
 Open access Proceedings Article DOI:10.1145/355017.355031

Binocular eye tracking in virtual reality for inspection training — Source link

Andrew T. Duchowski, Vinay Shivashankaraiah, Tim Rawls, Anand K. Gramopadhye ...+2 more authors

Institutions: Clemson University, Ames Research Center

Published on: 08 Nov 2000 - Eye Tracking Research & Application

Topics: Eye tracking, Gaze and Virtual reality

Related papers:

 Eye Tracking Methodology: Theory and Practice

 Identifying fixations and saccades in eye-tracking protocols

 The use of advanced technology for visual inspection training

 Measuring Presence in Virtual Environments: A Presence Questionnaire

 Development of Eye-Gaze Interface System and Its Application to Virtual Reality Controller

Share this paper:

View more about this paper here: https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-
jeacwf8d5x

https://typeset.io/
https://www.doi.org/10.1145/355017.355031
https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x
https://typeset.io/authors/andrew-t-duchowski-1un5jjk1bi
https://typeset.io/authors/vinay-shivashankaraiah-4mta5kexic
https://typeset.io/authors/tim-rawls-27zd3wudyk
https://typeset.io/authors/anand-k-gramopadhye-1u8q3bxz2q
https://typeset.io/institutions/clemson-university-1q0prrem
https://typeset.io/institutions/ames-research-center-39cde3eb
https://typeset.io/conferences/eye-tracking-research-application-2wo3jyml
https://typeset.io/topics/eye-tracking-6fptw6k8
https://typeset.io/topics/gaze-1rxttfh6
https://typeset.io/topics/virtual-reality-1sy0lbog
https://typeset.io/papers/eye-tracking-methodology-theory-and-practice-1vrmkzw8k8
https://typeset.io/papers/identifying-fixations-and-saccades-in-eye-tracking-protocols-3alcy53yue
https://typeset.io/papers/the-use-of-advanced-technology-for-visual-inspection-kt08sym32j
https://typeset.io/papers/measuring-presence-in-virtual-environments-a-presence-40c26nz3zb
https://typeset.io/papers/development-of-eye-gaze-interface-system-and-its-application-bbax4dsrdz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x
https://twitter.com/intent/tweet?text=Binocular%20eye%20tracking%20in%20virtual%20reality%20for%20inspection%20training&url=https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x
https://typeset.io/papers/binocular-eye-tracking-in-virtual-reality-for-inspection-jeacwf8d5x

Binocular Eye Tracking in Virtual Reality for Inspection
Training

Andrew T. Duchowski
�
, Vinay Shivashankaraiah, Tim Rawls

Department of Computer Science

Clemson University

Anand K. Gramopadhye†, Brian J. Melloy

Department of Industrial Engineering

Clemson University

Barbara Kanki‡

Human Factors Research and Technology Division

NASA Ames Research Center

(a) User interface. (b) Eye image from

tracking device.

(c) 3D scanpaths.

Figure 1: Recording binocular eye movements in aircraft cargo bay virtual inspection environment.

Abstract

This paper describes the development of a binocular eye

tracking Virtual Reality system for aircraft inspection train-

ing. The aesthetic appearance of the environment is driven

by standard graphical techniques augmented by realistic tex-

ture maps of the physical environment. A “virtual flashlight”

is provided to simulate a tool used by inspectors. The user’s

gaze direction, as well as head position and orientation, are

tracked to allow recording of the user’s gaze locations within✁
andrewd@cs.clemson.edu

†agramop@ces.clemson.edu
‡bkanki@mail.arc.nasa.gov

the environment. These gaze locations, or scanpaths, are cal-

culated as gaze/polygon intersections, enabling comparison

of fixated points with stored locations of artificially gener-

ated defects located in the environment interior. Recorded

scanpaths provide a means of comparison of the performance

of experts to novices, thereby gauging the effects of training.

CR Categories: I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism—Virtual Reality I.3.6

[Computer Graphics]: Methodology and Techniques—

Interaction Techniques J.4 [Computer Applications]: Social

and Behavioral Sciences—Psychology

Keywords: Eye Tracking, Virtual Reality, Visual Inspec-

tion

1 Introduction

Aircraft inspection and maintenance are an essential part of

a safe, reliable air transportation system. Training has been

identified as the primary intervention strategy in improving

inspection performance [4]. If training is to be successful,

it is clear that inspectors need to be provided with training

tools✂ to help enhance their inspection skills. In response to

this need, this paper outlines a Virtual Reality (VR) inspec-

tion simulator under development at the Virtual Reality Eye

Tracking (VRET) Laboratory at Clemson University.

The VR inspection system is a collaborative extension of

recent efforts being pursued at the Training System Labora-

tory (TSL) at Clemson. Previous work at the TSL focused

on the development of a computer based inspection training

program—Automated System of Instruction for Specialized

Training (ASSIST) [5]. The ASSIST program, developed

using a task analytic methodology, features a PC-based in-

spection simulation of an aircraft cargo bay, where an image

of a portion of the airframe is presented to the user for in-

spection (visual detection of defects). The image is a photo

of a section of an aircraft’s interior. The user is shown an

image selected from a two-dimensional 4 ✄ 8 grid of images,

and is able to “navigate” left, right, up, and down to view the

entire grid, one image at a time. Despite its advantages of

being a computer-based inspection training/job-aid tool, the

static, two-dimensional layout of the airframe lacks realism.

To enhance the fidelity of the inspection system, an immer-

sive, three-dimensional VR system has been developed.

The purpose of this paper is to describe the development

of the Virtual Reality inspection system. The VR inspec-

tion simulator features a binocular eye tracker, built into the

system’s Head Mounted Display (HMD), which allows the

recording of the user’s dynamic point of regard within the

virtual environment. User gaze directions, as well as head

position and orientation, are tracked to enable navigation

and post-immersive examination of the user’s overt spatio-

temporal focus of attention while immersed in the environ-

ment. The recorded point of regard addresses imprecision

and ambiguity of the user’s viewpoint in a virtual environ-

ment by explicitly providing the 3D location of the user’s

gaze.

In Virtual Reality, the three-dimensional location of gaze

serves as either a real-time or a post-immersion diagnostic

indicator of the user’s overt focus of attention. The col-

lection of gaze points taken over the course of immersion,

the user’s three-dimensional scanpath, serves as a diagnostic

tool for post-immersive reasoning about the user’s actions in

the environment. In our system, we conjecture recorded eye

movements, or scanpaths, will enable comparison of the per-

formance of experts to novices, thereby gauging the effects

of training.

The main contribution of this paper is the presenta-

tion of real-time software techniques for the integration of

the binocular eye tracker in a Virtual Reality application.

Presently, it appears that the binocular eye tracker coupled

with an HMD capable of vergence measurement in VR is

the first of its kind to be assembled in the United States. Al-

though binocular eye trackers integrated with HMDs have

previously been proposed [8], no reports of their actual con-

struction or operation have been found. For reference, the

hardware used at the Clemson University Virtual Reality Eye

Tracking lab is briefly described in Section 2. Section 3

presents the evolution of the geometric model of the vir-

tual aircraft cargo bay inspection environment. In Section 4,

technical issues of eye tracker system integration and op-

eration are discussed, emphasizing coordinate mapping be-

tween the eye tracker and the VR application, and the calcu-

lation of the three-dimensional gaze point from binocular eye

movement measurements. Concluding remarks are given in

Section 5.

2 Hardware Platform

Our primary rendering engine is a dual-rack, dual-pipe, SGI

Onyx2 R
☎

InfiniteRealityTM system with 8 raster managers

and 8 MIPS R
☎

R10000TM processors, each with 4Mb sec-

ondary cache.1 It is equipped with 3Gb of main memory and

0.5Gb of texture memory.

Multi-modal hardware components include a binocular

ISCAN eye tracker mounted within a Virtual Research V8

(high resolution) Head Mounted Display (HMD). The V8

HMD offers 640 ✄ 480 resolution per eye with separate left

and right eye feeds. HMD position and orientation tracking

is provided by an Ascension 6 Degree-Of-Freedom (6DOF)

Flock Of Birds (FOB), a d.c. electromagnetic system with a

10ms latency. A 6DOF tracked, hand-held mouse provides a

means to represent a virtual tool for the user in the environ-

ment. The lab is shown in Figure 2.

Figure 2: Virtual Reality Eye Tracking (VRET) laboratory at

Clemson University.

3 Geometric Environment Model-
ing

The goal of the construction of the virtual environment is

to match the appearance of the physical inspection environ-

ment, an aircraft cargo bay, shown in Figure 3. The phys-

1Silicon Graphics, Onyx2, InfiniteReality, are registered trademarks of

Silicon Graphics, Inc.

Figure 3: Aircraft cargo bay physical environment.

ical environment is a complex three-dimensional cube-like

volume, with airframe components (e.g., fuselage ribs) ex-

posed for inspection. A typical visual inspection task of the

cargo bay involves carefully walking over the structural ele-

ments while searching for surface defects such as corrosion

and cracks (among others).

3.1 Model Geometry

The evolution of the virtual inspection environment began

with a straightforward emulation of the two-dimensional AS-

SIST inspection grid. The rationale for this design was the

relatively quick development of a simple texture-mapped

grid to provide the user with a more natural representation

and navigation of the entire inspection region. The image

grid, displayed as a flat polygonal wall in VR, is shown in

Figure 4. Although the VR environment provided advan-

Figure 4: Initial planar 2D virtual environment.

tages over the PC-based system, several problems with its

design became evident.

The main advantage of the VR system is its display of the

entire side of the airframe’s wall, which provides better con-

text for the user in terms of the location of the individual

panels under inspection. The obvious drawbacks of this im-

plementation, however, are that there are noticeable discrep-

ancies in the appearance of the images (e.g., lighting changes

and positional misalignment), and the unsuitable simplicity

of the geometry for VR. The simplistic 2D wall in effect de-

feats the immersive and natural navigational advantages of-

fered by VR technology. Clearly, to provide an immersive

environment, a three-dimensional structure was required.

The next evolution of the inspection environment was pat-

terned after a simple three-dimensional enclosure (e.g., a

cube), specified by actual dimensions of the real inspection

environment, i.e., an aircraft’s cargo bay. An early stage of

the wireframe rendition of the cargo bay “3D box” is shown

in Figure 5. The model is built entirely out of planar poly-

Figure 5: 3D box-like virtual environment (shown in wire-

frame).

gons. There are two pragmatic reasons for this design choice.

First, since the representation of the true complexity of the

airframe structure is avoided, fast display rates are main-

tained (on the order of 10-30 fps) while tracking latencies

are minimized (on the order of 10-30 ms for head and eye

trackers).2 Second, planar polygons (quadrilaterals) are par-

ticularly suitable for texture mapping. To provide a realistic

appearance of the environment, in keeping with the desire

of preserving geometric simplicity, images of the physical

environment are used for texture maps.

3.2 Lighting and Flashlight Modeling

The SGI Onyx2 host provides real-time graphics rendering

performance, while simultaneously processing tracking in-

formation sent to the host via the rs-232 serial connection.

2Display update and latency measures are only rough estimates at this

point, we are working on obtaining more formal measurements.

To generate the environment, no specialized rendering algo-

rithms✆ are invoked beyond what is provided by the OpenGL
graphics library Application Program Interface (API). Stan-

dard (1st-order) direct illumination is used to light the en-

vironment. Additionally, an OpenGL spotlight is used to

provide the user with a “virtual flashlight”. The flashlight

effect is shown over a 2D polygon in Figure 6. The flash-

Figure 6: Virtual flashlight shown over a 2D polygon.

light’s position and orientation are obtained from the 6DOF

electromagnetically tracked “flying mouse” from Ascension.

Because OpenGL relies on the Phong illumination model

coupled with Gouraud shading to generate lighting effects,

large polygons produce a coarse (blocky) flashlight beam.

To correct this problem, the polygons were subdivided to

smooth out the spotlight, producing a more aesthetically

pleasing circular effect. The level of polygonal subdivision

is user-adjustable.

3.3 Realistic Texture Maps

To texture map the simple 3D box-like environment, images

of the physical environment were obtained. With permission

from a commercial airline, images of an aircraft’s cargo bay

were taken while the aircraft was withheld from operation for

inspection and servicing. Since the time to photograph the

cargo bay interior was limited, no particular methodology or

special equipment was used to obtain these images. Care was

taken to attempt to photograph the environment in sections

by translating a hand-held camera, however, inaccuracies in

image alignment were inevitable.

In retrospect, a better approach would have been to mea-

sure the environment a priori, then calculate and record ap-

propriate positions of the camera, and ensure proper place-

ment of the camera on some stable rigging apparatus (e.g.,

a levelled tripod which could be fastened to the aircraft in-

terior). This approach would be similar to a motion capture

or an image-rendering session used in special effects produc-

tion work. Of course, this method would require more time

and care to carry out.

Although our approach was somewhat haphazard, im-

age alignment was possible through careful labeling of pho-

tographs and a good deal of digital post-processing. In our

case, we used The Gimp (the freeware analogue of Photo-

Shop) to orient and resize the images appropriately. The re-

sulting environment, with the user-held “virtual flashlight” is

shown in Figure 7.

Figure 7: Virtual flashlight in virtual aircraft cargo bay envi-

ronment.

4 Eye Tracking

Interest in gaze-contingent interface techniques has endured

since early implementations of eye-slaved flight simula-

tors and has since permeated several disciplines including

human-computer interfaces, teleoperator environments, and

visual communication modalities [7, 9, 6]. Recent applica-

tions of an eye tracker in VR have shown promise in the use

of the device as a component of multi-modal interface sys-

tems. For example, Jacob has used an eye tracker as a selec-

tion device in VR [10], and Danforth et al. use an eye tracker

as an indicator of gaze in a gaze-contingent multi-resolution

terrain navigation environment [1]. Although these are ex-

amples of eye trackers used as interactive devices, in the

present application, the eye tracker serves a diagnostic pur-

pose. That is, no changes in the display occur due to the

location of the user’s gaze, rather, the user’s eye movements

are simply (and unobtrusively) recorded in real-time for post-

immersion analysis.

In our system, a dedicated PC calculates the point of re-

gard in real-time (60Hz) from left and right video images of

the user’s pupils and infra-red corneal reflections (first Purk-

inje images). Figure 8 shows a user wearing the eye tracking

HMD. Eye images captured by the cameras can be seen in

two video monitors near the lower right of the figure. In this

section, the technical issues of system integration and op-

eration are presented (for a technical description of system

installation and wiring, see [2]).

4.1 Eye Tracker Integration

In designing the visual inspection simulator, a critical con-

cern is the mapping of eye tracker coordinates to the appli-

Figure 8: Eye tracking HMD.

cation program’s reference frame. The eye tracker calcu-

lates the viewer’s point of regard relative to the eye tracker’s

screen reference frame, e.g., a 512 ✄ 512 pixel plane, per-

pendicular to the optical axis. That is, for each eye, the

eye tracker returns a sample coordinate pair of x- and y-

coordinates of the point of regard at each sampling cycle

(e.g., once every ✝ 16ms for a 60Hz device). This coordi-

nate pair must be mapped to the extents of the application

program’s viewing window. The VR application must also,

in the same update cycle, map the coordinates of the head’s

position and orientation tracking device.

4.2 Eye Tracker Coordinate Mapping

The eye movement data obtained from the tracker must

be mapped to a range appropriate for the VR applica-

tion. Specifically, the 2D eye tracker data, expressed in

eye tracker screen coordinates, must be mapped to the 2D

dimensions of the near viewing frustum. The 3D viewing

frustum employed in the perspective viewing transformation

is defined by the parameters left, right, bottom,
top, near, far.3 Figure 9 shows the dimensions of the

eye tracker screen (left) and the dimensions of the viewing

frustum (right). To convert the eye tracker coordinates ✞ x ✟✡✠ y ✟☞☛

eye

eye

right,top

left,bottom

512,512

0,0

near

far

Figure 9: Eye tracker to 3D viewing frustum screen coordi-

nate mapping.

3For example, as used in the OpenGL function call glFrustum().

to graphics coordinates ✞ x ✠ y ☛ a linear interpolation mapping

is used:

x ✌ left ✍ x ✟✎✞ right ✏ left ☛
512

(1)

y ✌ bottom ✍ ✞ 512 ✏ y ✟✑☛✒✞ top ✏ bottom ☛
512

(2)

Since the eye tracker origin is at the top-left of the screen and

the viewing frustum’s origin is at the bottom-left (a common

discrepancy between imaging and graphics applications), the

term ✞ 512 ✏ y ✟✓☛ in Equation (2) handles the necessary y-

coordinate mirror transformation.

The above coordinate mapping assumes that the eye

tracker coordinates are in the range ✔ 0 ✠ 511 ✕ . In reality, the

usable, or effective, coordinates will be dependent on: (a) the

size of the application window, and (b) the position of the ap-

plication window. Proper mapping between eye tracker and

application coordinates is achieved through the measurement

of the application window’s extents in the eye tracker’s refer-

ence frame. This is accomplished by using the eye tracker’s

own fine cursor movement and cursor location readout.

To obtain the extents of the application window in the eye

tracker’s reference frame, the application window’s corners

are measured with the eye tracker’s cursor. These window

extents are then used in the linear mapping equation. Fig-

ure 10 illustrates an example of a 600 ✄ 450 application win-

dow as it would appear on the eye tracker scene monitor.

Based on the measurements shown in Figure 10, the linear

LEFT
SCENE

MONITOR

Application

data display)
(as shown in

51,446

51,53

482,53

482,446H: 267 V: 250 D: 0 T:00:00:00:00

267,250

Figure 10: Mapping measurement example.

coordinate mapping is:

x ✌ x ✟✖✏ 51✞ 482 ✏ 51 ✍ 1 ☛ ✞ 600 ☛ (3)

y ✌ 449 ✏ y ✟ ✏ 53✞ 446 ✏ 53 ✍ 1 ☛ ✞ 450 ☛ (4)

The central point on the eye tracker display is ✞ 267 ✠ 250 ☛ .

Note that y is subtracted from 449 to take care of the im-

age/graphics✗ vertical origin flip.

4.3 Gaze Vector Calculation

The calculation of the point of regard in three-space depends

on only the relative positions of the two eyes in the hori-

zontal axis. The parameters of interest here are the three-

dimensional virtual coordinates, ✞ xg ✠ yg ✠ zg ☛ , which can be

determined from traditional stereo geometry calculations.

Figure 11 illustrates the basic binocular geometry. Helmet

(x ,y ,z)h h h

b

f =

(x ,y ,z)g gg

(x ,y)(x ,y)

near

l r rl

Figure 11: Basic binocular geometry.

tracking determines both helmet position and the (orthog-

onal) directional and up vectors, which determine viewer-

local coordinates shown in the diagram. The helmet posi-

tion is the origin, the helmet directional vector is the optical

(viewer-local z) axis, and the helmet up vector is the viewer-

local y axis.

Given instantaneous, eye tracked, viewer-local coordi-

nates ✞ xl ✠ yl ☛ and ✞ xr ✠ yr ☛ in the left and right image planes

(mapped from eye tracker screen coordinates to the near

view plane), and head-tracked head position coordinates✞ xh ✠ yh ✠ zh ☛ , the viewer-local coordinates of the gaze point,✞ xg ✠ yg ✠ zg ☛ , are determined by the relations:

xg ✌ ✞ 1 ✏ s ☛ xh ✍ s ✞ xl ✍ xr ☛✙✘ 2 (5)

yg ✌ ✞ 1 ✏ s ☛ yh ✍ s ✞ yl ✍ yr ☛✙✘ 2 (6)

zg ✌ ✞ 1 ✏ s ☛ zh ✍ s f (7)

where s ✌ b ✘✚✞ xl ✏ xr ✍ b ☛ , b is the disparity distance between

the left and right eye centers, and f is the distance to the near

viewing plane along the viewer-local z axis.

Figure 12 shows a user’s 3D gaze points in the air-

craft cargo bay environment. Gaze point coordinates based

(a) Front view. (b) Side view.

Figure 12: 3D gaze points in cargo bay virtual environment.

on vergence calculations given by Equations (5)–(7) are

presently closely correlated with the user’s head location.4

Figure 12(b) shows the collection of gaze points from a side

viewpoint. With respect to depth, the gaze points do not pre-

cisely fall on the polygonal surfaces of the environment. To

compare the visual search performance of experts to novices

in a task-specific environment such as the aircraft cargo bay,

recorded scanpath information should convey the location of

gaze points in the same relative reference frame as the visual

search targets. Specifically, we wish to compare these gaze

points to the set of stored locations of artificially generated

defects located at known coordinates in the cargo bay texture

maps. An example of defect location in an environment tex-

ture map is shown in Figure 13.5 We are therefore interested

Figure 13: Example of location of artificially generated de-

fect in an environment texture map.

in recording the points of intersection of the user’s gaze and

the environment walls (polygons).

To calculate the the gaze/polygon intersection, the gaze

point is expressed parametrically as a point on a ray with

origin ✞ xh ✠ yh ✠ zh ☛ , the helmet position, with the ray emanat-

ing along a vector scaled by parameter s. That is, rewriting

Equations (5), (6), and (7), we have:

xg ✌ xh ✍ s

✛
xl ✍ xr

2
✏ xh ✜

4We are working towards the specification of focal and disparity param-

eters to give us clearer depth information of the gaze point, dissociating the

head position from the point of gaze.
5The simple target symbol in Figure 13 is currently only used for testing

purposes; eventually artificial defects will be made more realistic.

yg ✌ yh ✍ s

✛
yl ✍ yr

2
✏ yh ✜

zg ✌ zh ✍ s ✞ f ✏ zh ☛
or, in vector notation,

g ✌ h ✍ sv (8)

where h is the head position, v is the central view vector and

s is the scale parameter as defined previously. The view vec-

tor v is obtained by subtracting the helmet position from the

midpoint of the eye tracked x-coordinate and focal distance

to the near view plane, i.e.,

v ✌ ✢✣ ✞ xl ✍ xr ☛✙✘ 2✞ yl ✍ yr ☛✙✘ 2
f

✤✥ ✏✦✢✣ xh

yh

zh

✤✥
(9)✌ m ✏ h

where m denotes the left and right eye coordinate midpoint.6

To align the view vector to the current head orientation, the

vector m must first be transformed to the proper (instanta-

neous) head orientation. This is done by first normalizing m
and then multiplying it by the orientation matrix returned by

the head tracker.7

Given the three-dimensional gaze vector, v, specified by

Equation (9), Equation (8) gives the coordinates of the gaze

point parametrically along a ray originating at the head po-

sition ✞ xh ✠ yh ✠ zh ☛ . The depth of the three-dimensional gaze

point in world coordinates is valid only if s ✧ 0.

4.4 Gaze Point Calculation

The formulation of the gaze direction given by Equation

(8) can be used for testing virtual gaze/polygon intersection

coordinates via traditional ray/polygon intersection calcula-

tions commonly used in ray tracing [3]. The gaze/polygon

intersection point is found on the closest polygon to the

viewer intersecting the gaze ray, assuming all polygons are

opaque. This polygon is found by testing all polygons in the

scene for intersection with the gaze ray. To find the intersec-

tion point g of the gaze ray with the closest polygon, a new

interpolant t is obtained by calculating the gaze ray inter-

sections with all scene polygons. All such intersections are

examined for which t ✧ 0.8 The interpolant t is obtained by

substituting the gaze ray equation into the polygon’s plane

equation (in vector notation):

t ✌ ✏★✞ N ✩ h ✍ D ☛
N ✩ v (10)

6Note that since the vertical eye tracked coordinates yl and yr are ex-

pected to be equal (since gaze coordinates are assumed to be epipolar), the

vertical coordinate of the central view vector defined by ✪ yl ✫ yr ✬✮✭ 2 is some-

what extraneous; either yl or yr would do for the calculation of the gaze

vector. However, since eye tracker data is also expected to be noisy, this

averaging of the vertical coordinates enforces the epipolar assumption.
7Equivalently, head orientation in the form of a quaternion, as returned

by the head tracker, may be used for the same purpose.
8If t ✯ 0, the polygon may intersect the gaze ray, but behind the viewer.

where N is the negated polygon normal and D is the height

parameter of the polygon’s plane equation. The geometry

of this calculation is depicted in Figure 14. The calculation

N

-N

v

h

Figure 14: Ray/plane geometry.

of the ray/plane intersection may be speeded up by evaluat-

ing the denominator of Equation (10) first. The intersection

algorithm is given in Figure 15. Note that the ray/polygon

vd ✌ N ✩ v; // denominator

if(vd ✰ 0) ✱
vo ✌✲✏★✞ N ✩ h ✍ D ☛ ; // numerator

t ✌ vo ✘ vd ;✳
Figure 15: Ray/polygon intersection.

intersection algorithm only returns the intersection point of

the ray and the infinite plane defined by the polygon’s face

normal. Because the normal defines a plane of infinite ex-

tent, the point g must be tested against all of the polygon’s

edges to establish whether the point lies inside the polygon.

This is an instance of a solution to the well-known “point-in-

polygon” problem. The geometry of this algorithm is shown

in Figure 16. If the point g is bounded by the perpendicular

B

A

N

g

N’

Figure 16: Point-in-polygon problem.

planes defined by the polygon’s edges, then g lies within the

polygon, otherwise it lies on the plane defined by the face

normal N, but outside the polygonal region. The resulting

algorithm generates a scanpath constrained to lie on polygo-

nal re
✴

gions within the virtual environment. Such a scanpath

is shown in Figure 17. Provided the number of polygons is

Figure 17: 3D scanpath in aircraft cargo bay virtual environ-

ment.

sufficiently small, the algorithm executes in real-time.

5 Conclusions & Future Work

We have described an operational platform for real-time

recording of eye movements in Virtual Reality. The platform

is based on high-end graphics engines and an electromag-

netically tracked, binocular helmet equipped with infra-red

eye tracking capability. Rendering techniques are relatively

simple, relying only on standard (OpenGL) graphics library

calls. Tracking routines deliver helmet position and orienta-

tion in real-time, which are used directly to provide updated

images to the HMD.

User gaze direction is tracked in real-time, along with cal-

culated gaze/polygon intersections. We are in the process of

analyzing recorded gaze intersection points for comparison

with stored locations of artificially generated defects in the

inspection environment.

Controlled studies of human performance in the virtual

cargo bay inspection environment are forthcoming.

6 Acknowledgements

This work was supported in part by Clemson University In-

novation award (Project #1-20-1906-51-4087), NASA Ames

grant (Task #NCC 2-1114), and NSF CAREER award (Grant

IIS-9984278).

References

[1] DANFORTH, R., DUCHOWSKI, A., GEIST, R., AND

MCALILEY, E. A Platform for Gaze-Contingent Vir-

tual Environments. In Smart Graphics (Papers from the
2000 AAAI Spring Symposium, Technical Report SS-
00-04) (Menlo Park, CA, 2000), AAAI, pp. 66–70.

[2] DUCHOWSKI, A. T., AND VERTEGAAL, R. Course
05: Eye-Based Interaction in Graphical Systems: The-
ory & Practice. ACM SIGGRAPH, New York, NY,

July 2000. SIGGRAPH 2000 Course Notes.

[3] GLASSNER, A. S., Ed. An Introduction to Ray Tracing.

Academic Press, San Diego, CA, 1989.

[4] GRAMOPADHYE, A., BHAGWAT, S., KIMBLER, D.,

AND GREENSTEIN, J. The Use of Advanced Tech-

nology for Visual Inspection Training. Applied Er-
gonomics 29, 5 (1998), 361–375.

[5] GRAMOPADHYE, A. K., MELLOY, B., CHEN, S.,

AND BINGHAM, J. Use of Computer Based Train-

ing for Aircraft Inpsectors: Findings and Recommen-

dations. In Proceedings of the HFES/IEA Annual Meet-
ing (San Diego, CA, August 2000).

[6] HELD, R., AND DURLACH, N. Telepresence, time de-

lay and adaptation. In Pictorial Communication in Vir-
tual and Real Environments, S. R. Ellis, M. Kaiser, and

A. J. Grunwald, Eds. Taylor & Francis, Ltd., London,

1993, pp. 232–246.

[7] JACOB, R. J. What You Look at is What You Get: Eye

Movement-Based Interaction Techniques. In Human
Factors in Computing Systems: CHI ’90 Conference
Proceedings (1990), ACM Press, pp. 11–18.

[8] OHSHIMA, T., YAMAMOTO, H., AND TAMURA, H.

Gaze-Directed Adaptive Rendering for Interacting with

Virtual Space. In Proceedings of VRAIS’96 (March 30–

April 3 1996), IEEE, pp. 103–110.

[9] STARKER, I., AND BOLT, R. A. A Gaze-Responsive

Self-Disclosing Display. In Human Factors in Comput-
ing Systems: CHI ’90 Conference Proceedings (1990),

ACM Press, pp. 3–9.

[10] TANRIVERDI, V., AND JACOB, R. J. K. Interacting

with Eye Movements in Virtual Environments. In Hu-
man Factors in Computing Systems: CHI 2000 Confer-
ence Proceedings (2000), ACM Press, pp. 265–272.

