ettringite in the first hours (25). Content 

of anhydrite in CSA concrete can influence early-age compressive strength as well; 

increasing anhydrite content means more ye’elimite phase which reacts at early age and 

therefore forms more hydration products (26).  

Study performed on CSA cement paste revealed that a bimodal pore distribution was 

developed since the very early age; lower porosity is dominant, but not connected with 

higher porosity (27). Moreover, the average pore size of CSA concrete is smaller than that 

of OPC. The porosity of CSA mortar decreased with the increase of anhydrite content and 

the decrease of w/c ratio (26). A series of factor can influence the expansion of CSA 

concrete (7,28), but ye’elimite content plays an important role. When the portion of 

ye’elimite is more than 50% in CSA cement, expansion, cracking and loss of strength 

appear at later age; the proper content of ye’elimite seems to range from 30% to 40% (29).  

2.2 Alkali activated materials 

Alkali-Activated Materials (AAMs) were developed starting from the 1940's (30). They are 

obtained by reaction of an alkali metal source with amorphous or vitreous calcium-

aluminosilicate precursors. The former is used to increase the pH of the reaction mixture 

thus accelerating the dissolution of the powders, while the composition of the latter 

determines the physical-chemical processes that produce hardening (31,32). 

Microstructures, workability, strength and durability of AAMs can be tuned by a proper 

combination of activators and precursors. Mix Design of AAMs includes materials from both 

natural sources (metakaolin: MK, pozzolans: P) and by-products (slag: GGBS, fly ash: FA 

and paper sludge: PS). AAMs can be classified on the nature of precursor (CaO-SiO2-Al2O3 

system) into two main categories: (a) high calcium and (b) low calcium. When alumino-

silicate sources (MK, FA) are used, a (Na,K)2O‑Al2O3‑SiO2‑H2O system is generated. It can 



 

be considered a subset of AAMs that is usually referred as geopolymers, characterized by 

a peculiar pseudo-zeolitic network structure (33–35). When slag is used as precursor, a 

(Na,K)2O-CaO-Al2O3-SiO2-H2O system is produced. It is activated under moderate alkaline 

conditions (36,37) and hardening is produced by the formation of a C‑A‑S‑H gel.  A 

combination of the preceding two systems is also possible (38,39) where hardening is due 

to the formation of C‑A‑S‑H and (N,C)‑A‑S‑H gels network (40). 

The reactive powder used to produce the calcium-rich binder is blast furnace slag originated 

from the purification process of iron ore to iron (41). GGBFS is a mixture highly glassy 

phases with composition close to those of gehlenite and akermanite: (31-38%) SiO2, (38-

44%) CaO, (9-13%) Al2O3 and (7-12%) MgO, and S, Fe2O3, MnO and K2O with percentages 

of less than 1%. When it is used to produce AAMs, parameters affecting GGBFS reactivity 

are the vitreous phase content (85–95%wt), its degree of depolymerization (DP from 1.3 to 

1.5) and its specific surface (400–600 m2/kg) (31). 

Slag alkaline activation consists (30–32) in dissolution of the glassy particles, nucleation and 

growth of the initial solid phases, interactions and mechanical binding at the boundaries of 

the phases formed, ongoing reaction via dynamic chemical equilibria and diffusion of 

reactive species through the reaction products formed at advanced times of curing (42,43). 

At the early ages, alkaline solution reacts with dissolved species generating the outer C-A-

S-H. At longer ages, the inner C-A-S-H gel is produced by ongoing reactions of the 

undissolved portions of the slag particles through a diffusion mechanism (44).  

Cations and anions of the activator play a specific role in the activation process. When 

hydroxides are used the OH- acts as a catalyst and it is responsible for the pH increase, thus 

allowing the precursor dissolution and the formation of stable hydrates (45). Slag-based 

binder can be prepared using 2–4 M solution with Na2O content less than 5% slag weight to 

guarantee mechanical properties and reduce efflorescence (46), (47,48)(49). When sodium 

silicate is used, the gel is characterized by lower Ca/Si and a less ordered structure. In both 



 

the cases gel is composed by coexisting 11 and 14 Å desordered tobermorite-like phases 

(43), with Ca/Si ratio (0.9–1.2) lower than in hydrated Portland cement system. AFm type 

phases or strätlingite are formed when NaOH or silicate are respectively used (50,51). If raw 

materials contain high amount of MgO (52,53), Hydrotalcite (Mg6Al2CO3(OH)16·4H2O) is 

produced, while in presence of low MgO (<5 %) and high Al2O3 contents zeolites are often 

found in the reaction products (54). 

2.3 Metakaolin and fly-ash based geopolymers 

As a general statement, metakaolin has been the “model system” for studying the activation 

process(55–63), of AAMs. MK (Al2O3:2SiO2) is a natural pozzolanic material obtained by the 

calcination of kaolin at 500–900 °C (64,65). MK consists of plate-like particles (66) with a 

specific surface area generally between 9 – 20 m2/g. MK pastes usually require a liquid/MK 

> 0.6 by mass (67) and MK mortars need ∼1.0 (68,69). In general, MK geopolymers set 

within 24 h. Conversely, MK geopolymers have a higher reaction rate and a faster strength 

gain with respect to FA ones (70,71), because of the presence of secondary minerals in the 

kaolinite clay (72,73), the fineness of particles (74), and the reaction temperature (75,76). 

The hydrothermal ageing (95°C) because of the major formation of crystalline zeolite, is 

responsible for the strength loss (71). Moreover, the thermal treatment of MK mixtures at 80 

°C accelerates the strength development, but the final strength is lower than that of 

specimens ambient cured (68). In geopolymers, the SiO2/Al2O3, Na2O/Al2O3 and Na2O/H2O 

influence mechanical properties. Compressive strength and Young’s modulus were found 

to be dependent on alkali type (Na or K) and Si/Al ratio (77), however at the same 

compressive strength, the authors (70) found that the modulus of elasticity is lower in 

geopolymers than in OPC mortars. K-based geopolymers produce a higher compressive 

strength than Na-based ones (78) and the increase of SiO2/Al2O3 increases also the 

mechanical strength. Davidovits indicated the optimum Na2O/Al2O3 and SiO2/Al2O3 are 1 

and 4, respectively (79), while most researchers reported an optimum SiO2/Al2O3 of 3–3.8 



 

(49,80). The increase of Si/Al ≥ 3 leads to chemical instability in air with efflorescence 

formation on the surface attributed to the high residual free alkali cations (81). Usually, 

increasing the Na2O/H2O leads to improved dissolution ability and mechanical strength 

development of clay-based geopolymers (69,78,82,83). Geopolymers prepared only with 

MK are highly susceptible to shrinkage both at room and elevated temperatures (67,84–88), 

because of their high water requirement.  

Concerning the effect of aggressive/pollutant substances (89–92) on MK concretes 

durability, Palomo et al. (93) found that MK geopolymers were stable if immersed in 

seawater, Na2SO4 solution (4.4 %), and H2SO4 solution (0.001 M) up to 90 days. On the 

contrary, Mobili et al. (70) noticed cracks formation on MK geopolymers exposed to Na2SO4 

solution (14 %), not present in FA ones with the same activators. Gao et al. (94–96) found 

that MK geopolymers remain sound after 28 days in HCl solution (pH 2). The capillary water 

absorption of MK-based geopolymers is higher than blended blast furnace slag, (97,98) FA 

or OPC ones (70). Currently, researchers are studying MK-based geopolymers also to 

produce non-structural plasters with lightweight aggregates for thermal insulation (99–104) 

and to be used as mortars able to adsorb Volatile Organic Compounds (VOCs) (105–109).  

Another trend is to produce geopolymers suitable for refractory applications, adding a 

foaming agent, H2O2 or Al powder (100,110,111). Results show that only Al-geopolymer are 

successfully converted to crack-free ceramics on heating (110). The partial substitution of 

MK with FA gives also positive influences both on thermal resistance (112) and compressive 

strength (100), thanks to the lower water demand and thus the lower free water evaporation. 

Foams have much lower thermal conductivity (0.15 – 0.4 W/m·K) than the solid geopolymer 

(0.6 W/m·K) (113). The thermal conductivity increases with the increase Si/Al ratio 

(114,115), because of the increased connectivity, reduced porosity and finer pore size 

distribution. Moreover, increasing the K/Al ratio also the foaming efficiency (final 



 

volume/initial volume) increases (116). Geopolymers derived from a K-based activator were 

more ready to dissolve or degrade compared to an Na-based one both if foamed (117) or 

not (118–120).  

Research field investigated “one-part” MK geopolymers, obtained by adding only water to 

the dry materials, avoiding the use of caustic solutions, by the calcination of the clay material 

with a powdered activator, such as NaOH or KOH (121), soluble sodium silicate (122), 

sodium carbonate (123) or by using an alkali-rich by-product, such as potassium-rich 

biomass ash (124).  

FA is an industrial by-product derived from coal fired power stations with a highly variable 

composition, dependent on the coal source and burning conditions (125). Particle size 

distribution, chemical composition and crystalline/glassy phases of the precursor are key 

factors that need to be understood, since they control the precursor reactivity and solubility 

in alkaline solutions (126). It was found that the geopolymer microstructure is highly 

influenced by particle fineness, amorphous phase composition, oxides content (particularly 

Fe2O3, CaO). The lower Na2O/SiO2 molar the higher the performances in terms of water 

absorption, and mechanical properties. Geopolymers showed good thermal stability after 

firing due to the formation of new crystalline phases. Developing comprehensive knowledge 

of precursors is a fundamental and critical step in commercializing geopolymer products. 

For example, a preliminary study showed the use of geopolymer mortars for strengthening 

of concrete structures (127). As workability is one of the main requirements, the research 

on superplasticizers suitable for fly ash geopolymers needs be emphasized (128–135).  

2.4 Clayey sediments and sludge for geopolymers 

Geopolymers are attractive because natural and industrial silico-aluminates wastes may be 

used as precursors. The exploration for alternative low cost and easily available materials 

led among others to “normal clays”. Clayey sediments consist of different clay minerals and 



 

they are widely available all over the world, offering a significant reactivity after a thermal 

activation process (136). Among silico-alumina wastes, reservoir sediments are worthy of 

consideration. Sediments should be removed periodically to avoid reduction in reservoir 

capacity. There are more than 7000 large reservoirs in EU, of which 564 are in Italy. These 

data show that regular dredging operations can produce huge amounts of sediment. In this 

regard, some possibilities have been explored as raw materials in production of artificial 

aggregates, bricks and cement (137–142). The extension of these possibilities in the field of 

geopolymer materials has been studied in several papers (143–145). 

SiO2 and Al2O3 are the main components in sediments, while CaO and Fe2O3 are present 

in lower concentrations; K2O, MgO and Na2O are present in minimum percentages. The 

main mineralogical phases detected by XRD analysis are: quartz, calcite, clay phases and 

feldspars. A pre-treatment of the sediment is always necessary in order to enhance the 

reactivity in the alkaline environment. The optimal thermal treatment is at 750 °C, in fact the 

27Al NMR peak at 0 ppm related to octahedral Al (Figure 3) and absorbance FT-IR peaks at 

3697, 3620 and 3415 cm-1 were absent or greatly dampened evidencing the collapse of the 

ordered clay structure. 

Thermally treated sediments were employed to manufacture geopolymer mortars and 

concrete blocks (146).  

The prevailing chemical components of the sediments are silica and alumina, then making 

sediments good geopolymer precursors. However, within the wide range of natural and 

artificial silico–aluminates, the SiO2/Al2O3 in this case is quite high, such to make the alkali 

aluminate activation and/or the addition of alumina rich additives an interesting alternative. 

Aluminate activation was studied (147) with encouraging results to manufacture precast 

building blocks. As regard alumina-rich additives, water potabilization sludge is another key 

residue produced by the reservoir management activities. These wastes are based on 

flocculation-clarification processes using alumina coagulants (148). The amount of sludge 



 

generated and its chemical composition depend mainly on chemical and physical 

characteristics of the water, the efficiency of the removal process and type and dose of 

coagulant. The amount of sludge can be roughly estimated in the range of 1-5% of the total 

amount of untreated water (148). This waste has been studied in literature only in a few 

studies, mainly with regard to potential reuse in construction industry (146,149–155). 

The management of huge amount of sediments coming from dredged activities is an 

important issue to be solved in many countries worldwide. Clean dredged materials can be 

used for construction fill, brick or asphalt manufacturing, topsoil and marine projects. 

Recently, Lirer et al. (156) proposed dredged sediments with fly ashes in the production of 

geopolymers. Regarding the environmental impact, the values of hazardous elements 

classify geopolymers as non-dangerous materials. Therefore, these preliminary results 

suggest that this methodology could represent a starting point for the investigation of 

possible beneficial uses of polluted sediments in geopolymeric matrices. 

2.5 Corrosion behavior in alternative binders-based matrix 

Replacement of portland cement with alternative binders, especially CSA cements and 

AAMs, open the theme of protection of reinforcements in these new concretes (157–159). 

Data (23) seem to indicate the durability of CSA concretes is at least comparable to that of 

traditional Portland cement mixtures, but they also evidence the need to perform long-term 

tests in order to recognize the corrosion protection mechanism. The protective capacity of 

CSA-matrix (160) is confirmed by the positive experience on structures in China, in which 

no rebar corrosion occurred after 14 years of exposure. However, few information is given 

about the actual environmental aggressive conditions. Most of the works available are 

devoted to the study of hydration products in the very early period but only few papers 

address the corrosion behaviour of reinforcements by means of electrochemical techniques. 

Potential measurements performed in a few experimental works evidence difficulties in 

achieving proper values of passive rebars due to the low alkali content in pore water (161). 



 

The studies on durability of mixtures manufactured with such binders address only few 

aspects – carbonation and chlorides – neglecting relevant aspects governing the corrosion 

process (12,27,162,163). 

The main hydration product of CSA cement is ettringite that does not provide OH-. The pH 

of two pure CSA concretes with 0.5 w/c were respectively 10.23 and 10.53 after 90 days 

(14). In (161), w/c 0.45 CSA mortar showed low pH around 6. However, a high pH around 

13, within first 60 days, has been observed (164) by using a CSA cement paste with w/c 

0.8. An exhaustive investigation on two CSA cement pastes with w/c 0.72 and 0.8 revealed 

that: in the case of w/c 0.72 CSA cement paste, within the first hours, the pH was as low 

as 10.3 ~ 10.7 due to the fact that the initial saturated pore solution was dominated by 

aluminate, calcium and sulphate; after 16 hours, calcium and sulphate concentrations 

decreased noticeably due to the depletion of gypsum, thus pH went around 11.8; after 28 

days, the pH value reaches 12.7 due to the ongoing release of alkali ions  of  CSA  clinker  

and  the  increase  of  alkali  concentrations  caused  by  the consumption of the pore fluid 

by the formation of hydrates; while w/c 0.8 CSA cement paste showed a similar trend, but 

a slight higher pH at each stage (18). 

Ettringite is susceptible to carbonation (12,13). It seems that the carbonation resistance of 

CSA concrete is weaker (Fig. 4) than that of OPC concrete (165). However, the 

investigation on two CSA concrete samples suggested that the carbonation resistance of  

CSA concrete is comparable with that of OPC concrete; high-strength CSA concrete has 

excellent carbonation resistance (166). It was found that the carbonation resistance of CSA 

mortar increased along with the anhydrite content, as well as the decrease of w/c; 

meanwhile it was also found that carbonation changed the strength performance of CSA 

mortar due to the modification of porosity caused by carbonation (26). 

The lower chloride penetration resistance of CSA concrete when compared to OPC 

concrete was observed (12). Conversely, low chloride diffusion coefficients of CSA 



 

concretes with different strengths when compared with their OPC counterparts were 

obtained (167). To enhance the chloride penetration resistance of CSA concrete, modifying 

AFm/AFt through varying the gypsum content with the hope to let more AFm bind chlorides, 

was carried out (168). Besides, the good sulphate resistance of CSA concrete was reported 

in (12–14). In case of blended CSA cement, it was shown that increasing OPC in blended 

CSA cement (15%-85%) is possible to improve the pH (169). 

Currently, there is very few publications dealing with the passivation of steel embedded in 

CSA concrete. In reference (161), steel in CSA mortar showed a higher corrosion rate than 

steel in OPC mortar exposed to 3.5% NaCl solution. Half-cell potential measurement 

showed that steel embedded in CSA mortar was depassivated, showing high corrosion rate 

in 3.5% NaCl solution, due to the low pH (around 6) of pore solution of CSA mortar. 

However, corrosion potential and corrosion rate of steel embedded in w/c ratio 0.55 CSA 

concrete with a pH value of 11.5 showed the passivation of embedded steel, even in 

concrete exposed to an environment with 95% R.H. and 40°C or immersed in water (165). 

In reference (14), it’s found that mortar made with 100% CSA cement (pH 11.88) was not 

capable of passivating steel; however, CSA cement blended with 15% OPC (pH 11.32) was 

enough to guarantee the passivation of steel. 

The pH of alkali activated binders is very high at an initial stage due to the presence of 

activators, leading to the common conclusion that no corrosion issues can occur. However, 

the pH tends to decrease under endogenous conditions to values well below the limits for 

steel passivation in absence of chlorides (170) because such kind of binders consume 

alkalinity during the hydration process. In addition, very scattered pH values are reported 

and several doubts have still to be solved in terms of corrosion behaviour of reinforcement 

(171) due to the very different mineralogical composition of precursors. In addition, the role 

of alkalinity reservoir should be well taken into account for CSA and AAMs binders which 

are generally prone to consume calcium hydroxide rather than produce it as Portland cement 



 

do (12). The protectiveness is not only attributable to the pH, but also to own ability of OPC 

concrete to bind chlorides leading to lower amount of free chlorides. The main factors 

influence the critical chlorides content for pitting initiation are the alkalinity and the concrete-

reinforcement interface characteristics (172–175). The effect of alkalinity on localized 

corrosion initiation  can be described in terms of chlorides-hydroxyl ions critical molar ratio, 

usually assumed equal to 0.6(157,174–183). The critical chloride threshold in OPC 

concretes is much higher due to oversaturation of calcium hydroxide (184). This lead to an 

increase in critical molar ratio at values exceeding 2 (173,185). This difference can be 

ascribed to the buffer ability by calcium hydroxide. The presence of this phase directly in 

contact with the carbon steel surface represents a reservoir of alkalinity, which contrasts the 

pH drop due to localized corrosion initiation. 

On the contrary, lot of attention should be paid to innovative binders due to the great 

compositional variability of the raw materials, usually industrial by-products. Chloride 

contamination can be not negligible leading to an increased risk of localized corrosion 

especially in the first period when alkalinity has not yet reached a sufficient level to maintain 

stable passivity.  

Mobili (70) studied also the corrosion behavior of carbon and galvanized bars (186,187) 

embedded in pure FA and MK geopolymers with the same strength class compared to OPC 

mortars. During the curing period, geopolymers prolong the active state of rebars, but after 

10 days, corrosion rates (vcorr) decreased to moderate values (around 10 μm/year) in all 

mortars (70). During wet/dry (w/d) cycles in 3.5% NaCl solution (188), MK geopolymers 

showed the greatest corrosion of embedded rebars and the highest consumption of the 

galvanized coating because of the higher porosity compared to FA and OPC ones (189,190). 

Aguirre-Guerrero (191) studied the chloride-induced corrosion in OPC concrete coated with 

an alkali-activated mortar (90% MK (or FA) and 10% OPC); the MK geopolymer coating 

exhibited the best performances.  



 

Accelerated carbonation (CO2 = 3 vol.%) on slag/MK geopolymers shows that carbonation 

occurs faster as MK content increases and leads to a reduction in compressive strength 

(192). Moreover, accelerated carbonation at 50% CO2 on MK-based geopolymers forms 

large amounts of sodium bicarbonate leading to a lower pH of the pore solution; while the 

formation of sodium carbonate in natural conditions does not lead to a pH below 10.5 after 

one year (193).  

2.5 Reinforcement less sensitive to corrosion  

Carbonation or chloride-induced corrosion are the main issues in reinforced concrete 

structure manufactured with different types of binders. In carbonated concrete without 

chlorides, stainless steel rebars are passive (194,195). For galvanized steel, the presence 

of an external layer of pure zinc and its thickness is of primary importance to form a passive 

film; in contact with alkaline solutions, if the pH does not exceed 13.3, a layer of calcium 

hydroxyzincate is formed and zinc is passivated (196). 

In chloride contaminated concrete, the onset of corrosion occurs if a chloride threshold is 

exceeded. Even though the measurement of this threshold is not easy, some major factors 

have been identified: the pH, the potential of the steel and voids at the steel/concrete 

interface (196). In the case of stainless steels, also chemical composition is important: 

corrosion resistance is improved by increasing Cr and Mo content, while probably the role 

of Ni is beneficial in alkaline environments and the Mn appears to have worsening effect 

(196–201). Galvanized steels has a good resistance to chloride-induced corrosion, even if 

not comparable to stainless steels: in aerated concrete the critical chloride content is 

maximum 1-1.5% (196). 

Few papers have been published about performances of stainless or galvanized steels in 

new binders matrix (70,128,189,202,203). Moreover, results are not always consistent. Most 

of the researchers agree that the chloride concentration in alkali activated slag mortars is 



 

lower than in traditional mortars (128,189). This effect has been attributed to the lower 

porosity and the different chloride binding capacity: while in Portland cement mortars 

chlorides form low solubility calcium containing compounds, in geopolymers, since calcium 

content is very low the chloride binding effect is negligible. 

pH of the pore solution is a matter of discussion. Some authors stated, without indicating 

any practical measurement, that pH is highly alkaline (202) or more alkaline that the 

traditional mortars (70). On the contrary, other authors reports pH value, measured by 

leaching method, for alkali activated mortars similar to that of CEM II A-L 42.5 R based 

mortars (between 12.8 and 13.2), but after exposure to 11 cycles of wetting with chloride 

solution and drying, the pH of alkali activated mortars was found 10.5-10.7 against 12.2 for 

cement based mortars, (128).  

In (202), corrosion of low nickel (4.3%) manganese (7.2%) austenitic stainless steel with 

16.5% Cr is compared with traditional stainless steel AISI 304 (1.4301 according to EN 

10088-1) in alkali activated fly ash mortars characterized by high alkalinity (authors reported 

pH higher than 13, even if few details are provided). Both stainless steels exhibited passive 

behavior up to 2% of chloride content, while carbon steel suffered corrosion in 0.4% 

chlorides. In (203), stainless steels (traditional type AISI 304 and low nickel) in carbonated 

mortars subjected to accelerated chloride exposure suffered localized corrosion. Analysis of 

rebars after 2 year-exposure showed that in alkali activated slag mortars the behavior was 

better than in OPC mortars. The authors attributed the improvement to the higher 

concentration of inhibiting bicarbonate/carbonate ions present in these binders (203). The 

results are promising but not conclusive: on one hand, chloride content 2% in alkaline mortar 

(202) is not high enough to evaluate the long-term performance of stainless steel rebars. On 

the other hand, the results of the paper (203) show a little improvement of corrosion behavior 

in alkali activated mortars vs traditional ones. Concerning galvanized rebars, it has been 



 

mentioned that geopolymeric mortars can have two opposite effects: a delay in the 

passivation due to the higher pH (potentially negative) and a reduction of corrosion rate after 

some cycles of wetting with 3.5% NaCl (70,189). Nevertheless, corrosion rate in alkali 

activated slag mortars were found to be 50 m/year. This value would lead to the 

consumption of the zinc layer (typically 150 m) in few years, so these results do not 

guarantee long term performance of the galvanized rebar in geopolymeric mortars. 

2.6 Alkali activated materials in repair and conservation 

The issue of retrofitting and seismic upgrade of existing masonry buildings and reinforced 

concrete structures, has become of primary interest, due to the huge architectural heritage 

all over the world. This topic is extremely complex, especially because of many compatibility 

issues between existing structures and Portland cement repair mortars (204–207). In fact, 

use of Portland cement mixtures on masonry structures can cause damages due to the 

presence of sodium and potassium ions that can promote alkali-aggregate reaction (208) 

or, in presence of wet environments and sulfur-rich natural stones (209), it could determine 

development of thaumasite and secondary ettringite, with expansion and cracking 

phenomena. Another key parameter for repair mortars is the elastic compatibility (210,211): 

if Young’s modulus of repair material is different from substrate, it may create detachments 

and cracks. Finally, it is not possible to overlook the aesthetic compatibility between the 

original areas and those involved in maintenance works (212).  

Currently, natural hydraulic lime (NHL) represents the only binder that can be used in these 

contexts due to their high compatibility with the substrates (213–215). However, due to their 

low mechanical strength, NHL-based mortars often do not meet the elasto-mechanical 

requirements and, for this reason, are very often mixed with Portland cement. 



 

The use of cement-free alkali-activated materials (AAM), such as ground granulated blast 

furnace slag (GGBFS), could also be a suitable alternative to Portland cement mixtures 

(216–219).  

The key parameter that regulates most of properties of alkali-activated compounds is the 

precursor/activator ratio (220–225).  

A key aspect for use in maintenance is the possibility to tailor the strength and stiffness with 

the activator/precursor (226–228); in particular, both the compressive strength and elastic 

modulus increased due to the high alkali-activator dosage in the mixture. Specifically (Figure 

5), weakly alkali-activated GGBFS-based mortars can be used for plasters or masonry 

mortars while, in presence of high activator/precursor ratios, can be employed for seismic 

retrofitting or for reinforced concrete structures restoration. 

Another key parameter of alkali-activated mortars is elastic modulus (Figure 5); several 

authors (31,50,229,230) showed less rigidity of GGBFS-based matrix respect to reference 

mixtures with ordinary Portland cement, at equal strength class. In particular, low 

activator/precursor determine Young’s modulus ranging from 10 and 15 MPa while higher 

alkaline powders dosages cause an increase in GGBFS-based matrix-stiffness and, 

consequently, elastic modulus grows up to 20 MPa. This property, in presence of substrates 

restrain the dimensional contraction of repair mortar, determines the development of low 

internal tensile stresses and, thus, a lower cracking risk.   

In general, alkali-activated mortars and concretes show very high free shrinkage compared 

to conglomerates manufactured with traditional binders (231). These problems are caused 

by the large amount of water not involved in the hydration reaction that, by evaporating, 

creates dimensional contraction and markedly porosity of matrix. Researchers (232) note 

that by increasing the water/binder, there is a growth in shrinkage due to two factors: the 

great amount of water able to evaporate and the increase of binder paste/aggregates. In 

addition, it is possible to note that shrinkage is also influenced by type and contents of 



 

alkaline activators (233). Reduction of shrinkage can be achieved by optimizing the mix with 

ethylene glycole SRA or calcium oxide expansive agents. In addition, methyl cellulose and 

starch ether (M.S.) can also be added in order to reduce water evaporation at the fresh state 

(36,234,235). In particular, the addition of blends based on ethylene glycol and calcium 

oxide can reduce the free shrinkage about 40% compared to reference GGBFS- mortars 

without admixtures (Figure 6). 

Another issue of alkali-activated materials is the efflorescence caused by excess of sodium 

oxide remaining unreacted in the material due to a disequilibrium in the mix towards the 

sodium-based activators. The parameter that influences the quantity of efflorescence is the 

Na/Al molar ratio; conglomerates with higher Na/Al molar ratios show a higher extent of 

alkali leaching, indicating a stronger tendency towards efflorescence (236,237).  

In conclusion, from the analysis of the strengths and weaknesses of AAMs, it turns out that 

alkali-activated mortars and concretes can be a reasonable alternative to traditional Portland 

cement-based mixtures or natural hydraulic lime-based conglomerates for restoration of 

ancient buildings.  
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