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Abstract

Engineering specific interactions between proteins and small molecules is extremely useful for biological studies, as these
interactions are essential for molecular recognition. Furthermore, many biotechnological applications are made possible by
such an engineering approach, ranging from biosensors to the design of custom enzyme catalysts. Here, we present a novel
method for the computational design of protein-small ligand binding named POCKETOPTIMIZER. The program can be used to
modify protein binding pocket residues to improve or establish binding of a small molecule. It is a modular pipeline based
on a number of customizable molecular modeling tools to predict mutations that alter the affinity of a target protein to its
ligand. At its heart it uses a receptor-ligand scoring function to estimate the binding free energy between protein and
ligand. We compiled a benchmark set that we used to systematically assess the performance of our method. It consists of
proteins for which mutational variants with different binding affinities for their ligands and experimentally determined
structures exist. Within this test set POCKETOPTIMIZER correctly predicts the mutant with the higher affinity in about 69% of the
cases. A detailed analysis of the results reveals that the strengths of POCKETOPTIMIZER lie in the correct introduction of
stabilizing hydrogen bonds to the ligand, as well as in the improved geometric complemetarity between ligand and binding
pocket. Apart from the novel method for binding pocket design we also introduce a much needed benchmark data set for
the comparison of affinities of mutant binding pockets, and that we use to asses programs for in silico design of ligand
binding.
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Introduction

Computational protein design has advanced rapidly in recent

years. A particularly exciting and dynamic area is the design of

interactions between proteins and small molecule ligands. This

includes the design of receptors that bind ligands of choice, which

for example can be used as biosensors [1], as well as the design of

enzymes that do not only bind a substrate, but also contain the

catalytic machinery to process it [2–3]. In all these designs, an

existing protein is used as a scaffold, and its binding pocket is

altered or a new one is introduced that should interact with the

target ligand.

With this approach, enzymes have been designed that catalyze

chemical reactions for which no natural catalysts exist, such as

a kemp eliminase [4–5], a diels-alderase [6], and a retro-aldolase

[7]. It has also been used to design a metalloenzyme by

repurposing parts of the already existing catalytic machinery in

the scaffold protein, namely the reactivity of a zinc metal center to

hydrolyze organophosphates [8]. Furthermore, similar methods

have been applied to change substrate specificities as well as

affinities. For example human guanine deaminase was changed to

bind ammelide through the remodeling of a loop that now

provides a key interaction to the new target substrate [9], the

substrate specificity of gramicidin S synthetase was changed from

phenylalanine to leucine [10], and mutations in dihydrofolate

reductase from Staphylococcus aureus were predicted that decrease

binding to an inhibitor molecule while stabilizing native protein

function [11].

While these are impressive results, there is still much room for

improvement in the computational methods. Specifically, it seems

to be difficult to accurately design a protein for high affinity

binding to a ligand or transition state [12]. The majority of the

enzyme designs mentioned have low affinities for their substrates

when compared to naturally occurring enzymes [13–14]. In a rare

report of a failed attempt, the unsuccessful design of a high-affinity

ligand binding site for a D-Ala- D-Ala dipeptide into an endo-1,4-

xylanase scaffold was discussed. Designs by the employed design

software ROSETTA did not show the predicted high affinity in the

experimental tests underscoring the challenge of protein-ligand

interface design [15]. In this respect long-range electrostatics and
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dynamics, accurate modeling of solvation and electrostatics at the

interface, as well as the inclusion of explicit water molecules have

been named as most problematic areas [13–16]. In order to

improve protein-ligand interface design and to overcome current

limitations it will be necessary to test design protocols more

systematically.

In this respect, we noticed that in computational design studies

there is a lack of more general benchmark sets. Related molecular

modeling techniques are regularly assessed using test sets. For

example protein-ligand docking algorithms have been compared

in detail [17–18] [19–20]. Also the CASP and CAPRI experi-

ments allow unbiased testing of protein structure prediction and

protein-protein docking methods [21]. In contrast only a few

computational design studies tested their employed methodology.

One example is the redesign of the binding pocket of ribose

binding protein for its native ligand using molecular mechanics

methods. Among the resulting binding pocket sequences, the wild

type sequence was ranked second best, while the first and third

ranks had only a single mutation and bound ribose with tenfold

decreased affinity [22]. Also the aforementioned algorithm to

introduce one key interaction to a ligand using loop modeling

techniques was tested on eight proteins. For six of them the

method produced a loop of the same length and similar

configuration as in the crystal structures [9]. Both benchmark

tests are very specific, they cannot be used to generally and

systematically assess a method’s proficiency in designing binding to

a small molecule. Also the broader benchmark set that was used to

assess the ability of the enzyme design methods ROSETTAMATCH

and SCAFFOLDSELECTION to identify suitable scaffold proteins that

can host a desired catalytic machinery [23–24] are not suited for

this purpose. Such a test set, however, would be very helpful for

assessing the potential and the shortcomings of available methods.

In this study, we present POCKETOPTIMIZER, a computational

pipeline that can be used to predict mutations in the binding

pocket of proteins, which increase the affinity of the protein to

a given small molecule ligand. It can be used for the analysis of few

mutations as well as for the design of an entire binding pocket. It

uses several molecular modeling modules. Side chain flexibility is

sampled by a conformer library, which we compiled following

Boas and Harbury [22]. The use of conformer libraries has been

reported to be advantageous, especially in the context of binding-

site geometries [25] [26–27]. A receptor-ligand scoring function is

used to calculate protein ligand binding strength. The modular

architecture of POCKETOPTIMIZER allows easy and systematic

comparison of methods that perform the same task. As the first test

we utilize this to examine two scoring functions in this study, the

scoring function provided by CADDSuite [28] and Autodock Vina

[29]. In order to assess the performance of POCKETOPTIMIZER and

other methods that address the same task, we compiled

a benchmark set. It consists of mutational variants of proteins

and their small ligands with available experimental structural and

binding affinity data. We also used this benchmark to test the

enzyme design application included in the ROSETTA molecular

modeling software. ROSETTA was used for the majority of the

design studies mentioned earlier, and it is the most successful freely

available protein design software to date [30]. We find that both

methods perform similarly. In our benchmark POCKETOPTIMIZER

succeeds slightly better in predicting the correct affinity-enhancing

mutations. We discuss the strengths and weaknesses of our method

and describe to which protein design problems it can be applied

with good chances of success. The findings emphasize the merit of

a systematic approach to evaluate computational protein design

methodologies, to identify their strengths, and to pinpoint

possibilities for improvement. And our modular program POCK-

ETOPTIMIZER provides a suitable framework to test and implement

these approaches.

Results and Discussion

Computational Receptor Design Pipeline
PocketOptimizer

We developed POCKETOPTIMIZER for the design of protein-

ligand interactions. In combination with a program such as

SCAFFOLDSELECTION [24] it can also be used for enzyme design.

POCKETOPTIMIZER is a combination of customizable molecular

modeling components. Amino acid flexibility is modeled by a side

chain conformer library, ligand flexibility is addressed by

systematically sampling poses of the ligand in the binding pocket.

The score that is optimized is a combination of protein packing

energy calculated with the AMBER force field [31], and protein-

ligand binding energy calculated using a scoring function. To

identify the most promising design, the global minimum energy

conformation of a protein pocket with the ligand based on the

combined energy score is calculated [32–33]. Intermediate results

like conformers or score tables are stored in standard file formats,

making it easy to compare different approaches for a given

subtask. Notably, we used two receptor-ligand scoring functions in

this study, the scoring function included in CADDSuite [28] and

Autodock Vina [29]. Figure 1 depicts the workflow of the

POCKETOPTIMIZER pipeline.

The program POCKETOPTIMIZER is designed as a modular

pipeline that allows exchange of program parts, e.g. the use of

Figure 1. Workflow of PocketOptimizer. The input specific for
a design is depicted in circles, parts of the pipeline are shown in
pointed rectangles, and output components in rounded rectangles. The
output is stored in standard file formats (SDF and PDB for structural
data, csv for energy tables). This allows the easy replacement of
a component with another that solves the same task (e.g. replacing the
binding score function).
doi:10.1371/journal.pone.0052505.g001
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different available docking functions or force-fields. In contrast to

other existing design programs this pipeline aims to provide

a platform for the incorporation and testing of available modules

so that the contribution of individual parts can be distinguished. In

its current implementation of POCKETOPTIMIZER we chose to use

a conformer library over rotamers. The program is geared towards

the design of protein-ligand interaction, however it can also be

used for prediction of protein packing only. Currently not

incorporated are backbone flexibility and negative design

capabilities.

POCKETOPTIMIZER source code and documentation can be

obtained from the authors or from www.eb.mpg.de/research-

groups/birte-hoecker/algorithms-and-software.html.

Benchmark Set
We compiled a set of twelve proteins with structural and

experimental affinity data for the assessment of computational

design methods for protein-ligand binding. For this, we system-

atically searched the PDBbind database [34], which lists high

quality crystal structures of protein-ligand complexes together with

experimentally determined binding data. Each protein in our set

has at least two mutational variants (usually the wild type and one

or more mutants) accompanied by an affinity measure (the

inhibitory constant Ki or dissociation constant Kd ) for the same

ligand. The positions of amino acids that differ between the

variants are always located in the binding pocket or active site. For

each protein, there is at least one crystal structure of a variant with

the ligand, for ten of the twelve there are two or more crystal

structures that allow us to compare a design model of a variant

with the respective crystal structure. The proteins and ligands in

our benchmark set are very diverse. All ligands are shown in

Figure 2. Each protein in the set belongs to a different fold as

defined by SCOP [35], underscoring their structural diversity.

This diversity allows to test design methods on a wide range of

problems and avoids bias. Table 1 lists the benchmark proteins

and their associated data.

Benchmark Results
The optimization scheme of POCKETOPTIMIZER simultaneously

chooses sequence and conformation. It can go over many

alternatives. For the benchmark, however, it was necessary to

restrict the sequence to the mutations for which experimental data

was available. We tested the performance of POCKETOPTIMIZER on

the benchmark set using Autodock Vina and CADDSuite

receptor-ligand scores as well as ROSETTA’s enzyme design

application. Each method was used for the same set of design

calculations. Each available crystal structure was used as a scaffold

for the design of each mutational variant. We obtained a design for

each mutation in each scaffold structure by forcing the methods to

select a particular mutation in a separate run. This allowed us to

compare the predicted binding and total energy scores as well as

the designed conformations with the experimental data. Figure 3

shows the RMSD values between the designs and the respective

crystal structures. This is a measure of how well the respective

method models the conformation of the binding pocket residues

and the ligand pose in the pocket. ROSETTA performs better in

modeling side chains in the binding pocket. The difference

between the pocket RMSDs of ROSETTA and each of the two

POCKETOPTIMIZER variants is statistically significant with a p-value

,0.01 according to a Mann-Whitney test. This might not come as

a surprise considering that the ROSETTA molecular modeling

software is extensively used and optimized for protein packing

tasks, especially protein structure prediction. POCKETOPTIMIZER on

the other hand focuses on the identification of residues interacting

favorably with the ligand. The observed differences in ligand pose

RMSD are not statistically significant (Figure 3). To assess whether

the methods can differentiate correctly between protein variants

that have a large affinity difference, we looked at pairs that have an

affinity difference of at least 50-fold. This cutoff translates to

roughly 2.3 kcal/mole and was chosen to make sure that only

pairs with clear, trustworthy affinity differences well outside

experimental error are investigated. Table 2 lists the number of

pairs in which the order of the mutants according to energy score

is the same as the order according to affinity, meaning the design

method would produce the correct ranking. Here, POCKETOPTI-

MIZER performs in the same range as ROSETTA, with 69% correctly

predicted pairs opposed to 64%. When comparing the two

receptor-ligand score functions we used in our approach it seems

that Autodock Vina has some advantage over the CADDSuite

score. The total scores of the different methods are also listed.

Based on these scores POCKETOPTIMIZER performs even better with

71% and 76% correctly predicted pairs. However, since we are

looking at affinity prediction, the binding score appears to be more

appropriate for the comparison.

We further examined how well the energy scores correlate with

the affinities. For this we plotted the predicted energy of each

design against the logarithmic affinities for all seven test cases with

more than two mutations (Figure 4). The scores should correspond

to the binding free energy, which in turn is proportional to the

logarithm of the affinity of binding. Here, all mutants with

experimental affinity values of a test case are included, regardless

of the extent of the affinity difference. Overall we find that the

energy values follow the affinity logarithm only in some cases.

Discussion of Benchmark Results
When looking at a pair of protein variants, POCKETOPTIMIZER is

able to correctly predict which variant has a better binding affinity

if that difference is based on the introduction or abolition of

a direct interaction of the mutable residue’s side chain with the

ligand. This is especially noteworthy for pairs where one residue

forms a hydrogen bond with the ligand, while the other does not.

This was predicted correctly in seven of eight cases where the

better binding variant forms an additional hydrogen bond. It also

works well if the variable side chain of one mutation variant is

bulkier than its counterpart in another variant, and therefore packs

better against the ligand, i.e. forms more van der Waals (vdW)

interactions with the ligand and shields it better from solvent,

improving the solvation energy contribution. A potential downside

of this effect of vdW contact improvement is that POCKETOPTI-

MIZER sometimes seems to prefer larger side chains even if they are

detrimental to binding for other reasons. This tendency could lead

to an overpacking of the designed pocket. When differences in

binding have more complex causes, such as rearrangements in the

pocket’s side chains that affect the ligand interaction indirectly by

influencing other pocket side chains, the program generally fails to

capture these differences.

Both scoring functions used within POCKETOPTIMIZER, from

Autodock Vina and CADDSuite, produce results that are quite

similar. The overpacking effect discussed before is less pronounced

in Vina, which explains its slightly better performance in

predicting which variant of a pair binds better (see Table 2).

Generally, the order of the designs by energy scores calculated by

our method does not depend on which variant’s crystal structure

was used as the scaffold. Only in a few cases a significant difference

can be observed, notably for carbonic anhydrase II and trypsin.

In some cases, the POCKETOPTIMIZER designs did not contain

a conformational configuration that avoids vdW clashes in the

binding pocket. In one test case, namely for neuroaminidase, the

Computational Design of Binding Pockets
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program was unable to identify any acceptable pocket conforma-

tion. One limitation of POCKETOPTIMIZER and a probable cause for

such problems is the assumption of a fixed backbone in our

designs. An adjustment of the backbone conformation might have

helped to accommodate the tyrosine. It is also conceivable that our

way of systematically sampling possible ligand poses could have

failed to generate a pose that is sterically compatible in the

neuroaminidase case.

Rosetta’s enzyme design application does not suffer from

unresolvable vdW clashes. It includes minimization steps in its

algorithm that can resolve potential clashes introduced by discrete

conformational sampling. However, Rosetta apparently cannot

convey its superiority in modeling the binding pocket side chains

to the prediction of the correct binding score order. It is unable to

predict the rearrangements of side chain conformations that lead

to binding affinity changes in the more complicated test cases. The

Figure 2. Two-dimensional structures of benchmark set ligands. The ligands of the test cases of our benchmark sets. See Table 1 for which
ligand belongs to which test case.
doi:10.1371/journal.pone.0052505.g002
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energy term for hydrogen bonds in ROSETTA seems to have less

influence on the output than in our program. This causes ROSETTA

to miss existing hydrogen bonds between ligand and side chains.

The binding scores and their differences predicted for different

mutants are more dependent on the scaffold structure used in

Rosetta designs than it is in POCKETOPTIMIZER. This can be seen in

Figure 4: the lines for designs of both POCKETOPTIMIZER variants,

Vina and CADDSuite, are more similar to each other than the

ones for ROSETTA designs. This is rather surprising, as we

anticipated that the limited backbone flexibility included in the

ROSETTA enzyme design protocol would lead to less dependency

on these small input structure differences.

Table 1. Benchmark set.

Mutants

Protein Ligand Positions AA aff. [nM] PDB

F 5.8 1ydb

W 8.6 –

L 9.6 –

R 86 1ydd

Carbonic anhydrase II Acetazolamide 198 E 280 1yda

D 53 2pql

D7r4 amine binding protein Tryptamine 111 L inf –

E 0.29 1gwr

Q 3.53

aEstrogen receptor Estradiol 353 A 60 –

FIFI 0.4 1met

VIVI 0.8 –

VVVV 20 1mes

HIV-1 protease DMP323 A:82, A:84, B:82, B:84 FVFV 800 1meu

N 810 1ogx

Ketosteroid isomerase Equilenin 240 D 45750 1oh0

AG 2780 2jdn

Lectin II O1-methyl-mannose 22, 24 SN 42900 2jdy

H 2000 1egh

N 5800 1s89

Methylglyoxal synthase 2-Phospho-gylcolate 98 Q 46000 1s8a

H 0.32 2hu4

Neuroaminidase test 1 Oseltamivir 274 Y 84.8 3cl0

N 0.32 2hu4

Neuroaminidase test 2 Oseltamivir 294 S 25.9 3cl2

H 0.01 1rsz

G 0.27 2a0w

D 0.9 2a0y

Purine nucleoside phosphorylase DADMe-Immucillin-H 257 F 0.95 2a0x

N 0.0001 1swe

E 0.0069 –

Streptavidin test 1 Biotin s23 A 0.028 1n43

S 0.0001 1swe

Streptavidin test 2 Biotin 27 A 0.01 1n9m

C 490 1nja

D 2800 1njc

Thymidylate synthase dCMP 229 N 160000 1nje

DG 12000 1ane

Trypsin Benzamidine 189, 226 GD 15000000 1bra

Each row lists a test case. Columns Protein and Ligand contain the name of protein or ligand, Positions the indices of the mutable positions (for HIV protease along
with the chain identifier, in the other cases the pocket is formed by one chain only), Mutants lists the variants: in subcolumn AA the amino acids at the mutable
positions, in aff. the affinities of the variants, and in PDB the PDB identifier of the corresponding crystal structure, should one exist.
doi:10.1371/journal.pone.0052505.t001

Computational Design of Binding Pockets

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e52505



A more detailed description of each test case, including what is

known from experimental and structural studies about the factors

that influence binding differences in the test cases, as well as the

success of the methods in reproducing these factors, is provided in

the Information S1.

Conclusion
We developed a pipeline of molecular modeling tools named

POCKETOPTIMIZER. The program can be used to predict affinity

altering mutations in existing protein binding pockets. For enzyme

design applications it can be combined with a program such as

SCAFFOLDSELECTION [24]. In POCKETOPTIMIZER receptor-ligand

scoring functions are used to assess binding. For its evaluation, we

compiled a benchmark set of proteins for which crystal structures

and experimental affinity data are available and that can be used

to test our and other methodologies. We subjected POCKETOPTI-

MIZER as well as the state-of-the-art method ROSETTA to our

benchmark test. The overall performance of both approaches was

similar, but in detail both had different benefits. ROSETTA handles

the conformational modeling of the binding pocket better, while

POCKETOPTIMIZER has the advantage in predicting which of a pair

of mutants of the same protein binds the ligand better. This

prediction was correct in 66 or 69% of the tested cases using

POCKETOPTIMIZER (CADDSuite or Vina score, respectively) and in

64% of the cases using ROSETTA.

The results show that POCKETOPTIMIZER is a well performing

tool for the design of protein-ligand interactions. It is especially

suited for the introduction of a hydrogen bond if there is an

unsatisfied hydrogen donor or acceptor group in the ligand, and

for filling voids between the protein and the ligand to improve

vdW interactions. For affinity design problems that require a more

complex rearrangement of the binding pocket, e.g. a mutation

making room for another side chain to interact with the ligand,

none of the tested methods appear to perform well.

There are also some other obvious effects that can influence

binding, but that are not addressable with the current methods,

e.g. protein dynamics or rearrangements of the backbone. Such

Figure 3. Differences of the ligand poses and pocket side
chains in the benchmark designs compared to the crystal
structures. The upper graph shows the average RMSDs and standard
deviation between the ligand pose in the designs and in the crystal
structures. The lower graph shows the average RMSD and standard
deviation between the binding pocket side chain heavy atoms of
designs and the corresponding crystal structure. The RMSDs are
calculated after superimposing the structures using the backbone to
make sure that the differences come from pocket/ligand pose
differences only. RMSD from POCKETOPTIMIZER CADDSuite score designs
are plotted in blue, from POCKETOPTIMIZER vina designs in green, and from
Rosetta designs in red. Each point marks the average RMSD for all
designs of a test case usign one score. The number of designs that
contribute to a value depends on the number of mutations with
a crystal structure, it is the square of this number (because each
structure is used as a design scaffold for each mutation). Test cases are:
CA: Carbonic anhydrase II, ABP D7r4 amine binding protein, ER: Estrogen
receptor a, HP: HIV-1 protease, KI: Ketosteroid isomerase, L: Lectin, MS:
Methylglyoxal synthase, N1: Neuroaminidase test 1, N2: Neuroaminidase
test 2, PNP: Purine nucleoside phosphorylase, S1: Streptavidin test 1, S2:
Streptavidin test 2, TS: Thymidylate synthase, T: Trypsin.
doi:10.1371/journal.pone.0052505.g003

Table 2. Order of designs by predicted binding score.

Test Cases CADDSuite Vina Rosetta

Total Binding Total Binding Total Binding

D7r4 amine binding protein 1/1 1/1 1/1 1/1 1/1 1/1

Estrogen receptor 1/1 1/1 1/1 1/1 1/1 1/1

HIV-1 protease 6/9 6/9 9/9 9/9 5/9 8/9

Ketosteroid isomerase 2/2 2/2 2/2 2/2 1/2 1/2

Neuroaminidase test 1 0/2 0/2 0/2 0/2 1/2 0/2

Neuroaminidase test 2 2/2 K 1/2 0/2 0/2 2/2

Purine nucleoside phosphorylase 6/8 6/8 7/8 6/8 4/8 2/8

Streptavidin test 1 4/4 4/4 4/4 4/4 3/4 3/4

Streptavidin test 2 2/2 2/2 2/2 2/2 2/2 1/2

Thymidylate synthase 1/6 0/6 1/6 0/6 6/6 3/6

Trypsin 1/2 K 1/2 1/2 0/2 1/2

Mean 70.8% 65.6% 75.5% 68.8% 63.5% 63.5%

Numbers of correctly ranked design mutation pairs with large affinity difference. All mutation pairs for which there is an affinity difference of at least 50-fold
are investigated. All design pairs with these mutations (i.e. for each of these pairs there are as many design pairs as scaffold crystal structures) are checked, if the order of
the mutations by total score or binding score is the same order as by affinity. A cell shows the number of correctly ordered design pairs, and the number of all design
pairs. The mean for this part is calculated by scaling the percentage of a test case by the number of mutation pairs (i.e. NOT by design pairs, which would bias the value
too much towards test cases with many crystal structures).
doi:10.1371/journal.pone.0052505.t002
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problems are probably harder to address than the more

complicated test cases dealt with in this study, so that we do not

expect that current methods can tackle them with much success.

Some apparent problems of POCKETOPTIMIZER, however, such as

the occurrence of unresolvable steric clashes between ligand and

side chains should be mendable by better sampling of the

conformational space and the introduction of backbone flexibility

[36] [37–38]. It is conceivable that a continuous minimization step

at the end of the design calculation could also be beneficial.

In conclusion, it seems that although POCKETOPTIMIZER per-

forms well, and even better in some respects than the state-of-the-

art method ROSETTA, there is still room for improvement in

computational design of protein-ligand binding. Our study

highlights the usefulness of benchmark data sets and systematic

testing in order to arrive at an informed assessment of

computational design methods. In fact it would be interesting to

test other available protein design schemes using our benchmark.

A comparison of their performance should be very informative.

Further, the benchmark will be useful in future test of parts of our

modular design pipeline, e.g. by exchanging the force-field in

POCKETOPTIMIZER its contribution can be tested rather than the

overall design approach.

When we started to compile our benchmark set, we were hoping

for considerably more test cases. The fact that out of the 6,005

protein structures currently contained in the PDBbind database,

only ten suitable test cases could be extracted (twelve if the double

cases of neuroaminidase and streptavidin are counted), was rather

surprising to us. This emphasizes the need for more benchmark

data. Thus, an explicit effort to systematically create experimental

and structural data is required. For protein-ligand interaction

design it would be desirable to have data that covers many

mutations of several pocket positions, ideally also of a set of

different proteins.

Materials and Methods

Benchmark Set
The basis for the benchmark set is the PDBbind database. It

contains a set of crystal structures of proteins complexed with small

ligands, and the corresponding experimentally determined binding

affinity. [34]. Our analysis is based on release 2010. First, we

aligned the sequences of all proteins in the database to each other,

using the Needleman-Wunsch algorithm [39] as implemented in

the EMBOSS suite [40]. The proteins were then clustered with

single linkage clustering, a link was assumed if the sequence

identity was $95%. One cluster was assumed to contain structures

of variants of the same protein with some mutations. Several

descriptors were calculated for the protein-ligand complexes. If the

Figure 4. Comparison of the energy scores versus the affinities of the mutations show how well the programs reproduce the
differences. For each test case with more than two mutations, we plotted the top binding scores of CADDSuite, Vina, and Rosetta designs for each
mutation on each scaffold structure together with the logarithm of the affinity. Here we show plots for Carbonic anhydrase II, HIV-1 protease, and
Streptavidin test 1. All other plots are shown in Information S1. Values are scaled to fit in the same range. Shown on the x-axis of a plot are the
mutants in order of affinity to the ligand (the leftmost has the lowest affinity, compare Table 1 for the actual values). The y-axis measures predicted
binding scores for the designs, and the log affinities, scaled between 0 and 1. Both are proportional to the binding free energy, and can therefore be
compared when scaled to the same range. The lowest predicted binding score or log affinity is set to 0, the highest respective value to 1. Each plot
contains a line for the affinity logarithm (solid, black no marker). This line represents the goal, if a method predicts binding well, the binding score
lines should closely follow the log affinity line. The other markers and lines show the scaled predicted binding scores. One line represents the designs
calculated for all available mutants, calculated by using one crystal structure as the scaffold. (Crystal structure 1: dashed, blue, circle markers; structure
2: red, dotted, square markers; structure 3: green, dash-dot pattern, diamond markers; structure 4: cyan, two dashes one dot pattern, star markers).
We chose to use lines for representation, because this makes it easy to visually compare the shape of the black log affinity line to the lines
representing the design binding scores. Each row has plots for one test case, in parentheses the order of scaffold structures is listed: CA: Carbonic
anhydrase II (1ydb, 1yda, 1ydd), HP: HIV-1 protease (1met, 1meu, 1mes), S1: Streptavidin test 1 (1swe, 1n43).
doi:10.1371/journal.pone.0052505.g004
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crystal structure contains water molecules in the binding pocket,

waters that have a high probability to play a role in binding were

identified and counted. This was done with the tool WATERFINDER

included in CADDSuite [28–41] that estimates the strength of

binding of a water molecule observed in a crystal structure to the

protein. The number of rotatable bonds in the ligand is used as

a measure of ligand size and flexibility. The ligands of all proteins

in a cluster were pairwise compared using ligand fingerprints as

implemented in OpenBabel [42] to measure their similarity and

identity. For protein pairs of the same cluster with identical

ligands, the pockets as defined by PDBbind were investigated for

any mismatches corresponding to mutations. To identify suitable

protein pairs, we searched our dataset for protein variants within

a cluster that (1) have the same ligand bound, (2) contain at least

one mutation in the binding pocket, (3) have no mutations

elsewhere, (4) contain less than four water molecules potentially

involved in binding, and (5) have a ligand with less than 15

rotatable bonds. As the results contained mostly single mutants, an

additional search was performed looking for mutants with (1) at

least two mutations in the pocket, (2) no mutations elsewhere, (3)

allowing for less than 15 rotatable ligand bonds and (4) less than 7

potential binding waters molecules. The proteins identified by

these searches were investigated further by visually inspecting their

structure and looking at the corresponding literature. Suitable

proteins were included in our set. Reasons for rejecting a protein

were large conformational differences of the backbone in the

binding pocket, the fact that affinity differences between variants is

not caused by any protein-ligand interaction, but for example by

changes in protein dynamics, and missing atoms of residues in the

binding pocket in a crystal structure.

Design Pipeline PocketOptimizer
A diagram of the POCKETOPTIMIZER workflow is shown in

Figure 1. The backbone conformation of the protein stays fixed in

the calculations, as do the side chain conformations of residues

that do not contact the ligand or a residue that is mutated between

variants. Amino acid side chain flexibility is sampled by

a conformer library we compiled for this purpose [25–27]. For

this, a set of high-quality protein structures from the PDB was

selected by requiring a maximal resolution of 1.2 Å at least 40

residues, no CAVEAT record. Hydrogen atoms were added using

reduce [43]. Side chain conformers of these structures were further

filtered by requiring a temperature factor below 30, no alternative

conformations and no overlaps with other atoms in the structure

according to probe [44]. The conformers were superimposed at

the backbone atoms and clustered as described in reference [22],

resulting in 2211 conformers. The generation of ligand conformers

and binding pocket poses also closely follows reference [22].

Ligand conformers are created with OMEGA2 by OpenEye

Software [45]. These are superimposed onto the ligand in the

crystal structure, rotated around 6 approximately equally distrib-

uted axes through the ligand center of mass, and translated in x, y,

z directions. The resulting ligand poses are filtered to exclude

poses with obvious clashes with the protein backbone.

Binding energy scores between protein and ligand are calculated

by a receptor-ligand scoring function. The first one is contained in

CADDSuite [28]. It is composed of terms for electrostatic, vdW,

solvation and hydrogen bond energy scores. The second score

used by POCKETOPTIMIZER is Autodock Vina [29]. Protein packing

energies are calculated using the AMBER force field [31] with

electrostatics scaled by a factor of 0.01. In order to be compatible

with the energy score optimization algorithm, the energy values

have to be pairwise decomposable, i.e. of the form

Etotal~
P

i Eiz
P

i,j Ei,j . Ei are the self energies of the variables

(side chain conformers or ligand poses), i.e. their inherent energies

and the energies with the fixed protein parts, and Ei,j the pairwise

energies between the variables. As we are interested in improving

binding affinity, we chose to upscale the binding energies by

a factor of ten for CADDSuite scores and a factor of 100 for

Autodock Vina scores to arrive at absolute values that are in the

same range as the AMBER packing energies. The Ei and Ei,j

energy tables are computed for all side chain conformers at the

pocket positions and the ligand poses. The problem of finding the

minimum energy conformation is formulated in graph-theroretic

terms [32] and solved using the MPLP algorithm by Sontag et al.

[33]. The energy minimum identifies the best design with

corresponding score values and conformation.

POCKETOPTIMIZER is realized as a collection of binaries and

scripts that perform the different subtasks. It was developed and

tested on Ubuntu Linux 10.04 operating system. AMBER packing

energy calculations are implemented in C++ using BALL [41], so

is the ligand pose generation tool. Protein-ligand energies for

CADDSuite are calculated with a scorer binary implemented in

C++ as well, vina energies are calculated using the vina binary

provided with the Autodock vina software distribution. The side

chain conformer library contains the structures of the amino acid

side chains in PDB and SDF formats. Several Python scripts are

provided that interface between the different parts and allow

a convenient conducting of a protein design task with the

POCKETOPTIMIZER pipeline. Intermediate result are stored in

standard file formats, SDF and PDB formats for structural data,

and CSV files for energy tables. This allows the user to easily

inspect this data with standard tools. It also facilitates the

possibility to use a different approach for one of the modules,

e.g. a different docking function, while the rest of the pipeline can

remain unaltered.

Setup for PocketOptimizer Benchmark
The protein structures were briefly minimized using CHIMERA’s

[46] AMBER implementation. Amino acids of the binding pocket

positions that were allowed to change conformations in the

calculations had to have a distance smaller than 4 Å of at least one

side chain atom to the ligand or to one of the residues that are

mutable. Ligand conformers were rotated by 620u around each

axis and translated by 0.5 Å in each direction to create the ligand

poses. If this resulted in more than 3000 poses, the conformers

were filtered by similarity to the crystal structure conformation

until meeting the max 3000 poses criterion. For proteins that

contain metals in their binding pocket that are coordinated by the

ligand, the ligand poses were filtered for poses that are geo-

metrically compatible for coordination.

Rosetta Design Setup
The ROSETTA enzyme design application as implemented in

ROSETTA 3.3 [30] was used with parameters closely following the

relevant documentation. Protein structures were briefly minimized

using the ROSETTA receptor preparation application provided for

this task, generating ten resulting structures of which the one with

the best energy was used for the design runs. Ligand conformers

were generated using OMEGA2, ligand charges added with the

QUACPAC program of OpenEye software [45], and ROSETTA ligand

params files generated with the provided molfile_to_params

python script as included in the 3.3 distribution. No catalytic

constraints were used for the enzyme design application runs,

effectively making it a receptor design application. 1000 designs

were created for every protein and every mutation on that protein

with experimental affinity data in the test set. The best design was

determined by the ranking scheme suggested in the documenta-
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tion, it is the design with the best predicted binding energy among

the designs with the 10% top total scores.
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