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Binocular brightness combinations:
Additive and nonadditive aspects*

Ch. M. M. de WEERT and W. J. M. LEVELT
University of Ni]megen, Erasmuslaan 16, Nijrnegen, The Netherlands

A conjoint measurement procedure is used for the measurement of binocular brightness as a function
of left and right luminance inputs. For nonzero stimulation, the data confirm earlier findings: the system
can be described as additive with a scale exponent of 1. If zero stimulation is included, however, no
additive solution can be found (due to Fechner’s paradox). This fact, combined with various critical
remarks in the literature with respect to the existence of a real luminance-averaging system, has led us to
propose a model which takes account of Fechner’s paradox, and incorporates "realistic" exponents
without requiring a multistage processing mechanism where different levels are characterized by
different sensory scales. The proposed model makes the weighting coefficients for the two eyes
dependent in a continuous way on the strength of stimulation in the two eyes, especially on the amount
of contrast of the monocular stimuli. For zero background stimulation, contrast can be expressed in
terms of luminance of the stimulus. In this way, the model is reduced to a simple testable form. While it
much simpler than Engel’s (1969) model, the experimental results indicate that it might also work for
the more general case.

Since Fechner (1861) discovered his binocular
brightness paradox, there has been no doubt in the
literature about the existence of binocular brightness
interaction. But brightness interaction may take any of a
large variety of forms. On the one hand, one might
consider dichoptic interactions in threshold phenomena.
More specifically, one could study effects on absolute or
differential thresholds, or on critical flicker fusion
frequencies. In general, the existence of such threshold
effects has been used as an argument for binocular
dependence, whereas their absence was taken to mean
independence of the two monocular channels. On the
other hand, binocular brightness interaction has been
studied with respect to the contributions of the
individual eyes to the joint binocular output.

Traditionally, brightness judgments have been used in
nonthreshold studies on binocular summation. This
work has been reviewed by Levelt (1965) and by Engel
(1967, 1969). A main theme in this work has been the
question of whether binocular brightness results from a
summation or an averaging of the monocular responses.
Fechner’s paradox suggests the existence of an averaging
mechanism. Averaging models have been proposed by
Hering and Sherrington (1906), Schr6dinger (1926),
Livshitz (1940), Levelt (1965), Hurvich and Jameson
(1966), and Engel (1967, 1969). However, some
evidence for summation can be found in the literature;
this is incorporated in models by DeSilva and Bartley
(1930) and Fry and Bartley (1933). An important
additional issue is, of course, what it is that is summated
or averaged: luminances (Levelt, 1965), discriminal
responses (Treisman, 1970), or brightnesses
(Sherrington, 1906; Hurvich & Jameson, 1966; Engel,
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1967; Teller & Galanter, 1967). The problem of
dependence vs independence that was raised with respect
to the threshold studies now returns in another garment.

Is the binocular effect of a luminance change in one
eye dependent on the stimulation intensity in the other
eye? It should be clear that the answer to such a
question is, among other things, dependent on the
choice of response scales. One might have to conclude
that dependence exists if effects are measured in terms
of a predetermined sensation scale (e.g., a power scale),
whereas dependence vanishes if one can freely use a
discriminal response scale. However, it is not the case
that independence can always be guaranteed by the
appropriate choice of scales.

Under certain conditions, one has to conclude that
independence cannot be valid, for whatever choice of
sensory response scales. To our knowledge, no one has
tried, in the literature on binocular brightness, to show
that noninteraction is excluded in principle for the
binocular system. A first aim of this study was to
develop such a test. For this, we took inspiration from
the theory of additive conjoint measurement (Luce &
Tukey, 1964; Krantz et al, 1971), where noninteraction
is brought under the theoretical notion of additivity.
The theory formulates the conditions under which an
additive, i.e., noninteractive, solution exists for a set of
measurements of the conjoint effect of two independent
variables. If an additive solution exists, the theory
moreover specifies the conditions on the scales. For such
a test of additivity, only ordinal data are required, so
that a rather simple type of brightness judgment will
suffice on the part of the S.

In this article, we will proceed as follows. We will first
describe the experiment which allows us to carry out an
additivity test for binocular brightness. We will then
discuss the data analysis, which leads to the conclusion
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left eye

AOAPTATION FIELI)S
duration: .5
luminance: 80 al/m2

b
TEST FIE~S
duralion: 500 reset.
luminance variable:
0; 10; 20; 31; 50, 63; 79 ~/m2.

right eye

Flig. 1. Stimulus configuration. During the
5-sec adaptation periods, test-field targets
are c hanged.

that the system is nonadditive. This brings us, in the
next section, to a discussion of the most important
interactive theories of binocular brightness, i.e., where
there is some form of dependence between the eyes.
There are, especially, models as proposed by Engel and
our own version of models as given by Schr6dinger and
Hurvich and Jameson. Finally, we will compare these
models on the basis of the experimental data that also
served for the additivity analysis.

THE EXPERIMENT

As stated in the preceding paragraph, we wilt be able
to test additivity of the binocular brightness system by
means of only ordinal data. As we will see, such data will
also suffice to test different nonadditive or interactive
theories. We decided to base our test on seven luminance
values for each eye. This means that we need a rank
order over 49 binocular stimulus pairs. This was
experimentally realized in the following way.

Method
A six-channel Scientific Prototype tachistoscope was used,

provided with an automatic slide-change mechanism for one
channel in each of the two monocular three-channel parts. One
field in each part served as an adaptation field, and at the same
time as an aid for fusion. The luminance of these circular,
3.5-deg adaptation fields was 80 cd/m~. ’

The channels equipped with the slide changers were used to
present the test stimuli, consisting of two 1-deg circular fields,
horizontally aligned and separated by a 1-deg gap (see Fig. lb).
Much care was taken to assure that both left- and right-eye test
stimuli exactly coincided in the binocular field, set up by the
fusion (adaptation) fields.

Each 1-deg subfield of a test stimulus could have one of seven
luminance values, 0, 10, 20, 31, 50, 63, or 79 cd/m2, produced
by neutral density filters. In all cases, test and adaptation fields
had black backgrounds.

Left and right circular slide trays contained all 49 possible
combinations of the seven luminance values. The order of the
slides was randomized.

Procedure. The eyepieces of the two three-channel parts of
the tachistoscope were optimally adapted to the S’s intereye
distance. No artificial pupils were used.

After a 5-sec presentation of the adaptation fields, the first
pairs of left- and right-eye test stimuli were presented for
500 msec. In the following 5-sec adaptation period, slides were

changed in both channel:; and the next pairs of test stimuli were
presented. The 500-msec presentation time was chosen as a
compromise. It is just long enough to obtain a stable binocular
impression, and short enough not to disturb the adaptation level
seriously. For each test field presentation, the S’s task was to
indicate which of the binocularly fused 1-deg fields he judged to
be the brighter one. Since, in some cases, the two fields are quite
evidently equal in brightness (e.g., where all transmissions are
zero ~md both fields are black), we allowed the S to give "equal"
judgments. We didn’t allow the Ss to look twice for the same
stimulus presentation. On the average, Ss used this option in
2%-3% of the judgments. After each series of 49 presentations, a
new series of 49 combinations was started by turning the
right-eye rototray one place further. In this way, a total of 49 x
49 stimulus combinations were presented to each S. From the
symmetry of the 49 x 49 stimulus matrix, it is clear that each
binocular pair is compared twice to all possible binocular pairs, if
we may assume that left and right position on the retina are
equivalent. We will return to this issue in a later section.

Subjects. Two trained, male Ss, S. and W., served in the
experiment. Both Ss had normal uncorrected vision.
Furthermore, they both had little or no eye dominance, as
revealed in earlier binocular experiments. Measures of eye
dominance were extracted from metrical equibrightness
measurements as described by Levelt (1965), and from extended
series of binocular color mixture experiments to be described in
another paper.

RESULTS AND ADDIT1VITY ANALYSIS

Let us indicate luminance values in the left-eye
stimulus pair by (al,br), luminance values in the right eye
by (Pl,q~). Subscripts 1 and r indicate stimulus field
positions (not eyes). After binocular fusion, the pair
(abp~) forms the left binocular field, whereas (b~,qr)is
the right binocular pair of fields. Ss’ judgments of the
relative brightness of the two binocular fields were
registered as +1 (resp. -1) if the right (resp. left) field is
the brighter one, as 0 if the option "equal" was used. A
49 x 49 matrix was obtained, with row elements
indicating the 7 x 7 binocular stimulus combinations in
the right positions in left and right eye, respectively, and
column elements indicating the stimulus combinations in
the left positions in left and right eye. Counting the
number of --Is in one row gives the number of times
that a particular left-field combination dominates any of
the 49 possible right-t’ield combinations; 0 is taken as
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0.5. Counting the number of +Is in one column gives the
number of times that a particular right-field combination
dominates any possible left-field combinations: 0s are
taken as 0.5 again. We can combine the summations over
rows and columns, but only if we assume that right-field
retinal parts behave in a similar way as left-field retinal
parts do. At first sight this seemed to be allowed.
Combination of summations over rows and columns
gives an ordering of the 49 possible binocular
combinations with respect to their joint brightnesses.
This ordinal information was used for the analysis of
additivity to be described below,

Conjoint ~leasurement Theory
Conjoi~t measurement theory is concerned with the

way in which independent variables, according to some
specific composition rule, determine a joint effect. For a
general description of these recent developments in
psychological measurement theory, we must refer to
Krantz, Luce, Suppes, and Tversky (1971). We go into
some detail only about the most simple, most elaborated
composition rule, the additive composition of functions
defined on the independent variables.

Let L = a, b, c ..... be the set of m left-eye
luminance, and let R = p, q, r .... , be the set of m
right-eye luminance values. The cartesian product of L
and R produces a matrix, B. B is the set of possible left-
and right-eye luminance combinations. Matrix elements
b(i,j) are numbers related to the joint binocular
brightnesses of these combinations, in a monotonic
nondecreasing manner.

The matrix, B, is additive if and only if there are real
valued functions, f(a), g(p), and/3(a,p), defined on L, R,
and B, respectively, such that: (1)/3(a,p) = f(a)+ g(p),
and (2)/3(a,p) ~>/3(b,q) if and only if b(a,p) >~ b(b,q) for
all a,b ~ L and all p,q ~ R. Condition 2 leads directly to
the requirement of monotonicity of the data matrix. In
practical terms, the matrix is monotonic if rows and
columns can be permutated in such a way that all rows
have elements which are nondecreasing in value from left
to right, and all columns are similarly nondecreasing
from top to bottom. But a monotonic matrix is not
necessarily additive, as can be seen in the simple example
given below. For this, still another empirical condition
must be fulfilled.

Krantz et al (1971) pointed out that the key property
for monotonic two-factor systems is given in the double
cancellation rules to be derived below:

p q r

a 1 3 4Example of a data
matrix which is b 2 5 8monotonic but not
additive: c      6      7      9

If (i) b(a,q) ~> b(b,p) and (ii) b(b,r) ~> b(c,q), then (iii)
b(a,r) ~> b(c,p), and similarly for the joint inversion of
the three inequalities. For: (i) implies t~(a,q) ~> O(b,p) or

f(a) + g(q) ~> fib) + g(p); (ii) implies ¢l(b,r) ~> t3(c,q) or
f(b) + g(r) ~> f(c) + g(q); and summing (i) and (ii): f(a) +
g(q) + f(b) + g(r) ~> f(b) + g(p) + f(c) + g(c0. (Double)
cancellation of equal terms on both sides leads directly
to: f(a) + g(r) >~ f(c) + g(p) and thus to b(a,r)~> b(c,p).
i.e., (iii).

For a m x m matrix, there are

triples to be checked with respect to this cancellation rule.
Not all these triples, however, are testable, because
Conditions i and ii may have opposite inequality signs.
The latter case we will indicate by "no test." Also, the
data can violate the double car~cellation rule in a very
weak manner. This is the case where one of the
conditions, (i) or (ii), is an equality, whereas the other is
an inequality. If the sign of (iii) is opposite in that case,
we have, technically speaking, a rejection. However, with
finer grained data, the equality could have gone both
ways and in one case we would have had a "no test"
situation. Therefore,we will categorize "weak
rejections" separately.

A special program, "Cancel," was written, by which
all possible triples could be tested with respect to double
cancellation. As input, we used the 7 x 7 experimental
matrix for which rows and columns were ordered in
terms of increasing luminance. Apart from the
double-cancellation test, we computed the number of
violations of monotonicity for each matrix. One could
object to this procedure on the basis that one should use
an input matrix with row and column permutations such
that maximal monotonicity is obtained. However, it is
only natural to expect that if additivity holds, increasing
luminance in one eye should have an increasing
binocular effect. Moreover, the improvement of
monotonicity by such reordering was always very small.
If monotonicity and cancellation are established, we
may conclude, as shown by Krantz et al (1971), that real
valued functions, f(a), g(p), and ~(a,p), do exist. Only
some additional technical assumptions have to be made,
which are of no significant empirical consequence.

How can we find these functions? For this we used
the "Unicon" program, developed by Roskam et al
(1967, 1968, 1971), which is an extention of
nonmetrical multidimensional scaling procedures, such
as Kruskal’s. We refer to the original publications for
details.

Scale values found in this procedure are unique up to
linear transformations. That is, if f(a) and g(p) are
solutions for left and right scales, then xf(a)+ y and
xg(p) + y’ are solutions too for all x, y, and y’.

Results of Additivity Analysis
Table 1 gives the experimental results for the two Ss,

S. and W. It is immediately obvious that monotonicity is
violated. The number of nonmonotonicities is 22 and 29
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Table 1
Dominance Matrices for Binocular Luminance Combinations

Right eye cd,m2

~
31 ’ 30.5~ 20 ~ 30 3751 ~ 63 ]71

subject W subject 5

Note-A matrix element presents the number of times a particular combination of left and right eye luminances
judged to be brighter than any other combination. Maximum value." 98.

Table 2
Reordering of Rows and Columns Leads to an Improvement

of Monotonicity. However, the Number of Strong
Rejections Strongly Increases

for S. and W., respectively. Almost all of them involve
the first row and the first column. One could think of
permuting these vectors; however, in no way can a
substantial improvement of monotonicity be made, and
if improvement of monotonicity occurs, the number of
violations increases, as can be seen in Table 2.

Since the matrices are norunonotonic, they are
nonadditive, which indicates some form of interaction
between the monocular responses. The sort of

L-eye ~_t~0

cdlm2

interaction can be easily deduced: the data are
nonmonotonic where the zero stimulus is concerned.
This is another expression of Fechner’s paradox: the
contribution of an eye increases if the other eye is not
stimulated. The obvious next question is whether the
binocular system is additive in a more limited sense,
namely for nonzero stimulation of the eyes. For this, we
computed the 6 x6 data matrices by ignoring all
observations which involve a null stimulus. They are
given in Table 3.

This thne, the maLrices turn out to be (close to)
perfectly monotonic. To establish additivity, we have
yet to test double cancellation. The results of these tests
are given in Table 4.

The number of strong rejections is less than 5% for
both Ss, whereas weak violations are exceptional. It
seems rather safe to conclude that the binocular
response is a simple additive function of the monocular
stimulations if zero stiraulation is excluded. This result is
in complete accordance with Levelt’s (1965) findings,
which for the nonlow luminance range could be
described by a simple averaging rule. Is it also the case

Table 3
Limited Set of Binocular Luminance Combinatiom,;

R-e’,e cdfm2

2,

4~ 52!63
sub ect s

Note-Zero luminance is excluded. Matrix elements present the number of times a pa’rticular binocular combination
is judged to be brighter than any other combination. Maximum value: 72.



that the function is linear with respect to luminances, as
in Levelt’s equibrightness results? To determine this, we
used the Unicon-scaling program. The results for the two
Ss are given in Fig. 2.

It is clear from the curves that the interval scale values
can indeed be considered as linear functions of
luminance. We can conclude that, though the
experimental procedure is quite different from Levelt’s,
our results are in complete agreement with his. This
result, however, cannot obliterate the fact that
nonadditivities are obtained if the null stimulus is
included in the experimental material. This means that
any complete model of binocular brightness
combination will have an interactive aspect, i.e., the
binocular effect of stimulation in one eye will increase
for low or zero stimulation of the other eye. Therefore,
we will now turn our attention to more complete

BINOCULAR BRIGHTNESS COMBINATIONS 555

Table 4
Double Cancellation Test for Reduced Sets of Data

~_6_~ftests $6
"/ooftests

no test L      250 ’

]Vote-All eombin.tions which involve the null stimulus ~re
omitted,

models, which involve some form of dependence
between the two eyes.

2.0-

].0-

0o5-

-0. 5
o

eye
X

subject S
stress:O. 043

Right eye

Left eye

subject W
stress: O. 00014

I

luminance Cdlm2 luminance Cdlm2
Fig. 2. Scales represent an additive solution for the 6 x 6 reduced data set Scales are unique up to a linear transformation.

See text
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VL

Fig. 3. Out representation of the binocular brightness
combioation model of Engel (1969).

INTERACTIVE MODELS
As we have indicated in the introduction, such models

have been around in the literature for a long time. The
obvious reason for their creation is the existence of
Fechner’s paradox, where, in spite of an increase of the
total amount of energy reaching the eyes, a decrease of
binocular brightness results. This suggests the working of
an averaging process in which weighting factors for the
two eyes are dependent upon a relation between the
monocular inputs.

In this paragraph, we will first review the most
important models that have been proposed in the
literature. This is, on the one hand, Engel’s (1967, 1969)
model, which is probably the most complex of all
existing models. On the other hand, we have models in
the tradition of Schr6dinger (t926), Livshitz (1940),
and Hurvich and Jameson (1966). With respect to
Engel’s model, we will argue for also testing two
simplified versions thereof, and as far as the Schr6dinger
tradition is concerned, we will develop one explicit
variant of these models, which will be called the
"centroid model." After this short review, we will put all
four models to test, i.e., Engel’s original and its two
derived versions, and the centroid model.

Engel’s Vector Summation Model
Engel’s (1969) model, which will be called "Engel 1,"

is diagrammed in Fig. 3 (our representation). It is based
on a theoretical reanalysis of various experimental
results in the literature, such as Fry and Bartley’s and
Levelt’s data. The model is essentially characterized by
two components. The first part, the weighting
component, derives the weights for the two eyes as a
function of the luminance distributions in the

monocular fields. The second component, the
summation component, derives the binocular brightness
as the vector sum of the two weighted responses. This
latter part needs little explanation: in the figure, the
weighted responses are depicted as WLffL and Waffa,
respectively, Here qq, and q~ are monocular sensation
values, computed from the input luminances, EL and Ea
via Stevens’s power law with exponent value of 0.33.
More complicated is the first component which
computes the weighting coefficients wL and w~. The
reader is referred to Enget (1969) for details. The heart
of this component lies in the derivation of V~ and V~t.
These are values which express the amount of contour
and contrast in the two monocular fields. As was shown
by Levelt (1965), monocular contour information is a
principle determinant of the share of an eye in binocular
brightness averaging. Engel’s V is intended to quantify
this contour effect. Given VL and Va, left and right
weighting coefficient.,; WL and Wrt are computed as
shown in Fig. 3 :

and similarly for wa. In this way, we have w~ + w~ = 1,
which, combined with the assumed vector summation,
leads to the interesting conclusion that Levelt’s law of
complementary shares isvalid only for squared
sensations:

Indeed, this square root weighting function is
unmotivated, and to start with one could as well try the
simpler form,

VL

WL - VL + VR ’

which results in wL -1- wR = 1, as in Levelt’s model.
In fact, this is the first simplified version of Engel’s

model that we will test; it is called "Engel2." to
preserve both the law of complementary shares and the
vector summation in Engel’s model, the binocular
brightness will be defined as follows:

2 ½XI]B = (V/LXI-t~ + WRXI-/R ) ¯

This means, however, ~:hat it is still the case that the law
of complementary shares relates to squared sensations:

2 2 2
q[-tB = WL~I-tL + (1 -- WL)XIJR,

The only way to relate it to linear sensations is to also
change the vector summation component of the model.
This additional simplification of Engel’s model will be
called "Engel 3." The weighting coefficients are as in
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"Engel 2," but o¢B is now defined as q~B = WLqt/L ÷
WRXI/R, a weighted summation of sensations. It should
be noted here that Engel’s arguments for a vector
summation are not very specific anyhow. Engel refers to
equibrightness curves measured by Ernitz (1966) which
are not linear such as Levelt’s. But nonlinearities can be
coped with in various ways; vector summation is just one
of them. Another approach is to make weighting
coefficients dependent on brightness, as we will do in
the centroid model.

Let us now return to the other set of models, which
originated from Schr6dinger’s (1926) paper. According
to Schr6dinger, the weighting factor for an eye is given
by the t-atio of the "monocular brightness flux" to the
sum of both monocular fluxes. There is an ambiguity
here, since Schr6dinger uses the term "Helligkeit,"
which could also mean "luminance."

In fact, Livshitz’s (1940) interpretation of
Schr6dinger’s model is in terms of luminances, whereas
in Hurvich and Jameson’s formulation (1966), the model
is explicitly stated in terms of brightness magnitudes.
The centroid model which we will discuss now is another
variant in this tradition. In the version that will be put to
test, it is neither luminances nor brightnesses that
determine weighting coefficients, but a more neutral
"discfiminal response," which is a function, f(E), of the
input luminance, E. The function is called "transducer
function," and it is taken to be an empirical issue
whether this transducer function is distinct from a
psychophysical brightness function. If so, we have to
assume a multistage processing model, such as
Treisman’s (1970) with a "peripheral processing
component," which is characterized by the transducer
function, followed by a "metric processing component"
which outputs brightness estimates. In its more general,
unquantified version, the centroid model assumes that
the weighting coefficients for the two monocular
channels are determined by the "strengths" of the
stimuli in the two eyes. As in Engel’s model, stimulus
strength is assumed to be a function of the amount and
distribution of contour and contrast in the stimulus
field. In Schr6dinger’s tradition, the weighting
coefficient for an eye is thus given by the ratio of the
strenth of the stimulus upon that eye to the sum of both
monocular strengths.

In order to quantify the model, we will limit ourselves
to the present experimental situation in which only
variation of luminance was used. We will leave the
possible effects of contours undiscussed. We assume that
under these circumstances weighting coefficients are
exclusively determined by the discriminal response
f(E + c), which is produced at the luminance input, E.
We assume that f(E) is a power function1,2 with
exponent n, whereas c is a very small "background
luminance level" which prevents the discriminal response
from becoming zero. This, in view of the fact that our Ss
were not dark-adapted, can be expressed in terms of an
"equivalent background luminance."

Finally, we add to the model eye-dominance factors,
dL and dR, which are assumed to be constants for a S,
and which are unaffected by stimulus strength.

The version of the centroid model which is put to test
is:

dL(EL+c)n’(E
L+c)

n
qgB=

dL(EL + c)n + dR(ER + c)n

dR(ER + C)n " (ER + C)n
+ ,

dL(EL +C)n +dR(ER + c)n

where dL and dR are dominance factors, EL and ER are
left- and right-field luminance, (EL + c)’~ and (ER + c)n

are left and right discriminal responses, and tI, B is the
binocular discriminal response. It is obvious that the two
weighting factors add to unity. In order to give an
impression of the model’s characteristics, we display in
Fig. 4 a set of equibrightness curves for dE 

= dR and
c = 0. The curves differ with respect to exponent n.

Intuitively, these curves compare very well with
Levelt’s (1965) equibrightness curves for exponents
between 0.3 and 0.4. It seems, therefore, worthwhile to
test the model against the present paired comparison
data.

In the following section, we will compare the four
interactive models ("Engel 1, 2, 3," and the centroid
model) with our experimental findings.

Test of the Interactive Models
In order to compare our data with predictions from

the three versions of Engel’s model, we will have to
compute the autocorrelation functions, which are at the
basis of his theory. These functions have to be computed
for each of the 49 possible stimulus pairs that could be
presented to an eye. For each of the two stimuli in any
monocular pair, V values must be calculated. We exactly
followed Engel’s procedure in our computation. The
only arbitrary choice concerns the value of the nonzero,
but very small, background brightness, as mentioned
earlier. Engel used a value of 10-8 cd/m2, which is
extremely low. There are several reasons for us to
deviate from this value. The first reason is that this value
should represent the effect of stray light (but Engel
admits that his value of 10-8, even for that, is too low),
as well as of adaptation. In our viewing conditions,
adaptation has been substantially higher than in the
experimental situations analyzed by Engel.

At this point, we must remark that adaptation
conditions have hardly ever been under control in
binocular brightness experiments. A second reason is
that recent measurements (Marks, 1973) of equivalent
intensity of intrinsic light point to values as high as 1-1.4
photopic trolands, corresponding to an equivalent
stimulus intensity of about 0.08-0.12 cd/m2 for a
pupil diameter of 4 ram. This differs by more than 106
from Engel’s parameter. Thirdly, from the analysis of



558 de WEERT AND LEVELT

3.0-

n n

EQUI BR IGHTNESS FUNCTIONS
FO~ n’L0 ; .40 ; .30 : .’20

the centroid model (see below), we were able to estimate
background luminance at somewhere from 10-z to
10-4 cd/m2. This will be discussed later. Finally, for

Fig. 4. Equ~rightness functions foz the
most simple form of the centroid modeL If
eye-dominance factors a~e involved, the
curves are simply tilted over the 1,1 point.

one S (W.), we tested the "Engel 1 and 3" models for
several background values down to 10-6 cd/m2. It
turned out that the fit of the models was best at about

ENGEL 1
data

-1 I0~ [ 22 65~. --
~ 0

~ ~ 8

+I 149 23 988

Table 5

c: 10-4;

subj: W
n =. 33

ENGEL 2
data

-I 1102 18 ~

_- 42 26 6

122 ~ 1012

¢=10..4. n= ~

ENGEL 3
data

+I

-I- 1104 18

~ 0- 42 27

c =10-4; n =.113

subj: W subj: W

CENTROiD

II~0 16

38 23

108 35

c = 10-4 ;

dL =1.0;

data

8

1023

Subj. W

ENGEL i
data

-I , 0 , +I,
111 17 I
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10-4 cd/m2. It thus seemed to be only honest to choose
that value for a test of the Engel models. For the other
free parameter, the exponent of the brightness scale, we
used Engel’s own estimate of 0.33.

With these coefficients, we could compute the ordinal
prediction for every pair in the 49 x 49 matrix of paired
comparisons. These were "left dominates right" (-1),
the reverse (1), or "equal" (0). The fit with the
experimental data can therefore be represented in a
3 x 3 table. One can find the result of these tabulations
in Table 5.

The table also gives the fit for the centroid model, the
computation of which is described now. We started from
7 x 7 experimental matrices (Table 1), since, contrary to
the Engel models, left and right stimuli in a monocular
pattern are independent in the centroid model. The xltB

values for all 49 combinations were determined
according to Eq. 1 for different values of n and d. The
background value, c, was given the same values as for the
test of the Engel models. As mentioned, we have
independent reasons for this choice, which we will
discuss presently. We determined the n,d pairs for which
the solution was optimal, the criterion being that the
value of the Kendall rank-order correlation between
theoretical and experimental ordering of q~B values is
maximized. From there, we could go back to the
prediction for all 49 x 49 paired comparisons, and these
are compared with the actual data for Ss S. and W. in
Table 5. It is this same procedure which was used to
determine the c value. The idea was the following: Of
the three parameters, n, d, and c, only the first two are
of significance if we consider the limited sets of data,
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where the null stimulus is excluded. These data were
presented in Table 3. For these data, the analysis of the
centroid model will be unaffected by the choice of c if
we may assume that c is small in comparison to the
smallest real stimulus value. For c = 0, we determined
optimal w and n pairs for these data, in the
just-mentioned manner, and these values we used
preliminarily in the analysis of the 7 x 7 data matrices.
This latter was done for various choices of c, and it
turned out that optimal fits were found for c, ranging
from 10-2 to 10-4 cd/m2. From Table 4, it appears
that the fit of the models increased from "Engel 1" to
centroid, for these particular choices of the parameters.
We also computed the predictions of the Engel (1)
model for n=.44, and compared these to the
experimental data of S W. The fit turned out to be worse
than for n = .33.

In the discussion, we will return to a general
comparison of the Engel models and the centroid model;
now we limit ourselves to a consideration of the absolute
levels of the fit. AI: first glance, the number of
false predictions is still substantial. This led us to
consider the type of prediction errors. We checked
various possibilities. Initially, we considered the
possibility that a sizeable number of the errors would
involve the null stimulus. However, it turned out that
the percentage of errors in which the null stimulus was
involved did not differ from the comparable cases where
the null stimulus was excluded. A second source of
errors might have been some asymmetry between left
and right halves of the retinae. It is immediately obvious
from the 3 x 3 tables that, for S S., the right half fields
are dominant, whereas the inverse is true for S W. This
finding cannot be explained by an eye-dominance factor
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for the whole eye; it must, rather, be ascribed to a kind
of hemispherical dominance, or to different eye
dominances for left and right hemispheres, respectively.
Such phenomena have been observed before (Crovitz,
1964) and are known as K611ner effects, after K611ner
(1914), who found hemianopia effects in binocular color
rivalry. In spite of various detailed efforts, we have not
been able to find any other systematic source of errors,
so we are inclined to conclude that it is less the centroid
model than experimental noise which causes the
prediction errors. Another way of arguing that this is a
safe conclusion is to show that the errors are typically
quite sm all. This can be seen in Figs. 5 and 6, in which
the ordering of theoretical binocular discriminal effects
is plotted against the ordering of the experimental data.
Order inversions are nonsystematic and quite smal!.
These figures present in a summary fashion the accuracy
of the centroid model.

DISCUSSION

The additivity analysis of our experimental data
clearly confirmed Levelt’s earlier conclusion that for
nonlow luminance values the binocular discriminal
response can be described by a linear additive
combination of the monocular luminances.

A more complete model of binocular brightness,
however, has to cope not only with the full brightness
range for which that additivity is not valid, but also with
the reality that discriminal responses are hardly ever
linear. Both Engel’s model and theories in the
Schr6dinger tradition can in principle cope with both
these problems. Engel’s is the only model which in
addition gives a detailed quantitative account of the
effect of monocular luminance distributions on the
binocular combination function. At the same time, his
theory, diagrammed in Fig. 3, is quite complicated. Both
the derivation of the weighting coefficients and the
vector summation role are not simple assumptions. It is
not surprising to find that simplifications of Engel’s
(1969) model at these two points lead to better fits with
the data. The centroid model does not handle contours
in a similar general way. In fact, quantitative predictions
were only possible for the present experimental situation
in which all stimuli were identical in terms of contours.
Further extensions of the model have to be made for
cases where contours are different for the two eyes, such
as in Levelt’s (1965) experiments. It should be
mentioned, however, that it is also unclear how Engel’s
model would handle these results: as far as we can see,
several additional assumptions have to be made, for
instance with respect to the "grain" of the retinal
mosaic. Whether that will lead to acceptable predictions
is still an open issue.

For the present data, the centroid model’s predictions
are clearly better. But this should also be interpreted
with much care. The centroid model had two additional
parameters: the exponent, n, and the eye-dominance

factor, d. The latter factor is not accounted for in
Engel’s model, whereas the former is fixed at 0.33. We
see no deep reason to fix the brightness exponent at this
magic level; it is certainly more realistic to treat it as a
free parameter within a certain range. For our Ss, the n
values ranged from 0.22 to 0.44; nobody would be
surprised to find such values in a magnitude estimation
or similar experiment.

This brings us, finally, to the question of whether our
discriminal response, ~PB, can be considered as a
brightness function or not; in the latter case, we have to
add an additional "metric processing component" which
transforms discriminal responses in brightness
judgments. In the former case, we can agree with Engel
that it is monocular "sensations" or "brightnesses"
which are combined binocularly. (The quotes indicate
the arbitrariness of the definitions of these terms.) The
fact that our exponents are clearly in the range of the
exponents found in direct scaling procedures indicates
that the centroid model can be expected as well to
account for binocular direct estimation data. Though
this has still to be demonstrated, it would mean that no
additional component in Treisman’s (1970) sense is
required to handle both types of data.
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NOISES
1. The special choice of a powerlike transducer function is not

essential for this model. Logarithmic functions can also be used.
We do prefer power-for~:a functions, because experimental and
theoretical studies point to this kind of transducer function.
Treisman (1966, 1970) and Thijssen and Vendrik (1971)
propose power-form transducer functions on theoretical
g~ounds. In a completely different kind of approach, Luce and
Green (1972) prefer power functions above logarithmic
functions in a study on a neural timing model for the
Psychophysics of intensity.

2. While writing this paper, we received MacLeod’s (1972)
paper, which presented essentially the same model, using
logarithmic transducer functions.
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