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Abstract20

Discovering chemical-protein interactions for millions of chemicals across the entire human and21

pathogen genomes is instrumental for chemical genomics, protein function prediction, drug discovery,22

and other applications. However, more than 90% of gene families remain dark, i.e., their small molecular23

ligands are undiscovered due to experimental limitations and human biases. Existing computational24

approaches typically fail when the unlabeled dark protein of interest differs from those with known ligands25

or structures. To address this challenge, we developed a deep learning framework PortalCG. PortalCG26

consists of four novel components: (i) a 3-dimensional ligand binding site enhanced sequence pre-training27

strategy to represent the whole universe of protein sequences in recognition of evolutionary linkage of28

ligand binding sites across gene families, (ii) an end-to-end pretraining-fine-tuning strategy to simulate the29

folding process of protein-ligand interactions and reduce the impact of inaccuracy of predicted structures30

on function predictions under a sequence-structure-function paradigm, (iii) a new out-of-cluster meta-31

learning algorithm that extracts and accumulates information learned from predicting ligands of distinct32

gene families (meta-data) and applies the meta-data to a dark gene family, and (iv) stress model selection33

that uses different gene families in the test data from those in the training and development data sets to34

facilitate model deployment in a real-world scenario. In extensive and rigorous benchmark experiments,35

PortalCG considerably outperformed state-of-the-art techniques of machine learning and protein-ligand36

docking when applied to dark gene families, and demonstrated its generalization power for off-target37

predictions and compound screenings under out-of-distribution (OOD) scenarios. Furthermore, in an38

external validation for the multi-target compound screening, the performance of PortalCG surpassed39

the human design. Our results also suggested that a differentiable sequence-structure-function deep40

learning framework where protein structure information serve as an intermediate layer could be superior41

to conventional methodology where the use of predicted protein structures for predicting protein functions42

from sequences. We applied PortalCG to two case studies to exemplify its potential in drug discovery:43

designing selective dual-antagonists of Dopamine receptors for the treatment of Opioid Use Disorder, and44

illuminating the undruggable human genome for targeting diseases that do not have effective and safe45

therapeutics. Our results suggested that PortalCG is a viable solution to the OOD problem in exploring46

the understudied protein functional space.47

Author Summary48

Many complex diseases such as Alzheimer’s disease, mental disorders, and substance use disorders do not have49

effective and safe therapeutics due to the polygenic nature of diseases and the lack of thoroughly validate drug50

targets and their ligands. Identifying small molecule ligands for all proteins encoded in the human genome will51

provide new opportunity for drug discovery of currently untreatable diseases. However, the small molecule ligand of52

more than 90% gene families is completely unknown. Existing protein-ligand docking and machine learning methods53

often fail when the protein of interest is dissimilar to those with known functions or structures. We develop a54

new deep learning framework PortalCG for efficiently and accurately predicting ligands of understudied proteins55

which are out of reach of existing methods. Our method achieves unprecedented accuracy over state-of-the-arts56

by incorporating ligand binding site information and sequence-to-structure-to-function paradigm into a novel deep57

meta-learning algorithms. In a case study, the performance of PortalCG surpassed the human design. The proposed58

computational framework will shed new light into how chemicals modulate biological system as demonstrated by59

applications to drug repurposing and designing polypharmacology. It will open a new door to developing effective60

and safe therapeutics for currently incurable diseases. PortalCG can be extended to other scientific inquiries such as61

predicting protein-protein interactions and protein-nucleic acid recognition.62

1 Introduction63

The central aim of scientific inquiry has been to deduce new concepts from existing knowledge or to generalize64

observations. Numerous such issues exist in the biological sciences. The rise of deep learning has sparked a surge of65

interest in using machine learning to explore previously unexplored molecular and functional spaces in biology and66

medicine, ranging from “deorphanizing” G-protein coupled receptors[1] and translating cell-line screens to patient67

drug responses[2][3], to predicting novel protein structures[4][5][6], to identifying new cell types from single-cell omics68

data[7]. Illuminating the understudied space of human knowledge is a fundamental problem that one can attempt to69

address via deep learning—that is, to generalize a “well-trained” model to unseen data that lies Out-of-Distribution70

(OOD) of the training data, in order to successfully predict outcomes under conditions that the model has never71
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encountered before. While deep learning is capable, in theory, of simulating any function mapping, its generalization72

power is notoriously limited in the case of distribution shifts[8].73

The training of a deep learning model starts with a domain-specific model architecture. The final model74

instance selected and its performance are determined by a series of data-dependent design choices, including model75

initialization, data used for training/validation/testing, optimization of loss function, and evaluation metrics. Each76

of these design choices impacts the generalization power of a trained model. The development of several recent77

deep learning-based approaches—notably transfer learning[9], self-supervised representation learning[10], and meta-78

learning[11][12]—has been motivated by the OOD challenge. However, each of these methods focuses on only one79

aspect in the training pipeline of a deep neural network model. Causal learning and mechanism-based modeling (e.g.,80

based on the first principle of physics) could be a more effective solution to the OOD problem [8], but at present81

these approaches can be applied only on modest scales because of data scarcity, computational complexity, or limited82

domain knowledge. Solving large-scale OOD problems in biomedicine via machine learning would benefit from a83

systematic framework for integrative, beginning-to-end model development and deployment and the incorporation of84

domain knowledge into the training process.85

Here, we propose a new deep learning framework, Portal learning of Chemical Genomics (PortalCG) for predicting86

small-molecule binding to dark proteins whose ligands are unknown and dark gene families in which all protein87

members do not have known ligands. Here Portal represents multiple training components in an end-to-end deep88

learning framework used to systematically address OOD challenges. Small molecules act as endogenous or exogenous89

ligands of proteins, assisting in maintaining homeostasis of a biological system or severing as therapeutics agents90

to alter pathological processes. Despite tremendous progress in high-throughput screening, the majority of chemical91

genomics space remains unexplored[13] due to high costs, inherent limitations in experimental approaches, and human92

biases[14][15]. Even in well-studied gene families such as G-protein coupled receptors (GPCRs), protein kinases,93

ion channels, and estrogen receptors, a large portion of proteins remain dark[13]. Elucidating dark proteins and94

gene families can shed light on many essential but poorly understood biological processes, such as microbiome-host95

interactions mediated by metabolite-protein interactions. Such efforts could also be instrumental for drug discovery.96

Firstly, although conventional one-drug-one-gene drug discovery process intends to screen drugs against a single target,97

unrecognized off-target effects are a common occurrence[16]. The off-target is either the cause of undesirable side98

effects or present unique potential for drug repurposing. Secondly, polypharmacology, i.e., designing drugs that can99

target multiple proteins, is needed to achieve desired therapeutic efficacy and combat drug resistance for multi-genic100

diseases[16]. Finally, identifying new druggable targets and discovering their ligands may provide effective therapeutic101

strategies for currently incurable diseases; for instance, in Alzheimer’s disease (AD), many disease-associated genes102

have been identified through multiple omics studies, but are presently considered undruggable[17].103

Accurate and robust prediction of chemical-protein interactions (CPIs) across the genome is a challenging OOD104

problem[1]. If one considers only the reported area under the receiver operating characteristic curve (AUROC),105

which has achieved 0.9 in many state-of-the-art methods[18][19], it may seem the problem has been solved. However,106

existing methods have rarely been applied to dark gene families. The performance has been primarily measured in107

scenarios where the data distribution in the test set does not differ significantly from that in the training set, in108

terms of similarities between proteins or between chemicals. Few sequence-based methods have been developed and109

evaluated for an out-of-gene family scenario, where proteins in the test set belong to different (non-homologous) gene110

families from those in the training set; this sampling bias is even more severe in considering cases where the new gene111

family does not have any reliable three-dimensional (3D) structural information. Therefore, one can fairly claim that112

all existing work has been confined to just narrow regions of chemical genomics space for an imputation task, without113

validated generalizability into the dark proteins for novel discoveries. We have shown that PortalCG significantly114

outperforms the leading machine learning and protein-ligand docking methods that are available for predicting ligand115

binding to dark proteins. Thus, PortalCG may shed new light on unknown functions for dark proteins, and empower116

drug discovery using Artificial Intelligence (AI). To demonstrate the potential of PortalCG, we applied PortalCG117

to two case studies: designing selective dual-antagonists of Dopamine receptors for Opioid Use Disorder (OUD)118

with experimental validations, and illuminating the understudied druggable genome for targeting diseases that lack119

effective and safe therapeutics. The novel genes and their lead compounds identified from PortalCG provide new120

opportunities for drug discovery to treat currently incurable diseases such as OUDs, and Alzheimer’s disease (AD).121

They warrant further experimental validations.122

In summary, the contributions of this work are two-fold:123

1. We proposed a new algorithm PortalCG to improve the generalization power of machine learning on OOD124

problems. Comprehensive benchmark studies demonstrate the promise of PortalCG when applied to exploring125

the dark gene families in which proteins do not have any known small molecule ligands.126

2. Using PortalCG, we shed new light on unknown protein functions in dark proteins (viz. small molecule-binding127

properties), and open new avenues in polypharmacology and drug repurposing; as demonstrated by identifying128

novel drug targets and lead compounds for OUDs and AD.129
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data split Common practice classic scheme
applied in OOD PortalCG specification

train IID train IID train / each batch includes data from the same gene family
/ / OOD train data from different gene families are used in each batch

dev IID-dev IID-dev / from the same gene family as that in the train set
/ / OOD-dev from a different gene family from the training set

test IID-test / / from the same gene family as that in the training set
/ OOD-test OOD-test from a different gene family from both OOD-dev and training set

Table 1: Data split for stress model instance selection

2 Results and Discussion130

2.1 Overview of PortalCG131

PortalCG includes four key biology-inspired components: 3-dimensional (3D) binding site-enhanced sequence pre-132

training, end-to-end sequence-structure-function step-wise transfer learning (STL), out-of-cluster meta-learning (OOC-133

ML), and stress model selection (see Figure 1).134

3D binding site-enhanced sequence pre-training. Pre-training strategy is a proven powerful approach to135

boost the generalizability of deep learning models[20]. Pre-trained natural language models have revolutionized136

Natural Language Processing (NLP)[20]. Significant improvements are also observed when applying the same137

pre-training strategy to protein sequences for structure[5], function[21][22], and CPI predictions[1]. We begin by138

performing self-supervised training to map tens of millions of sequences into a universal embedding space, using139

state-of-the-art distilled sequence alignment embedding (DISAE) algorithm [1]. In brief, DISAE first distills the140

original sequence into an ordered list of amino acid triplets by extracting evolutionarily important positions from141

a multiple sequence alignment. Then long-range residue-residue interactions can be learned via the Transformer142

module in ALBERT[10]. A self-supervised masked language modeling (MLM) approach is used where 15% triplets143

are randomly masked and assumed as unknown and the remaining triplets are used to predict what the masked triplets144

are. In this way, DISAE leaned the protein sequence representation to capture functional information without the145

knowledge of their structure and function.146

3D structural information about the ligand-binding site was used to fine-tune the sequence embedding because147

it can be evolutionarily related across the fold space and is more informative than the sequence alone for the148

ligand binding[23]. On the top of pre-trained DISAE embeddings, amino acid residue-ligand atom distance matrices149

generated from protein-ligand complex structures were predicted from the protein sequence and its ligand. As a result,150

the original DISAE embedding was re-fined by the 3D ligand binding site information. This structure-regularized151

protein embedding was used as a hidden layer for supervised learning of cross-gene family CPIs, following an end-to-152

end sequence-structure-function training process described below.153

End-to-end sequence-structure-function STL. The function of a protein—e.g., serving as a target receptor154

for ligand binding—stems from its three-dimensional (3D) shape and dynamics which, in turn, is ultimately encoded155

in its primary amino acid sequence. In general, information about a protein’s structure is more powerful than purely156

sequence-based information for predicting its molecular function because sequences drift/diverge far more rapidly than157

do 3D structures on evolutionary timescales. Furthermore, proteins from different gene families may have similar158

functional sites, thus perform similar functions[23]. Although the number of experimentally-determined structures159

continues to exponentially increase, and now AlphaFold2 can reliably predict 3D structures of many single-domain160

proteins, it nevertheless remains quite challenging to directly use protein structures as input for predicting ligand-161

binding properties of dark proteins. This motivates us to directly use protein sequences to predict ligands of dark162

proteins in PortalCG. Protein structure information is used as an intermediate layer as trained by the structure-163

enhanced pre-training to connect a protein sequence and a corresponding protein function (Figure 1A), as inspired164

by the concept of differentiable biology[24]. By encapsulating the role of structure in this way, inaccuracies and165

uncertainties in structure prediction are “insulated” and will not propagate to the function prediction. Details of166

neural network architecture and training methods can be found in section 4.2.167

Out-of-cluster meta-learning (OOC-ML). We designed a new OOC-ML approach to explore dark gene168

families. Here, predicting ligands of dark gene families can be formulated as the following problem: how can we169

quickly learn the ligand binding pattern of a new gene family without labeled data from the information obtained170

from other gene families with a relatively large amount of labeled data? Meta-learning is a general learning strategy171

that learns a new task without or with few labeled data from outputs (meta-data) generated by multiple other tasks172

with labeled data, thus naturally fits our purpose. The principle of OOC-ML is first to independently learn the173

pattern of ligand bindings from each gene family that has labeled data and then to extract the common intrinsic174

pattern shared by these gene families and apply the learned essential knowledge to dark ones. OOC-ML is similar175
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to ensemble learning that uses a machine learning model at the high level (the second level) to learn how to best176

combine the predictions from other machine learning models at the low level (the first level), as shown in Figure1B.177

Nevertheless, there are three key differences between proposed OOC-ML and classic ensemble learning. First, all178

low-level models in the ensemble learning use the same training data, and the training data used in the high-level179

has the same distribution as that used in the low-level. In the OOC-ML, the training data for each low-level model180

has a different distribution. Specifically, they come from different Pfam families. The training data in the high-level181

also uses Pfam families that are different from all others used in the low-level. Second, instead of using different182

machine learning algorithms in the low-level ensemble model, the model architecture for all models in the OOC meta-183

learning is the same as inspired by Model Agnostic Meta-Learning (MAML)[11]. The difference between models lies184

in their different parameters (mapping functions) due to the different input data. Finally, ensemble learning uses185

the predictions from the low-level models as meta data for the input of the high-level model. OOC meta-learning186

uses gradients of mapping functions of the low-level models as meta data, which represent how the model learns, and187

retrains the gradients by the high-level model.188

Stress model selection. Finally, training should be stopped at a suitable point in order to avoid overfitting.189

This was achieved by stress model selection. Stress model selection is designed to basically recapitulate an OOD190

scenario by splitting the data into OOD train, OOD development, and OOD test sets as listed in Table 1; in this191

procedure, the data distribution for the development set differs from that of the training data, and the distribution of192

the test data set differs from both the training and development data. The section 4.2 provides further methodological193

details, covering data pre-processing, the core algorithm, model configuration, and implementation details.194

2.2 There are significantly unexplored dark gene families for small molecule195

binding196

We inspected the known CPIs between (i) molecules in the manually-curated ChEMBL database, which consists197

of only a small portion of the chemical space, and (ii) proteins annotated in Pfam-A [25], which represents only198

a narrow slice of the whole protein sequence space. The ChEMBL26[26] database supplies 1, 950, 765 chemicals199

paired to 13, 377 protein targets, constituting 15, 996, 368 known interaction pairs. Even for just this small portion200

of chemical genomics space, unexplored gene families are enormous, can be seen in the dark region in Figure 2.201

Approximately 90% of Pfam-A families do not have any known small-molecule binder. Even in Pfam families with202

annotated CPIs (e.g., GPCRs), there exists a significant number of “orphan” receptors with unknown cognate ligands203

(Figure 2). Fewer than 1% of chemicals bind to more than two proteins, and < 0.4% of chemicals bind to more than204

five proteins, as shown in Supplemental Figure S1, S2 and S3. Because protein sequences in the dark gene families205

could be significantly different from those for the known CPIs, predicting CPIs for dark proteins is an archetypal,206

unaddressed OOD problem.207

2.3 PortalCG significantly outperforms state-of-the-art approaches to predicting208

CPIs of dark gene families209

Two major categories of approaches have been developed for CPI predictions: machine learning and protein-ligand210

docking (PLD). Recently published DISAE has been shown to outperform other leading deep learning methods for211

predicting CPIs of orphan receptors and is explainable[1]. Because the neural network architecture of PortalCG is212

similar to that of DISAE, we used DISAE as the baseline to evaluate the performance improvement of PortalCG over213

the state-of-the-art. PortalCG demonstrates superior performance in terms of both Receiver Operating Characteristic214

(ROC) and Precision-Recall (PR) curves when compared with DISAE, as shown in Figure 3(A). When the ratio215

of positive and negative cases is imbalanced, the PR curve is more informative than the ROC curve. The PR-216

AUC of PortalCG and DISAE is 0.714 and 0.603, respectively. In this regard, the performance gain of PortalCG217

(18.4%) is significant (p-value < 1e − 40). Performance breakdowns for binding and non-binding classes can be found218

in Supplemental Figure S4. PortalCG exhibits much higher recall and precision scores for positive cases (i.e., a219

chemical-protein pair that is predicted to bind) versus negative, as shown in Supplemental Figure S4; this is a highly220

encouraging result, given that there are many more negative (non-binding) than positive cases. The deployment gap,221

shown in Figure 3(B), is steadily around zero for PortalCG; this promising finding means that we can expect that,222

when applied to the dark proteins, the performance will be similar to that measured using the development data set.223

With the advent of high-accuracy protein structural models, predicted by AlphaFold2 [5], it now becomes feasible224

to use reversed protein-ligand docking (PLD) [27] to predict ligand-binding sites and poses on dark proteins, on a225

genome-wide scale. In order to compare our method with the reversed protein-ligand docking approach, blind PLD to226

proteins in the benchmark was performed via Autodock Vina[28] followed by protein-ligand binding affinity prediction227

using a leading graph neural network-based method SIGN [29] (PLD+SIGN). The binding affinities predicted by228

SIGN was more accurate than original scores from Autodock Vina (Supplemental Figure S5). The performance229
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of PLD+SIGN was compared with that of PortalGC and DISAE. As shown in Figure 3(A), both ROC and PR230

for PLD+SIGN are significantly worse than for PortalGC and DISAE. It is well known that PLD suffers from a231

high false-positive rate due to poor modeling of protein dynamics, solvation effects, crystallized waters, and other232

challenges [30]; often, small-molecule ligands will indiscriminately “stick” to concave, pocket-like patches on protein233

surfaces. For these reasons, although AlphaFold2 can accurately predict many protein structures, the relatively low234

reliability of PLD still poses a significant limitation, even with a limitless supply of predicted structures [31]. Thus,235

the direct application of PLD remains a challenge for predicting ligand binding to dark proteins. PortalCG’s end-to-236

end sequence-structure-function learning could be a more effective strategy in terms of both accuracy and efficacy:237

protein structure information is not used as a fixed input, but rather as an intermediate layer that can be tuned using238

various structural and functional information. Furthermore, the inference time of PortalCG for predicting a CPI is239

several orders of magnitude faster than that needed by the PLD. For example, it takes approximate 1 millisecond for240

PortalCG to predict a ligand binding to DRD2, while Autodock Vina needs around 10 seconds to dock a ligand to241

DRD2 excluding the time for defining the binding pocket.242

2.4 Both the STL and OOC-ML stages contribute to the improved performance243

of PortalCG244

To gauge the potential contribution of each component of PortalCG to the overall system effectiveness in predicting245

CPIs for dark proteins, we systematically compared the four models shown in Table 2. Details of the exact model246

configurations for these experiments can be found in the Supplemental Materials Table S1. As shown in Table 2,247

Variant 1, with a higher PR-AUC compared to the DISAE baseline, is the direct gain from transfer learning through248

3D binding site information, all else being equal; yet, with transfer learning alone and without OOC-ML as an249

optimization algorithm in the protein function CPI prediction (i.e., Variant 2 versus Variant 1), the PR-AUC gain is250

minor. Variant 2 yields a 15% improvement while Variant 1 achieves only a 4% improvement over DISAE. PortalCG,251

in comparison, has the best PR-AUC score. With all other factors held constant, the advantage of PortalCG appears252

to be the synergistic effect of both STL and OOC-ML. The performance gain measured by PR-AUC under a shifted253

evaluation setting is significant (p-value < 1e-40), as shown in Supplemental Figure S6.254

We find that stress model selection is able to mitigate potential overfitting problems, as expected. Training curves255

for the stress model selection are in Supplemental Figure S7. As shown in Supplemental Figure S7, the baseline DISAE256

approach tends to over-fit with training, and IID-dev performances are all higher than PortalCG but deteriorate in257

OOD-test performance. Hence, the deployment gap for the baseline is -0.275 and -0.345 on ROC-AUC and PR-AUC,258

respectively, while PortalCG deployment gap is around 0.01 and 0.005, respectively.259

Table 2: Ablation study of PortalCG.

Models Configuration OOD-test set Deployment gap
ROC-AUC PR-AUC ROC-AUC PR-AUC

PortalCG PortalCG with all components 0.677±0.010 0.714±0.010 0.010±0.009 0.005±0.010
DISAE PotalCG w/o STL or OOC-ML 0.636±0.004 0.603±0.005 -0.275±0.016 -0.345±0.012
variant 1 PotalCG w/o OOC-ML 0.661±0.004 0.629±0.005 / /
variant 2 PotalCG w/o STL 0.654±0.062 0.698±0.015 / /
PLD+SIGN / 0.569 0.433 / /

2.5 PortalCG is competitive on virtual compound screening for novel chemicals260

Given that the pretraining, OOC-ML, and stress tests were only applied to proteins, current PortalCG was primarily261

designed to explore the dark protein space instead of new chemical space. Nevertheless, we evaluated if PortalCG could262

improve the performance for compound screening for novel chemicals. We employed a widely used DUD-E benchmark263

that included 8 protein targets along with their active compounds and decoys[32], and compared the performance of264

PortalCG with that of PLD. We used DUD-E chemicals as testing set. We trained PortalCG by excluding target265

proteins in the training/validation sets, and have all chemicals in the training/validation set dissimilar to those in266

the testing set (Tanimoto Coefficient (TC) less than 0.3 or 0.5). Under these chemical similarity thresholds, the false267

positive rate in the training/validation set was higher than 95.0% assumed that the ratio of actives vs inactives was268

1:50 (Supplemental Figure S8).269

As shown in Table 3, except targets kif11 and gcr, PortalCG could surprisingly outperform Autodock Vina on270

other remaining 6 targets in terms of enrichment factors (EFs). Similarly, PortalCG exhibited higher EFs than271

PLD-SIGN on six proteins. For the EF of 1%, the compound screening performance of PortalCG on 87.5% and272
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Table 3: Performances of compound screening evaluated using DUD-E benchmark. PortalCG-0.3: the
similarities between chemicals in the training/validation set and those in the testing set are less than 0.3 of
Tanimoto Coefficient (TC). PortalCG-0.5: the similarities between chemicals in the training/validation set
and those in the testing set are less than 0.5 of TC. The best performance is in bold

EF-1% EF-20%
AutoDock Vina PLD-SIGN PotalCG-0.3 PotalCG-0.5 AutoDock Vina PLD-SIGN PotalCG-0.3 PotalCG-0.5

akt1 0.00 14.42 1.36 11.24 1.52 3.12 2.61 3.88
ampc 0.00 0.00 2.04 4.08 1.25 0.39 0.31 2.14
cp3a4 0.60 3.03 2.50 10.00 1.65 2.07 0.63 1.38
cxcr4 0.00 1.64 5.00 10.00 0.87 1.89 2.13 2.25
gcr 10.43 2.49 4.65 9.69 1.98 2.03 2.50 1.96
hivpr 4.10 5.02 0.75 13.62 2.31 2.34 1.87 2.84
hivrt 4.77 0.47 1.18 8.28 2.20 1.21 0.15 2.59
kif11 23.15 13.71 1.72 3.45 3.66 3.60 1.60 1.08

100.0% of targets is better than random guesses (EF=1.0) when the chemical similarity between the queries and the273

training data is 0.3 and 0.5, respectively. In contrast, only 50.0% 75.0% targets are better than the random guess274

for Autodock Vina and PLD+SIGN, respectively. It implies that PortalCG has learned certain patterns of CPIs275

although the chemical OOD has not explicitly modeled. Different from PLD, whose EFs varied greatly across targets,276

the variance of EFs was relatively small for PortalCG across the targets, suggesting that the model was not biased277

to certain proteins. Thus, PortalCG is complementary with PLD, and has a potential to improve the capability of278

virtual compound screening, especially, for dark proteins whose reliable structures are not available.279

2.6 PortalCG is capable of screening selective multi-targeted compounds with280

novel scaffold for dark proteins281

Opioid use disorder (OUD) is an overwhelming healthcare and economic burden. Although several pharmaceutical282

treatments for OUD exist, they are either restricted in usage or limited in effectiveness. Dopamine D1 and D3 receptors283

(DRD1 and DRD3) have been identified as potential drug targets for OUD. DRD1 partial agonists and antagonists284

alter the rewarding effects of drugs, while DRD3 antagonists reduce drug incentive and behavioral responses to drug285

cues. Moreover, recent evidence suggests that simultaneous targeting of DRD1 and DRD3 may be an effective OUD286

therapeutic strategy as the combination of a DRD1 partial agonist and a DRD3 antagonist reduced cue-induced287

relapse to heroin in rats[33]. By contrast, dopamine D2 receptor (DRD2) antagonism is associated with cataleptic288

side effects which limit the use of DRD2 antagonists as OUD therapeutics. Thus, selective DRD1 and DRD3 dual-289

antagonists could be an effective strategy for OUD treatment[34]. Because there are multiple dopamine receptors290

(especially, DRD2) that are similar to D1R and D3R, it is challenging to develop a selective dual-antagonist for DDR1291

and DRD3. PortalCG may provide new opportunities for OUD polypharmacology.292

We synthesized 65 compounds based on the scaffold as shown in Figure 4A, which combines structural features of293

the DRD1 antagonist (-)-stepholidine with DRD3 antagonist pharmacophore, and determined their binding affinities294

to DRD1, DRD2, and DRD3, respectively (supplemental table S2). Tens of thousands of possible chemical structures295

could be derived from different combinations of R1, R2, R3, R4, and linker functional groups, as marked in Figure 4A.296

We have little knowledge on what is an optimal combination of functional groups for a dual-DRD1/DRD3 antagonist.297

If we define an acceptable dual-DRD1/DRD3 antagonist as a compound whose binding affinities are less than 100298

nM of Ki to both DRD1 and DRD3 but higher than 100 nM of Ki to DRD2, only 10 compounds satisfied this299

condition (successful rate of 15.4%) among the 65 synthesized compounds. It notes that a safe therapeutics for300

OUD may need much lower binding affinity than 100 nM of Ki for DRD2. For the 28 DRD1 antagonists with the301

Ki less than 100 nM, 15 of them had Ki higher than 100 nM for DRD3, corresponding to a two-class successful302

rate of 46.4%. It suggested that our current knowledge is limited for effectively designing selective dual-DRD1/3303

antagonists using existing scaffolds, let alone under a novel scaffold. The question is if we can use computational304

methods, especially PortalCG, to identify selective dual-DRD1/3 antagonists with a novel scaffold. We performed305

a rigorous bind test to validate the performance of PortalCG for this purpose. In the evaluation of PortalCG and306

DISAE, all of chemicals in the training data had different scaffolds from 65 test compounds, i.e., an OOD scenario307

on the chemical side [35]. Three models were trained with the sequence similarity between DRD1/2/3 and proteins308

in the training/validation data ranging from 20% to 60%. The performance was measured by the accuracy of a309

three-label classifier. When the sequence identifies between DRD1/2/3 and the proteins in the training/validation310

set were less than 40%, PortalCG achieved 20.0% and 50.7% successful rate for the cases where all DRDs and any311

two of them were predicted correctly, respectively (Figure 4B). The successful rate for the all DRDs was significantly312

higher the human design. Decreasing the sequence identifies between the proteins in the training/validation set and313
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DRD1/2/3 from 40% to 20% only slightly lower the accuracy of PortalCG, as shown in Figure 4C. The performance314

drops were not statistically significant (p-value > 0.05). Increasing the sequence identities from 40% to 60% also did315

not significantly change the accuracy. Thus, PortalCG by design was robust to OOD data.316

We compared PortalCG with three baselines DISAE, PLD+SIGN, and Autodock Vina[28]. The crystal structures317

of DRD1 (PDB id: 7JOZ), DRD2 (PDB id: 6CM4), and DRD3 (PDB id: 3PBL), which were co-crystallized with318

ligands, were used for the docking. The 65 compounds were docked to the pre-defined binding pocket based on the319

co-crystallized ligand. The order of accuracy follows PortalCG>DISAE>PLD-SIGN>Autodock Vina, as shown in320

Figure 4B. This observation is consistent with our benchmark studies. Note that the complex structure was only321

used for the baseline PLD models but this information was not used for PortalCG and DISAE.322

2.7 Illuminating the undruggable human genome for drug repurposing323

To further demonstrate the potential application of PortalCG, we explored potential drug lead compounds for324

undrugged disease genes in the dark human genome, and prioritized undrugged genes that can be efficaciously325

targeted by existing drugs. It is well known that only a small subset of the human genome is considered druggable326

[36]. Many proteins are deemed “undruggable” because there is no information on their ligand-binding properties327

or other interactions with small-molecule compounds (be they endogenous or exogenous ligands). Here, we built328

an “undruggable” human disease protein database by removing the druggable proteins in Pharos [37] and Casas’s329

druggable proteins [38] from human disease associated genes [17]. A total of 12,475 proteins were included in330

our disease-associated undruggable human protein list. We applied PortalCG to predict the probability for these331

“undruggable” proteins to bind to drug-like molecules. Around 6,000 drugs from the Drug Repurposing Hub[39] were332

used in the screening. The proteins that could bind to a small molecule drug were ranked according to their prediction333

scores, and 267 of them have a false positive rate lower than 2.18e-05, as listed in the Supplemental Table S3. Table 4334

shows the statistically significantly enriched functions of these top ranked proteins as determined by DAVID [40]. The335

most enriched proteins are involved in alternative splicing of mRNA transcripts. Malfunctions in alternative splicing336

are linked to many diseases, including several cancers [41][42] and Alzheimer’s disease [43]. However, pharmaceutical337

modulation of alternative splicing process is a challenging task. Identifying new drug targets and their lead compounds338

for targeting alternative splicing pathways may open new doors to developing novel therapeutics for complex diseases339

with few treatment options. In addition, several transcription factors and transcription activity related proteins were340

identified and listed in Table S4, along with their predicted ligands.341

Diseases associated with these 267 human proteins were also listed in Table 5. Since one protein is always related342

to multiple diseases, these diseases are ranked by the number of their associated proteins. Most of top ranked diseases343

are related with cancer development. 21 drugs that are approved or in clinical development are predicted to interact344

with these proteins as shown in Supplemental Table S5. Several of these drugs are highly promiscuous. For example,345

AI-10-49, a molecule that disrupts protein-protein interaction between CBFb-SMMHC and tumor suppressor RUNX1,346

may bind to more than 60 other proteins. The off-target binding profile of these proteins may provide invaluable347

information on potential side effects and opportunities for drug repurposing and polypharmacology. The drug-target348

interaction network built for predicted positive proteins associated with Alzheimer’s disease was shown in Figure349

5.The target proteins in this network were selected according to the threshold of 0.67. The length of the edges in this350

network was decided by the prediction scores for these drug-target pairs. The longer the edge is, the lower confidence351

of the prediction is. Thus if a higher threshold was applied, fewer drug-target pairs will appear in this network.352

In order to validate the binding activity between the drugs and targets in this network, the PLD was performed353

between the three most promiscuous drugs, AI-10-49, fenebrutinib, PF-05190457 and their predicted targets. Only354

those targets with known PDB structures or reliable alpha-fold model structures were used in the docking. Docking355

scores for the 21 drug-target pairs were listed on Supplemental Table S6. For each of the three drugs, the target with356

with the lowest docking score (the highest binding affinity) was selected as a representative. Docking conformations357

and interactions between the drugs and their representative targets were shown in Figure 5. Functional enrichment,358

disease associations, and top ranked drugs for the undruggable proteins with well-studied biology (classified as Tbio359

in Pharos) and those excluding Tbio are list in Supplemental Table S7-S11.360

3 Conclusion361

This paper confronts the challenge of exploring dark proteins by recognizing it as an OOD generalization problem in362

machine learning, and by developing a new deep learning framework to treat this type of problem. We propose363

PortalCG as a general framework that enables systematic control of the OOD generalization risk. Systematic364

examination of the PortalCG method revealed its superior performance compared to (i) a state-of-the-art deep learning365

model (DISAE), and (ii) an AlphaFold2-enabled, GNN-scored, structure-based reverse docking approach. PortalCG366

showed significant improvements in terms of both sensitivity and specificity, as well as close to zero deployment367
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David Functional Annotation enrichment analysis
Enriched terms in

UniProtKB keywords
Number of

proteins involved
Percentage of

proteins involved P-value Modified
Benjamini p-value

Alternative splicing 171 66.5 7.70E-07 2.00E-04
Phosphoprotein 140 54.5 2.60E-06 3.40E-04

Cytoplasm 91 35.4 1.30E-05 1.10E-03
Nucleus 93 36.2 1.20E-04 8.10E-03

Metal-binding 68 26.5 4.20E-04 2.20E-02
Zinc 48 18.7 6.60E-04 2.90E-02

Table 4: Functional Annotation enrichment for undruggable human disease associated proteins selected by
PortalCG

DiseaseName # of undruggable proteins associated with disease
Breast Carcinoma 90

Tumor Cell Invasion 86
Carcinogenesis 83

Neoplasm Metastasis 75
Colorectal Carcinoma 73

Liver carcinoma 66
Malignant neoplasm of lung 56

Non-Small Cell Lung Carcinoma 56
Carcinoma of lung 54
Alzheimer’s Disease 54

Table 5: Top ranked diseases associated with the undruggable human disease proteins selected by PortalCG

performance gap. The neural network architecture of PortalCG is similar to DISAE. Its performance improvement368

over DISAE mainly comes from 3D binding site-enhanced pre-training and OOC-ML optimization. Both PortalCG369

and DISAE outperform PLD-based methods by getting around the inherent limitations of PLD. Applications of370

PortalCG to OUD polypharmacology and drug repurposing targeting of hitherto undruggable human proteins affords371

novel new directions in drug discovery.372

PortalCG can be further improved along several directions. In terms of protein sequence modeling, additional a373

prior knowledge of protein structure and function can be incorporated into the pre-training or supervised multi-task374

learning. The architecture of PortalCG mainly focuses on addressing the OOD problem of protein space but not375

chemical space. New methods for modeling chemical structures alone or the joint space of chemicals and proteins376

will no doubt improve CPI predictions for unseen novel chemicals. Future directions include but not limited to377

novel representation of 3D chemical structures[44] at the sub-molecular level of scaffold and chemical moieties, pre-378

training of the chemical space [45], and few-shot learning[46] as well as explicitly modeling amino acid-chemical379

moiety interactions.The existing PortalCG treats the CPI prediction as a binary classification problem, but can380

be reformulated as a regression model for predicting binding affinities. By defining domain-specific pre-training381

and down-stream supervised learning tasks, PortalCG could be a general framework to explore the functions of382

understudied proteins such as protein-protein interactions and protein-nucleic acid recognition.383

4 Methods384

PortalCG as a system level framework involves collaborative new design from data preprocessing, data splitting to385

model initialization, and model optimization and evaluation. The pipeline of framework is illustrated in Figure 1.386

Model architecture adopted by PortalCG mostly follows DISAE as shown in Figure 6.387
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4.1 Data sets388

PortalCG was trained using four major databases, Pfam[25], Protein Data Bank (PDB)[47], BioLp[48] and ChEMBL[26].389

The data were preprocessed as follows.390

• Protein sequence data. All sequences from Pfam-A families are used to pretrain the protein descriptor following391

the same setting in DISAE [1]. DISAE distills the original sequence into an ordered list of amino acid triplets392

by extracting evolutionarily important positions from a multiple sequence alignment.393

• Protein structure. In our protein structure data set, there are 30,593 protein structures, 13,104 ligands, and394

91,780 ligand binding sites. Binding sites were selected according to the annotation from BioLip (updated to395

the end of 2020). Binding sites which contact with DNA/RNA and metal ions were not included. If a protein396

has more than one ligand, multiple binding pockets were defined for this protein. For each binding pocket, the397

distances between Cα atoms of amino acid residues of the binding pocket were calculated. In order to obtain398

the distances between the ligand and its surrounding binding site residues, the distances between atom i in the399

ligand and each atom in the residue j of the binding pocket were calculated and the smallest distance wa selected400

as the distance between atom i and residue j. In order to get the sequence feature of the binding site residues401

in the DISAE protein sequence representation[1], binding site residues obtained from PDB structures (queries)402

were mapped onto the multiple sequence alignments of its corresponding Pfam family. First, a profile HMM403

database was built for the whole Pfam families. hmmscan [49] was applied to search the query sequence against404

this profile database to decide which Pfam family it belongs to. For those proteins with multiple domains, more405

than one Pfam families were identified. Then the query sequence was aligned to the most similar sequence in406

the corresponding Pfam family by using phmmer. Aligned residues on the query sequence were mapped to the407

multiple sequence alignments of this family according to the alignment between the query sequence and the408

most similar sequence.409

• Chemical genomics data. CPI classification prediction data is the whole ChEMBL26[26] database where410

the same threshold for defining positive and negative labels creating as that in DISAE [1] was used. Log-411

transformation was performed for activities reported in pK_d, pK_i or pIC_50. The activities on a log-scale412

were then binarized where protein-ligand pairs were considered active if pIC_50> 5.3, pK_d >7.3 or pK_i>7.3.413

Above data are split into training, validation, and testing sets. Data split statistics are shown in Table 6. Other414

data statistics are demonstrated in Figure 2 and Supplemental Materials Figure S1, S2, S3.415

65 compounds were synthesized for testing DRD1/2/3 binding activities. The procedures for the compound416

synthesis were detailed in Supplemental material Section 1.8, Scheme 1-5. DRD3 binding assays and Ki determinations417

were performed by the Psychoactive Drug Screening Program (PDSP).418

For illuminating undruggable human proteins, around 6,000 drugs are collected from CLUE[39]. 12,475 undruggable419

proteins are collected by removing the druggable proteins in Pharos [37] and Casas’s druggable proteins [38] from420

human disease associated genes [17].421

4.2 Algorithm422

4.2.1 Chemical representation423

A chemical was represented as a graph and its embedding was learned using Graph Isomorphism Network (GIN)[50]424

which was designed to maximize the representational (or discriminative) power of a Graph Neural Network (GNN)425

based on Weisfeiler-Lehman (WL) graph isomorphism test. GIN is a common choice as chemical descriptor[35].426

4.2.2 Protein sequence pre-training427

Protein descriptor is pretrained from scratch following exactly DISAE [1] on whole Pfam families, making it a universal428

protein language model. DISAE was inspired by recent success in self-supervised learning of unlabeled data in Nature429

Language Processing (NLP). It features a novel method, DIstilled Sequence Alignment Embedding (DISAE), for the430

protein sequence representation. DISAE can utilize all protein sequences to capture functional information without431

the knowledge of their structure and function. By incorporating biological knowledge into the sequence representation,432

DISAE can learn functionally important information about protein families that span a wide range of protein space.433

Different from existing sequence pre-training strategy that uses original protein sequences as input [22], DISAE434

distilled the original sequence into an ordered list of triplets by extracting evolutionary important positions from a435

multiple sequence alignment including insertions and deletions. Then long-range residue-residue interactions can be436

learned via the Transformer module in ALBERT[10]. A self-supervised masked language modeling (MLM) approach437

was used at this stage. In the MLM, 15% triplets are randomly masked and assumed that they are unknown. Then438

the remaining triplets are used to predict what the masked triplets are.439
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4.2.3 Protein structure regularization440

With the protein descriptor pretrained using the sequences from the whole Pfam, chemical descriptors and a distance
learner were plugged in to fine-tune the protein representation. The distance learner follows Alphafold[4] which
formulates a multi-way classification on a distrogram. Based on the histogram of distances between amino acids
and ligand atoms, a histogram equalization1 was applied to formulate a 10-way classification on our binding site
structure data as in Supplemental material Figure S9. Since protein and chemical descriptors output position-specific
embeddings of a distilled protein sequence and all atoms of a chemical, pair-wise interaction features on the binding
sites were created with a simple vector operation: a matrix multiplication was used to select embedding vectors
of each binding residue and atom; multiply and broadcast the selected embedding vectors into a symmetric tensor
as shown in the following, where H is embedding matrix of size (number_of_residues, embeddingdimension) or
(number_of_atoms, embeddingdimension) and A is selector matrix[51],

Hprotein
binding_site = Aprotein ∗ Hprotein

full_distilled

Hchemical
binding_site = Achemical ∗ Hchemical

full_chemical_graph

Hinteraction
binding_site = (Hprotein

binding_site)T ∗ Hchemical
binding_site

This pair-wise interaction feature tensor Hinteraction
binding_site was fed into a Attentive Pooling[52] layer followed by feed-441

forward layer for final 10-way classification. Detailed model architecture configuration could be found in Supplemental442

Table S1 and Figure6. The intuition for the simplest form of distance learner is to put all stress of learning on443

the shared protein and chemical descriptors which will carry information across the end-to-end neural network.444

Again, with standard Adam optimization, shifted evaluation was used to select the “best” instance. Two versions of445

distance structure prediction were implemented, one formulated as a binary classification, i.e. contact prediction, one446

formulated as a multi-way classification, i.e. distogram prediction. The performance of the two version are similar,447

as shown in Figure S9.448

4.2.4 Out-of-cluster Meta Learning (OOC-ML)449

With fine-tuned protein descriptor in the protein function space, a binary classifier is plugged on, which is a ResNet[53]450

layered with two linear layers as shown in Supplemental Table S1 and Figure6. What plays the major role in this451

phase is the optimization algorithm OOC-ML as shown in pseudocode Algorithm 1 and Figure 1. The first level452

(low leverl) model training is reflected in line 4-9, and line 10 shows ensemble training of the second level (high level)453

models. Note that more variants could be derived from changing sampling rule (line 3 and 5) and the second level454

ensemble rule.455

4.2.5 Stress model instance selection456

In classic training scheme common practice, there are 3-split data sets, “train set”, “dev set” and “test set”. Train457

set as the name suggested is used to train model. Test set as commonly expected is used to set an expectation of458

performance when applying the trained model to unseen data. Dev set is to select the preferred model instance. In459

OOD setting, data is split (see Table 1) such that dev set is a OOD from train set and test set is a OOD from both460

train and dev set. Deployment gap is calculated by deducting ODD-dev performance with OOD-test performance.461

4.3 Baseline models462

Machine learning methods for CPI predictions have been widely explored by many paradigms. As summarized463

in the survey [54], in addition to deep learning methods, there are similarity/distance based methods, matrix464

factorization, network-based, and feature-based methods. For CPI predictions with OOD generalization challenge, the465

similarity/distance-based, matrix factorization, and network-based methods have major obstacles. The Similarity/distance466

based methods rely on drug-drug similarity matrix and target-target similarity matrix as input. Because the467

similarities between dark proteins and proteins with known ligands are low, no reliable predictions can be made.468

Matrix Factorization is popular for its high efficiency but the cold-start nature of the dark proteins doesn’t fit469

matrix factorization paradigm. Network-based methods usually utilize protein-protein interactions. Such methods470

have advantages to predict the functional associations of ligand binding, but not the direct physical interactions.471

Furthermore, these methods are not scalable to millions of proteins and millions of chemicals. Almost of all studies472

based on these methods only focus on thousands of targets and thousands of drugs. PortalCG belongs to the category473

of the feature-based method. In our recently published work[1], we have shown that DISAE outperforms other state-474

of-the-art feature-based methods. Thus, we only compare PortalCG with DISAE in this paper.475

1Histogram equalization: https://en.wikipedia.org/wiki/Histogram_equalization
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Algorithm 1: PortaCG, Out-of-cluster Meta-learning
input : p(D), CPI data distribution over whole Pfams, where each Di ∈ D is a set of CPI pairs

for the pfami;
α, β, learning step size hyperparameters;
L, number of optimization steps in each round of the first level training;
T , number of the second levle training steps;
K, number of points sampled from a local neighborhood

output: θ the whole model weights
1 initialization whole model weights θ (with weight transfered from portal for protein and chemical

descriptors and random initiliazed weights for binary classifier)
2 for t in T do
3 Sample a Di ∼ p(D);
4 for l in L do
5 Sample a positive-negative balanced mini-batch of K pairs neighborhoodm ∼ Di;
6 for pointj in neighborhoodm do
7 Evaluate ∇θLpointj (fθ) with respect to K examples;
8 Compute adapted parameters with gradient decent:θ′

i = θ − α∇θLpointj
(fθ);

9 end
10 Update θ ← θ − β∇θ

∑
Di∼p(D) Lpointj (f ′

θ);
11 end
12 end

Besides the machine learning method, protein-ligand docking (PLD) is a widely used approach to predict CPIs.476

We evaluate the performance of PLD based on Autodock Vina[28] and AlphaFold2 predicted structures[5] followed477

by SIGN re-scoring[29]. Structure-aware Interactive Graph Neural Networks (SIGN) [29] is a graph neural network478

proposed for the prediction of protein-ligand binding affinity. SIGN builds directional graphs to model the structures479

and interactions in protein-ligand complexes. Both distances and angles are integrated in the aggregation processes.480

SIGN is trained on PDBbind [55], which is a well-known public dataset containing 3D structures of protein-ligand481

complexes together with experimentally determined binding affinities. Similar to SIGN [29], we used the PDBbind482

v2016 dataset and the corresponding refined set, which contains 3767 complexes, to perform the training. We followed483

SIGN [29] for training and testing. For the directional graph used in SIGN, we constructed them with cutoff-threshold484

θd = 5Å. The number of hidden layers is set to 2. All of the other settings are kept the same as those used in the485

original paper of SIGN. We randomly split the PDBbind refined set with a ratio of 9:1 for training and validation.486
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dataset usage in PortalCG count sample size note

Pfam 33.1 STL,
the first pretraining step to train DISAE

# Pfam families 17,772 random split in training and testing# sequences 54,409,760

PDB

STL,
the second pretraining step to learn
contact map between amino acid residues and ligand atoms
at binding sites

train

# Pfam families 319

Pfam families in OOD-dev and OOD-test
are held out from PDB pre-training.

# proteins 5,926
# binding sites ( protein-ligand pairs) 6,896
# chemical 3,168

test

# Pfam families 733
# proteins 1,497
# binding sites (protein-ligand pairs) 1,573
# chemical 670

ChEMBL 26 OOC-ML

ODD-train
# protein-ligand pairs 1,672,277

within each split (OOD-train/IID-dev/OOD-dev/OOD-test),
the data is random split into support and query sets
in a ratio of 5:1 for each Pfam family unless there are only
one class (binding or not) of data

# chemical 478,939
# Pfam families 333

IID-dev

# protein-ligand pairs 6,536
# chemical 6,096
# Pfam families 333
# Pfam families overlapping with OOD-train 333

OOD-dev

# protein-ligand pairs 165,655
# chemical 98,975
# Pfam families 701
# Pfam families overlapping with OOD-train 0

OOD-test

# protein-ligand pairs 162,354
# chemical 104,299
# Pfam families 700
# Pfam families overlapping with OOD-train 0
# Pfam families overlapping with OOD-dev 0

Table 6: Data statistics for each training stage
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Figure 1: (A) Scheme of PortalCG: PortalGC enables chemical protein interactions (CPIs) prediction
for dark proteins across gene families with four key components: ligand binding site enhanced sequence
pretraining, end-to-end transfer learning following sequence-structure-function paradigm, out-of-cluster
meta-learning (OOC-ML), and stress model selection. (B) Illustration of OOC-ML with the
comparision with classic ensemble learning: OOC-ML follows the same spirit as the ensemble learning,
but different in data split, model architecture, and optimization schema.
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Figure 2: Chemical genomics space in statistics: The ratio of proteins that have at least a
known ligand in each Pfam family. Each color bubble represents a Pfam family. The size of a bubble
is proportional to the total number of proteins in the Pfam family. 1, 734 Pfam families have at least one
known small molecule ligand. Most of these Pfam families have less than 1% proteins with known ligands.
Furthermore, around 90.2% of total 17, 772 Pfam families remain dark without any known ligand information.
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Figure 3: Comparison of PortalCG with the state-of-the-art methods DISAE and PLD+SIGN as baselines
using the OOD test where the proteins in the testing data come from different Pfam families from the
proteins in the training and validation data. (A) Histograms of protein sequence and chemical structure
similarities between OOD-train and OOD-test. The majority of protein sequences in the training set does
not have detectable similarity to the proteins in the testing set. (B) Receiver Operating Characteristic
(ROC) and Precision-Recall curves for the “best” model instance selected by the stress test. Due to the
imbalanced active/inactive data, the Precision-Recall (PR) curve is a more reliable measure than the ROC
curve. (C) Deployment gaps of PoralCG and DISAE. The deployment gap of PortalCG is steadily around
zero as training step increases while the deployment performance of DISAE deteriorates.
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Figure 4: (A) The chemical scaffold on which 65 compounds were synthesized for potential selective dual-
DRD1/DRD2 antagonists. Tens of thousands of chemicals can be generated from the different combination
of four functional groups R1, R2, R3, and R4 and a linker group. (B) The prediction accuracy of DRD
binding profile classification. (C) The performance of PortalCG when the sequence similarities between
the proteins in the training/validation set and DRD1/DRD2/DRD3 were less than 20%, 40%, and 60%,
respectively. The performance was measured by the accuracy of a three-label classifier. "Two out of three"
and "all DRDs" represented the accuracy when two labels and all three labels were predicted correctly.
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(a)

(b)

(c)

(d)

Figure 5: Drug-target interaction network for proteins associated with Alzheimer’s disease and docking
poses for representative drug-target pairs calculated by Autodock Vina. (a) Drug-target interaction network
predicted by PortalCG. Yellow rectangles and green ovals represent drugs and targets, respectively. (b)
Docking pose and ligand binding interactions between protein TIR domain-containing adapter molecule
2 (Uniprot: Q86XR7) and AI-10-49. (c) Docking pose and ligand binding interactions between protein
Unconventional myosin-Vc (Uniprot: Q9NQX4) and fenebrutinib. (d) Docking pose and ligand binding
interactions between DNA replication ATP-dependent helicase/nuclease (Uniprot: P51530) and PF-
05190457.
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Figure 6: Illustration of PortalCG architecture for three stages of training. The architecture of protein
sequence pre-training used a transformer architecture and masked language modeling as detailed in ref[1].
Pretrained protein descriptor was then used in binding site enhanced sequence pre-training. In this stage,
the task was to predict amino acid residue and ligand atom distance matrices. Finally, protein descriptors
that were pretrained and regularized in the previous two stages were concatenated with chemical descriptors
via an attention network to predict CPIs. Chemical structures were represented by GIN[50], a graph neural
network model. The second and third stages had same model architecture but the model parameters were
transferred from the second to the third stages. OOC-ML as an optimization algorithm was not a model
architecture component, and only used in the CPI prediction.
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