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Abstract

Binding time analysis is important in partial evaluators. Its task
is to determine which parts of a program can be specialized if some of
the expected input is known. Two approaches to do this are abstract
interpretation and type inference. We compare two specific such anal-
yses to see which one determines most program parts to be eliminable.
The first is the abstract interpretation approach of Bondorf, and the
second is the type inference approach of Gomard. Both apply to the
untyped lambda calculus. We prove that Bondorf’s analysis is better
than Gomard’s.

1 Introduction

In this paper we compare two techniques for doing binding time analysis of
terms in the untyped lambda calculus, see figure 1. The binding times we
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are concerned with are “known” (compile-time) and “unknown” (run-time).

Figure 1: The lambda calculus.

The input to a binding time analysis is a term together with some of its
expected input. The output is information about which applications can be
reduced without knowledge of the remaining input. This information can be
used by a partial evaluator to obtain a specialized term. The specialization
proceeds by reducing applications that have been determined to be reducible.
Note that an application is reducible if the function part is known.

For example, consider the term (λx.x @ y) @ z and suppose that the values
of y and z are unknown. If a binding time analysis can determine that the
function part of the outermost application is known at partial evaluation-
time, then the term can be specialized to z @ y. Notice that the other
application cannot be reduced.

The output of a binding time analysis can be presented as an annotated
version of the analyzed term. In the annotated term, all applications that
cannot be reduced are underlined; lambda abstractions that cannot take part
in a reduction will also be underlined. The language of annotated terms is
usually called a 2-level lambda calculus, see figure 2. Its semantics is given by
the semantics of the underlying pure term. Given a 2-level term, a specializer
proceeds by reducing applications that are not underlined.

Figure 2: The 2-level lambda calculus.
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For example, consider again the term (λx.x @ y) @ z. A binding time anal-
ysis may here produce the annotated term (λx.x @ y) @ z. It could also
produce(λx.x @ y) @ z.

Following Gomard and Jones [5], we partially order the set of 2-level terms
as follows. Given 2.level terms E and E ′, E � E ′ iff they have the same
underlying pure term and E ′ has the same and possibly more underlinings
than E. For example, (λx.x @ y) @ z) � ((λx.x @ y) @ z).

The quality of a binding time analysis has at least two aspects:

• How many applications does it determine to be reducible? and

• How fast can it be executed?

The first aspect determines the effect of the specializer, and the second aspect
influences the overall execution time of the partial evaluator.

This paper focuses on the first quality aspect. Our quality measure is the
standard one:

One binding time analysis is better than another, if it always
produces �-smaller 2-level terms than the other.

The intuition is “the fewer underlinings, the better”.

Binding time analysis has been formulated in various settings. Most of them
are based on either abstract interpretation or type inference. For examples
of the former that are applicable to higher-order languages, see the work of
Mogensen [8], Bondorf [1], Consel [2], and Hunt and Sands [7]. For examples
of the latter that are also applicable to higher-order languages, see the work
of Nielson and Nielson [9], and Gomard [4]. Only little is known, however,
about the relative quality of these analyses.

We will compare two recent binding time analyses. Both can be executed in
polynomial time and both are successfully used in existing partial evaluators.
The first is the abstract interpretation approach of Bondorf [1] which is used
in the Similix partial evaluator. The second is the type inference approach
of Gomard [4] which is used in the Lambdamix partial evaluator.
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The two chosen analyses are defined for slightly different languages. Bon-
dorf’s is defined for a subset of Scheme, whereas Gomard’s is defined for
a lambda calculus with constants. To be able to compare them we restrict
both their definitions to merely the pure lambda calculus.

This paper proves that the binding time analysis of Bondorf is better than
that of Gomard, in the above sense.

In following section we give the definitions of the two binding analyses, and
in section 3 we prove our result.

2 The Formal Systems

To simplify matters, we will assume that the input to the binding time analy-
sis is just one term that encodes both the term to be analyzed and the known
input. For example, suppose we want to analyze the term E which takes its
input through the free variables x and y. Suppose also that the value of x
is known to be E ′ and that the value of y is unknown. We will then supply
the analysis with the term (λx.E)(E ′). Note that y is free also in this term.
Thus, free variables henceforth correspond to unknown input.

Not all annotated versions of a term are acceptable. Informally, an annota-
tion is sound if the specializer indeed can reduce all applications that are not
underlined. Note that the soundness of 2-level terms is in general undecid-
able.

Both Bondorf’s and Gomard’s analyses are algorithms that compute sound
annotations. Furthermore, for each of them there is a soundness predicate
on 2-level terms such that the algorithm computes the �-least 2-level term
that is sound with respect to this predicate. Both these soundness predicates
approximate the optimal (undecidable) soundness predicate, such that they
always say “unsound” when the optimal one does.

The soundness predicates can be understood as specifications of binding time
analyses. For each of the predicates, we will say that if an algorithm always
produces a term for which the predicate is true, then it is a binding time
analysis; it meets the specification.

Both soundness predicates can be presented via constraint systems. For each
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of the predicates, the idea is that it is true of a 2-level term E0 iff a constraint
system generated from E0 is solvable. Both constraint systems are generated
as follows. First, the lambda term is α-converted so that every λ-bound
(or λ-bound) variable is distinct. This means that every abstraction λx.E
(or λx.E) can be denoted by the unique token λx (or λx). Second, a type
variable [[E]] is assigned to every subterm E. Finally, a finite collection of
constraints over these variables is generated from the syntax.

Bondorf’s and Gomard’s analvses emnlov constraints over different domains.
In Gomard’s analysis, type variables range over the following types:

τ ::= DYN | τ1 → τ2

The intuition behind this Dyn is that a term with this type has unknown
value; Dyn abbreviates Dynamic (Dyn is called untyped by Gomard).

The constraints are generated inductively in the syntax, see figure 3. We
let GA denote the global constraint system. Sometimes we write GA(E0) to
emphasize that the constraint system is generated from E0. Essentially these
constraints were presented by Henglein [6]; they are in the style of Wand [12].
For any pure term, there is a �-least annotated version for which GA is true,
for a proof see Gomard’s Master’s thesis [3]. Henglein gave a pseudo-linear
time algorithm for computing this �-least term [6].

Figure 3: Gomard’s soundness predicate, GA(E0).

Bondorf’s analysis is based on an abstract interpretation called closure analy-
sis. The closures of a term are simply the subterms corresponding to lambda
abstraction. A closure analysis approximates for every subterm the set of
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possible closures to which it may evaluate [11, 1]. Bondorf’s binding time
analysis is simply a closure analysis that in addition to the other closures also
incorporates a special value Dyn (Dyn is called D by Bondorf). The intuition
behind Dyn is the same as that behind the Dyn used by Gomard.

Figure 4: Bondorf’s soundness predicate, BA(E0).

In Bondorf’s analysis, type variables range over sets of closures and Dyn.
We denote by lambda the finite set of all lambda tokens in E0, the main
term. The constraints are generated from the syntax, see figure 4. As a
conceptual aid, the constraints are grouped into basic, safety, and connecting
constraints.

The connecting constraints reflect the relationship between formal and actual
arguments and results. The condition λx ∈ [[E]] been states that the two
guarded inclusions are relevant only if the closure denoted by λx is a possible
result of E1. Similarly, the condition Dyn ∈ [[E1]] states that the two guarded
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inclusions are relevant only if the value of E1 is unknown.

We let BA denote the global constraint system. Sometimes we write BA(E0)
to emphasize that the constraint system is generated from E0. The first
basic constraint and the first connecting constraint yield a closure analysis
of untyped terms.

It is novel to present the specification of Bondorf’s analysis via constraint
systems. This idea makes possible the proof of comparison of the two analy-
ses, see later. The BA constraint systems has the same fundamental property
as the GA constraint systems, as follows.

Proposition: For any pure term, there is a �-least annotated version for
which BA is solvable.
Proof: Consider some pure term EU . Let A be thy set of annotated versions
of EU for which BA is solvable. Thy idea in the proof is to represent A as
the solutions of another constraint system C.

Figure 5: The constraint system C.

The constraint system C is derived from the pure term E by a three-step
process like the one employed above. First, the lambda term is α-converted
so that every λ-bound variable is distinct. Second, a type variable [[E]] is
assigned to every subterm E. Finally, a finite collection of constraints over
these variables is generated from the syntax, see figure 5. We let S denote
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the set of solutions of C, it is ordered by point-wise inclusion.

It is easy to see that S is closed under point-wise intersection. Further-more,
we can always obtain a solution of C by assigning lambda ∪{Dyn} to all
variables, Thus, S has a least element.

We now define a function

annotate : S → A

Given a solution L ∈ S, annotate will underline those abstractions and appli-
cations in EU whose type variable contains Dyn in L. This yields a two-level
term E0.

If we can show that annotate is monotone and surjective onto A, then we
can proceed as follows. Let LM be the least solution of C, and let EA ∈
A be given. Since annotate is surjective, we can find L so that annotate(L)
= EA. Since LM is less than L, and since annotate is monotone, we get that
annotate(LM) � EA. Thus, annotate(LM) is the least element of A.

To see that annotate has range A, note that the type variables used in C and
BA(E0) are the same up to a renaming which removes underlinings. We can
thus transform L ∈ S into an assignment L0 of sets to the type variables used
in BA(E0). To get that E0 ∈ A we then only need to establish that L0 is a
solution to BA(E0). This is straightforward to check, as follows.

Consider first subterms of E0 of the form λx.E. Since L ∈ S we have that
[[λx.E]] ⊇ {λx}. Moreover, since λx.E did not get underlined by annotate,
we have that Dyn /∈ [[λx.E]] in L, so [[λx.E]] ⊆ lambda in BA(E0).

Consider next subterms of E0 of the form λx.E. Since the lambda got un-
derlined, we have that Dyn ∈ [[λx.E]] in L. Thus, in BA(E0) we have that
[[λx.E]] ⊇ {Dyn}.
Subterms of E0 of the forms E1 @ E2 and E1 @ E2 are treated in similar
fashiuns. Thus, L0 is a solution of BA(E0) so annotate has range A.

It is immediate that annotate is monotone.

To see that annotate is surjective onto A, we proceed as follows. Let EA ∈
A be given. Let L0 be a solution of BA(EA). Since the type variables used
in C and BA(EA) are the same up to renaming, we can transform L0 into
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an assignment L of sets to type variables used in C. It is immediate that L
is a solution of C because it must satisfy fewer constraints than in BA. To
see that annotate(L) = E0, note that in E0 an abstraction or an application
is underlined iff the corresponding type variable contains Dyn in L0. This
completes the proof. ✷

Given a pure term, the �-least annotated version for which BA is solvable
can be computed in cubic time. The idea is to compute the least solution of
the C constraint system and then apply annotate, see [10]. Bondorf’s original
algorithm [1] was given in a compositional style; its time complexity appears
to be worse than cubic time.

Note that Gomard’s analysis currently can be computed faster than Bon-
dorf’s. Note also that GA may force applications to be underlined because
of typing problems, even though they have a known function part. This is
not so in Bondorf’s analysis. For example, consider the pure term (λh.(h
@ I) @ (h @ f)) @ I where I = λx.x and f is a free variable. Bondorf’s
algorithm will produce no underlinings at all, whereas Gomard’s algorithm
will produce (λh.(h @ I ′) @ (h @ f)) @ I ′ where I ′ = λx.x. Thus, intuitively
Bondorf’s analysis does better than Gumard’s analysis. This is indeed so,
we now prove it formally.

3 Comparison

We now show that the binding time analysis of Bondorf produces at most as
many underlinings as the analysis of Gomard. We do this by proving for all
2-level lambda terms that if GA is solvable, then so is BA. This implies the
desired result because given any pure term, BA is in particular solvable for
the ❁-least annotated version for which GA is solvable.

The proof involves several lemmas, see figure 6. The main technical problem
to be solved is that BA and GA are constraint systems over two different
domains, sets versus types. This makes a direct comparison hard. We over-
come this problem by applying solvability preserving maps into constraints
over a common two-point domain.

We first show that the possibly conditional constraints of BA are equivalent
to a set of unconditional constraints (UBA). UBA is obtained from BA by
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repeated transformations. A set of constraints can be described by a pair
(C, U) where C contains the conditional constraints and U the unconditional
ones. We have two different transformations:

a) If U is solvable and c holds in the minimal solution, then
(C ∪ {c ⇒ K}, U) becomes (C, U ∪ {K}).

b) Otherwise, (C, U) becomes (∅, U).

This process clearly terminates, since each transformation removes at least
one conditional constraint.

Lemma 1: BA is solvable iff UBA is solvable.
Proof: We show that each transformation preserves solvability.

a) We know that U is solvable, and that c holds in the minimal solution.
Assume that (C ∪ {c ⇒ K}, U) is solvable. The condition c must hold
and, hence, so must K. But then (C, U ∪{K}) is solvable. Conversely,
assume that (C, U ∪ {K}) is solvable. Then so is (C ∪ {c ⇒ K}, U),
since K holds whether c does or not.

b) If (C, U) is solvable, then clearly so is (∅, U). Assume now that (∅, U) is
solvable, and that no condition in C holds in the minimal solution of
U . Then clearly (C, U) can inherit this solution.

It follows that solvability is preserved for any sequence of transformations.
✷

We now introduce a particularly simple kind of constraints, which we cal 2-
constraints. Here variables range over the set {λ, Dyn}. We define a function
φ which maps UBA constraints into 2-constraints. Individual constraints are
mapped as follows:

UBA φ(UBA)

X ⊆ Y X = Y
X ⊆ lambda X = λ
X ⊇ {λx} X = λ
X ⊇ {Dyn} X = Dyn
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It turns out that φ preserves solvability in the inverse direction.

Lemma 2: If φ(UBA) is solvable, then so is UBA.
Proof: Assume that L is a solution of φ(UBA). We obtain a (non-minimal)
solution of UBA by assigning lambda to X if L(X) = λ, and assigning
{Dyn} to X if L(X) = Dyn. ✷

Next, we define the closure GA as the smallest set that contains GA and
is closed under symmetry, reflexivity, and transitivity of =, and also closed
under the following property: if α → β = α → β′, then α = α′ and β = β′.
Hardly surprising, this closure preserves solvability.

Lemma 3: GA is solvable iff GA is solvable.
Proof: The implication from right to left is immediate. Assume that GA is
solvable. Equality is by definition symmetric, reflexive, and transitive. The
additional property will also be true for any solution. Hence, GA inherits all
solutions of GA. ✷

We define a function ψ which maps GA into 2-constraints. Individual con-
straints are mapped as follows:

GA ψ(GA)

X = Y X = Y
X = α → β X = λ
X = Dyn X = Dyn

We show that ψ preserves solvability.

Lemma 4: If GA is solvable, then so is ψ(GA).
Proof: Assume that L is a solution of GA. We obtain a solution of ψ(GA) by
assigning λ to X if L(X) = α → β, and assigning Dyn to X if L(X) = Dyn.
Thus, the function ψ acts as a quotient map on constraint systems. ✷

We now show the crucial connection between Bondorf’s and Gomard’s anal-
yses.

Lemma 5: The UBA constraints are contained in the GA constraints, in
the sense that φ(UBA) ⊆ ψ(GA).
Proof: We perform an induction in the number of transformations performed
on BA.
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The induction base is the BA configuration (C, U). Here U contains all the
basic, safety, and initial cunstraints. For any λx.E, BA yields the constraint
[[λx.E]] ⊇ {λx} which by φ is mapped to [[λx.E]] = λ. GA yields the con-
straint [[λx.E]] = [[x]] → [[E]] which by ψ is mapped to [[λx.E]] = λ as well.
A similar argument applies to the other four kinds of basic and safety con-
straints, and also to the initial constraints, Thus, we have established the
induction base.

For the induction step we assume that φ(U) ⊆ ψ(GA). If we use the b)-
transformation and move from (C, U) to (∅, U), then the result is immediate.
Assume therefore that we apply the a)-transformation. Then U is solvable,
and some condition has been established in the minimal solution. There are
two cases, one for E1 @ E2 and one fur E1 @ E2.

Assume first that some condition λx ∈ [[E1]] been has been established for
the application E1 @ E2 in the minimal solution. This opens up for two new
connecting constraints: [[E2]] ⊆ [[x]] and [[E1E2]] ⊇ [[E]]. We must show that
corresponding equalities hold in GA. The only way to enable the condition
in the minimal solution of U is to have a chain of U -constraints:

{λx} ⊆ [[λx.E]] ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ [[E1]]

From the definitions of φ and ψ on constraints between variables, and by
applying the induction hypothesis, we get that in GA we have

[[λx.E]] = X1 = X2 = · · · = Xn = [[E1]]

From the GA constraints [[λx.E]] = [[x]] → [[E]] and [[E1]] = [[E2]] → [[E1E2]]
and the closure properties of GA it follows that [[E2]] = [[x]] and [[E1E2]] = [[E]],
which was our proof obligation.

Assume next that some condition Dyn ∈ [[E1]] has been established for the
application E1 @ E2 in the minimal solution. This opens up for two new
connecting constraints: {Dyn} ⊆ [[E2]] and {Dyn} ⊆ [[E1 @ E2]]. They are by
φ mapped to [[E2]] = Dyn and [[E1 @ E2]] = Dyn. For E1 @ E2, GA generates
three constraints, two of which are mapped by ψ to the two constraints from
before.

Thus, we have established the induction step. As UBA is obtained by a finite
number of transformations, the result follows. ✷
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This allows us to complete the final link in the chain.

Lemma 6: If GA is solvable, then so is UBA.
Proof: Assume that GA is solvable. From lemma 4 it follows that so is
ψ(GA). Since from lemma 5 φ(UBA) is a subset, it must also be solvable.
From lemma 2 it follows that UBA is solvable. ✷

We conclude that BA is at least as powerful as GA.

Theorem: If GA is solvable, then so is BA.
Proof: We need only to bring the lemmas together, as indicated in figure 6.
✷

Figure 6: Solvability of constraints.

Corollary: For all pure terms, Bondorf’s analysis produces �-smaller an-
notated versions than does Gomard’s analysis.

Proof: Let E be as pure term. Gomard’s analysis produces the �-least
annotated version EG of E such that GA(EG) is solvable. By the theorem,
BA(EG) is also solvable. Bondorf’s analysis produces the �-least annotated
version EB of E such that BA(EG) is solvable Thus, EB � EG. ✷

The example in the previous section shows that for some terms Bondorf’s
analysis produces strictly �-smaller annotated versions than does Gomard’s
analysis. The proof of our theorem sheds some light on why and how BA
accepts more safe terms than GA. Consider a solution of GA that is trans-
formed into a solution of BA according to the strategy implied in figure 6. All
closure sets will be the maximal set lambda. Thus, the more fine-grained
distinction between individual closures is lost.

Our result is still valid if we allow GA to use recursive types. Here the GA
constraints are exactly the same, but the types are changed from finite to
regular trees. This allows solutions to constraints such as X = X → X.
Only lemma 4 is influenced, but the proof carries through with virtually no
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modifications. Even with recursive types, the term (λh.(h @ I) @ (h @ f)) @
I is annotated as before. Hence, BA is also at least as powerful as GA with
recursive types.

4 Conclusion

We have compared two different approaches to binding time analysis and
proved that the abstract interpretation approach produces better results than
the type inference approach. The latter may still be preferred in practice,
however, because it (currently) can be executed faster.

Strictness analysis is another example of a static analysis for which there are
both abstract interpretation approaches and type inference ones. In future
work, we hope to compare such analyses.
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