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ABSTRACT

Many statistical methods rely on an underlying mathematical model of probability based on

a simple approximation, one that is simultaneously well-known and yet frequently misunder-

stood. The Normal approximation to the Binomial distribution underpins a range of statistical

tests and methods, including the calculation of accurate confidence intervals, performing

goodness of fit and contingency tests, line- and model-fitting, and computational methods

based upon these. A common mistake is in assuming that, since the probable distribution of

error about the “true value” in the population is approximately Normally distributed, the

same can be said for the error about an observation.

This paper is divided into two parts: fundamentals and evaluation. First, we examine the

estimation of confidence intervals using three initial approaches: the “Wald” (Normal) inter-

val, the Wilson score interval and the “exact” Clopper-Pearson Binomial interval. Whereas

the first two can be calculated directly from formulae, the Binomial interval must be approxi-

mated towards by computational search, and is computationally expensive. However this

interval provides the most precise significance test, and therefore will form the baseline for

our later evaluations. We also consider two further refinements: employing log-likelihood in

intervals (also requiring search) and the effect of adding a continuity correction.

Second, we evaluate each approach in three test paradigms. These are the single proportion

interval or 2 � 1 goodness of fit test, and two variations on the common 2 � 2 contingency

test. We evaluate the performance of each approach by a “practitioner strategy”. Since standard

advice is to fall back to “exact” Binomial tests in conditions when approximations are expected

to fail, we report the proportion of instances where one test obtains a significant result when

the equivalent exact test does not, and vice versa, across an exhaustive set of possible values.

We demonstrate that optimal methods are based on continuity-corrected versions of the

Wilson interval or Yates’ test, and that commonly-held beliefs about weaknesses of v2 tests
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are misleading. Log-likelihood, often proposed as an improvement on v
2, performs

disappointingly. Finally we note that at this level of precision we may distinguish two types

of 2 � 2 test according to whether the independent variable partitions data into independent

populations, and we make practical recommendations for their use.

1. INTRODUCTION

Estimating the error in an observation is the first, crucial step in inferential

statistics. It allows us to make predictions about what would happen were

we to repeat our experiment multiple times, and because each observation

represents a sample of the population, predict the true value in the

population (Wallis forthcoming).

Consider an observation that a proportion p of a sample of size n is of a

particular type. For example:

• the proportion p of coin tosses in a set of n throws that are heads,

• the proportion of light bulbs p in a production run of n bulbs that fail

within a year,

• the proportion of patients p who have a second heart attack within six

months after a drug trial has started (n being the number of patients

in the trial),

• the proportion p of interrogative clauses n in a spoken corpus that are

finite.

We have one observation of p, as the result of carrying out a single

experiment. We now wish to infer about the future. We would like to know

how reliable our observation of p is without further sampling. Obviously,

we do not want to repeat a drug trial on cardiac patients if the drug may be

adversely affecting their survival.1

2. COMPUTING CONFIDENCE INTERVALS

We need to estimate the “margin of error” or to use the proper term, confidence

interval, on our observation. A confidence interval tells us that at a given level

of certainty, if our scientific model is correct, the true value in the population will

likely be in the range identified; the larger the confidence interval the less certain

1A very important application of confidence intervals is determining how much data is

enough to rule that a change is significant. A large decrease in survivability among patients

would lead one to stop the trial early. But one early death could be accidental.
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the observation will be. There are several different approaches to calculating

confidence intervals, and we will begin by discussing the most common method.

2.1 The “Wald” Interval

The standardized “Wald” confidence interval employs the Normal approxima-

tion to the Binomial distribution sketched in Figure 1. The actual distribution,

shown by the columns, is assumed to be a discrete Binomial distribution, but

to obtain the interval we first approximate it to a continuous Normal curve,

shown by the line. This relies on the following definitions.

mean �x � p;
standard deviation s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=n
p

;
confidence interval ðe�; eþÞ � ðp� za=2 � s; pþ za=2 � sÞ

ð1Þ

where n represents the sample size, p the proportion of the sample in a

particular class and za=2 is the critical value of the Normal distribution for a

given error level a. This means that if data is Normally distributed, and the

error level a is 0.05, 95% of the expected distribution is within this interval,

and only 2.5% in each of the “tails” outside. This critical value is 1.95996.

The larger the value of n the more “continuous” the line, and the more

confident we can be in p, so the confidence interval will shrink as n increases.

x = p ¯

p

z
α/2

 .s z
α/2

 .s 

F

Fig. 1. The Normal approximation to the Binomial plotted within the probabilistic range

p 2 [0, 1].
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But what happens if n is small or p is close to zero or 1? Whereas the Normal

distribution is assumed to be unconstrained (the tails go off in either direction

to infinity), p cannot, for obvious reasons, exceed the range [0, 1].

Two issues arize. First, as we shall see, where p tends to 0 or 1, the

product p(1 – p) also tends to 0, leading to an underestimation of the error.

Second, although s tends to zero, the interval can cross zero. However,

points on the axis where p < 0 (or p > 1) are impossible to reach (Figure 2),

so the approximation fails. Since linguists are often interested in changes in

low frequency events, this is not an unimportant question!

Aarts, Close, and Wallis (2013) examined the alternation over time in

British English from first person declarative uses of modal shall to will over a

30-year period by plotting over time the probability of selecting shall given the

choice, which we can write as p(shall | {shall, will}). Their data is reproduced

in Table 1. Note that the dataset has a number of attributes: data is sparse (this

corpus is below 1 million words) and many data points are skewed: observed

probability does not merely approach zero or 1 but reaches it.

We have added five columns to Table 1. Column A contains the Wald

95% error interval width za=2·s, B and C contain the lower and upper

bounds e–, e+ respectively, obtained by subtracting and adding Column A

from p(shall). Columns D and E contain the lower and upper bounds of the

Wilson interval described in Section 2.2.

x̄ = p 

p

z
α /2 . s z

α /2 . s 

0

Fig. 2. As Figure 1, but p is close to zero. What happens if the curve crosses 0 or 1?
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Fully-skewed values, i.e. where p(shall) = zero or 1, obtain zero-width

intervals, highlighted in bold in Column A. However, an interval of zero

width represents complete certainty. We cannot say on the basis of a single

observation that it is certain that all similarly-sampled speakers in 1958

used shall in place of will in first person declarative contexts! Secondly,

Column C provides two examples (1960, 1970) of overshoot, where the

upper bound of the interval exceeds the range [0, 1]. Again, as Figure 2

illustrates, any part of an interval outside the probabilistic range simply

cannot be obtained, indicating that the interval is miscalculated. To illustrate

this we plot Table 1 data in Figure 3.

Common statistical advice (the “3-sigma rule”) outlaws extreme values

and requires p ± 3s 2 [0, 1] before employing the Wald interval. Some

99.7% of the Normal distribution is within three standard deviations of the

mean. However, this rule has the effect that we simply give up estimating

Table 1. Alternation of first person declarative modal shall vs. will over recent time, data

from the spoken DCPSE corpus (after Aarts et al., 2013).

Year shall will Total n p(shall) A: zα/2.s B: e– C: e+ D: w– E: w+

1958 1 0 1 1.0000 0.0000 1.0000 1.0000 0.2065 1.0000

1959 1 0 1 1.0000 0.0000 1.0000 1.0000 0.2065 1.0000

1960 5 1 6 0.8333 0.2982 0.5351 1.1315 0.4365 0.9699

1961 7 8 15 0.4667 0.2525 0.2142 0.7191 0.2481 0.6988

1963 0 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.7935

1964 6 0 6 1.0000 0.0000 1.0000 1.0000 0.6097 1.0000

1965 3 4 7 0.4286 0.3666 0.0620 0.7952 0.1582 0.7495

1966 7 6 13 0.5385 0.2710 0.2675 0.8095 0.2914 0.7679

1967 3 0 3 1.0000 0.0000 1.0000 1.0000 0.4385 1.0000

1969 2 2 4 0.5000 0.4900 0.0100 0.9900 0.1500 0.8500

1970 3 1 4 0.7500 0.4243 0.3257 1.1743 0.3006 0.9544

1971 12 6 18 0.6667 0.2178 0.4489 0.8844 0.4375 0.8372

1972 2 2 4 0.5000 0.4900 0.0100 0.9900 0.1500 0.8500

1973 3 0 3 1.0000 0.0000 1.0000 1.0000 0.4385 1.0000

1974 12 8 20 0.6000 0.2147 0.3853 0.8147 0.3866 0.7812

1975 26 23 49 0.5306 0.1397 0.3909 0.6703 0.3938 0.6630

1976 11 7 18 0.6111 0.2252 0.3859 0.8363 0.3862 0.7969

1990 5 8 13 0.3846 0.2645 0.1202 0.6491 0.1771 0.6448

1991 23 36 59 0.3898 0.1244 0.2654 0.5143 0.2758 0.5173

1992 8 8 16 0.5000 0.2450 0.2550 0.7450 0.2800 0.7200
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the error for low or high p values or for small n – which is hardly

satisfactory! Fewer than half the values of p(shall) in Table 1 satisfy this rule

(the empty points in Figure 3). Needless to say, when it comes to line-fitting

or other less explicit uses of this estimate, such limits tend to be forgotten.

A similar heuristic for the v
2 test (the Cochran rule) avoids employing

the test where expected cell values fall below five. This has proved so

unsatisfactory that a series of statisticians have proposed competing alterna-

tives to the chi-square test such as the log-likelihood test, in a series of

attempts to cope with low frequencies and skewed datasets. In this paper

we distinguish two mathematical problems with the Wald interval – that it

incorrectly characterizes the interval about p and that it fails to correct for

continuity – and then evaluate competing test methods by a combination of

plotting limits and exhaustive computation.

2.2 Wilson’s Score Interval

The key problem with the conventional Wald definition is that the confi-

dence interval is incorrectly characterized. Note how we assumed that the

interval about p was Binomial and could be approximated by the Normal

distribution. This is the wrong way to think about the problem, but it is

such a common error that it needs to be addressed.

0.0

0.2

0.4

0.6

0.8

1.0

1955 1960 1965 1970 1975 1980 1985 1990 1995

p(shall | {shall, will})

overshootzero-width
interval

breaches 3-sigma

rule (p – 3s < 0)

Fig. 3. Plot of p(shall) over time, data from Table 1, with 95% Wald intervals, illustrating

overshoot (dotted lines), zero-width intervals (circles), and 3-sigma rule failures (empty points).
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The correct characterization is a little counter-intuitive, but it can be

summarized as follows.

Imagine a true population probability, which we will call P. This is the

actual value in the population. Observations about P will be distributed

according to the Binomial. We do not know precisely what P is, but we

can try to observe it indirectly, by sampling the population.

Given an observation p, there are, potentially, two values of P which

would place p at the outermost limits of a confidence interval about P. See

Figure 4. What we can do, therefore, is search for values of P which satisfy

the formula used to characterize the Normal approximation to the Binomial

about P.2 Now we have the following definitions:

populationmean l � P;
population standard deviation r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pð1� PÞ=n
p

;
population confidence interval ðE�;EþÞ � ðP � za=2:r;P þ za=2:rÞ:

ð2Þ

Wilson  p

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 n

P  Normal

w
–

E
+

sample

(observed)

population

(notional)

Fig. 4. The interval equality principle with Normal and Wilson intervals: the lower bound

for p is P.

2In other words, we employ a computer program which estimates P, tests it, uses the result-

ing discrepancy between the test result and the optimum to improve the estimate, and repeat

until this deviation is infinitesimal. There are a number of possible formulae for calculating

the interval that can be slotted into this procedure, but we will come to this later.
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The formulae are the same as (1) but the symbols have changed. The

symbols l and r, referring to the population mean and standard deviation

respectively, are commonly used. This population confidence interval

identifies two limit cases where p = P � za=2:r.

Consider now the confidence interval around the sample observation

p. We do not know P in the above, so we cannot calculate this imagined

population confidence interval. It is a theoretical concept!

However the following interval equality principle must hold, where e– and

e+ are the lower and upper bounds of a sample interval for any error level a:

e� ¼ P1  ! Eþ1 ¼ p where P1\p; and
eþ ¼ P2  ! E�2 ¼ p where P2[_p:

ð3Þ

If the lower bound for p (labelled e–) is a possible population mean P1,

then the upper bound of P1 would be p, and vice-versa. Since we have for-

mulae for the upper and lower intervals of a population confidence interval,

we can attempt to find values for P1 and P2 which satisfy

p ¼ Eþ1 ¼ P1 þ za=2:r1 and p ¼ E�2 ¼ P2 � za=2:r2 With a computer we can

perform a search process to converge on the correct values.

The formula for the population confidence interval above is a Normal z

interval about the population probability P. This interval can be used to

carry out the z test for the population probability. This test is equivalent to

the 2 � 1 goodness of fit v
2 test, which is a test where the population

probability is simply the expected probability P = E/n.

Fortunately, rather than performing a computational search process, it

turns out that there is a simple method for directly calculating the sample

interval about p. This interval is called the Wilson score interval (Wilson,

1927) and may be written as

Wilson score interval ðw�;wþÞ � pþ
z2
a=2

2n
� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ

n
þ
z2
a=2

4n2

s0

@

1

A= 1þ
z2
a=2

n

 !

:

ð4Þ

The score interval can be broken down into two parts on either side of

the plus/minus (±) sign:

(1) a relocated centre estimate p′ = pþ
z2
a=2

2n

� �

= 1þ
z2
a=2

n

� �

and

(2) a corrected standard deviation s′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1�pÞ
n
þ

z2
a=2

4n2

q

= 1þ
z2
a=2

n

� �

,
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such that w– = p′ – za=2:s′ and w+ = p′ + za=2:s′.
3 We will use lower case w

to refer to the Wilson interval.

The 2 � 1 goodness of fit v2 test checks for the sample probability fall-

ing within Gaussian intervals on the population distribution, i.e. E– < p <

E+. This obtains the same result as testing the population probability within

the sample confidence intervals, w– < P < w+. We find that where P = w–,

p = E+, which is sketched in Figure 4. As the diagram indicates, whereas

the Normal distribution is symmetric, the Wilson interval is asymmetric

(unless p = 0.5).

Employing the Wilson interval on a sample probability does not itself

improve on this χ
2 test. It obtains exactly the same result by approaching

the problem from p rather than P. The improvement is in estimating the

confidence interval around p!

If we return to Table 1 we can now plot confidence intervals on first

person p(shall) over time, using the upper and lower Wilson score interval

bounds in Columns D and E. Figure 5 depicts the same data. Previously

zero-width intervals have a large width – as one would expect, they represent

highly uncertain observations rather than certain ones – in some instances,

extending across nearly 80% of the probabilistic range. The overshooting

1960 and 1970 data points in Figure 3 fall within the probability range. 1969

and 1972, which extended over nearly the entire range, have shrunk.

How do these intervals compare overall? As we have seen, the Wilson

interval is asymmetric. In Equation (4), the centre-point, p′, is pushed towards

the centre of the probability range. In addition, the total width of the interval

is 2za=2:s′ (i.e. proportional to s′). We compare s and s′ by plotting across p

for different values of sample size n in Figure 6. Note that the Wilson devia-

tion s′ never reaches zero for low or high p, whereas the Gaussian deviation

always converges to zero at extremes (hence the zero-width interval behav-

iour). The differences between curves reduce with increasing n (lower) but

this problem of extreme values continues to afflict Wald intervals.4

3One alternative proposal, termed the Agresti-Coull interval (Brown et al., 2001) employs

the adjusted Wilson centre p' and then substitutes it for p into the Wald standard deviation s

(see Equation (1)). We do not consider this interval here, whose merits primarily concern

ease of presentation. Its performance is inferior to the Wilson interval.
4Newcombe (1998a) evaluates these and a number of other intervals (including the Clopper-

Pearson “exact” Binomial calculation (4), and employing continuity corrections to Normal

and Wilson intervals, which we discuss in the following sections). The Wilson statistic with-

out correction performs extremely well even when compared with exact methods. He con-

cludes that the Normal interval (1) should be abandoned in favour of the Wilson (3).
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2.3 The “Exact” Binomial Interval

So far we have employed the Normal approximation to the Binomial

distribution, and contrasted Wald and Wilson methods. To evaluate

formulae against an ideal distribution we need a baseline. We need to

calculate P values from first principles. To do this we use the Binomial

formula. Recall from Figure 1 that the Binomial distribution is a discrete

distribution, i.e. it can be expressed as a finite series of probability values

for different values of x = {0, 1, 2, 3, …, n}.

0.0

0.2

0.4

0.6

0.8

1.0

1955 1960 1965 1970 1975 1980 1985 1990 1995

p(shall | {shall, will})

Fig. 5. Plot of p(shall) over time, data from Table 1, with 95% Wilson score confidence

intervals (after Aarts et al., 2013).
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Fig. 6. Wald and Wilson standard deviations s, s' for p e [0, 1].
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We will consider the lower bound of p, i.e. where P < p (as in Figure 4).

There are two interval boundaries on each probability, but the argument is

symmetric: we could apply the same calculation substituting q = 1 – p, etc.

in what follows.

Consider a coin-tossing experiment where we toss a weighted coin n times

and obtain r heads (sometimes called “Bernoulli trials”). The coin has a

weight P, i.e. the true value in the population of obtaining a head is P, and the

probability of a tail is (1 – P). The coin may be biased, so P need not be 0.5!

The population Binomial distribution of r heads out of n tosses of a coin

with weight P is defined in terms of a series of discrete probabilities for r,

where the height of each column is defined by the following expression

(Sheskin, 1997, p. 115):

Binomial probability Bðr; n;PÞ � nCr :Prð1� PÞðn�rÞ: ð5Þ

This formula consists of two components: the Binomial combinatorial

nCr (i.e. how many ways one can obtain r heads out of n tosses)5, and the

probability of each single pattern of r heads and (n – r) tails appearing,

based on the probability of a head being P.

The total area of Binomial columns from x1 to x2 inclusive is then the

Cumulative Binomial probability:

Bðx1; x2; n;PÞ �
X

x2

r¼x1

Bðr; n;PÞ ¼
X

x2

r¼x1

nCr :Prð1� PÞðn�rÞ ð

However, this formula assumes we know P. We want to find an exact

upper bound for p = x/n at a given error level a. The Clopper-Pearson

method employs a computational search procedure to sum the upper tail

from x to n to find P where the following holds:

Bðx; n; n;PÞ ¼ a=2: ð7Þ

This obtains an exact result for any integer x. The computer modifies

the value for P until the formula for the remaining “tail” area under the

curve converges on the required value, a=2. We then report P.6

5There is only 1 way of obtaining all heads (HHHHHH), but 6 different patterns give 1 tail

and 5 heads, etc. The expression nCr = n! / {r! (n – r)!}, where “!” refers to the factorial.
6This method is Newcombe’s (1998a) method 5 using exact Binomial tail areas. In Figure 6

we estimate the interval for the mean p by summing B(0, r; n, p) < α/2.
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Note how this method is consistent with the idea of a confidence inter-

val on an observation p: to identify a point P, sufficiently distant from p for

p to be considered just significantly different from P at the level a=2. As in
Section 2.2, we do not know the true population value P but we expect that

data would be Binomially distributed around it.

Figure 7 shows the result of computing the lower bound for p = P

employing this Binomial formula. We also plot the Wilson formula, with

and without an adjustment termed a “continuity correction”, which we will

discuss in the next section. As we have noted, the Wilson formula for p is

equivalent to a 2 � 1 goodness of fit v2 based on P. The continuity-cor-

rected formula is similarly equivalent to Yates’ 2 � 1 v
2.

All three methods obtain lower confidence intervals on p which tend

towards zero at x = 0, but do not converge to zero at x = n. Even with a

tiny sample, n = 5, the continuity-corrected Wilson interval is very close to

the “exact” population Binomial obtained using the search procedure, but it

is much easier to calculate.

Recall that the argument we are using is symmetric. The dotted line at

the top of Figure 7 is the upper bound for the exact population Binomial

interval, which flips this around. At the extremes are highly skewed

intervals, as we expected.

What happens if we use the naïve Wald interval? Figure 8 shows the

effect of incorrectly characterizing the interval about p. The axes, n and p,

are more-or-less swapped. The intervals tend towards zero at x = n but are

very large (and become negative) for small x.7

2.4 Continuity Correction and Log-likelihood

We have addressed the major conceptual problem that the sample probabil-

ity should not be treated as the centre of a Binomial distribution. However

we have also seen that for small sample size n, the Wilson interval underes-

timates the error compared to the Binomial interval.

We can predict, therefore, that the corresponding uncorrected v
2 test

may find some results “significant” which would not be deemed significant

if the exact Binomial test was performed. The area between the two curves

in Figure 7 represents this tendency to make so-called “Type I” errors –

where results are incorrectly interpreted as significant (see Section 3).

7The Binomial “curve” for p in Figure 8 is discrete – it consists of rationals r/n – and

conservative, because the sum is less than α/2 rather than exactly equal to it.
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We can now consider a couple of common alternative contingency tests

against the exact Binomial population probability. In particular we have

Yates’ v
2 test and the log-likelihood test (Equation (10)), both of which

have been posited as improvements on v
2. Yates’ formula for v2 introduces

a continuity-correction term which subtracts 0.5 from each squared term:

Yates0 v2 �
X ðO� E � 0:5Þ2

E
; ð8Þ

where O and E represent observed and expected distributions respectively.

In our 2 � 1 case we have O = {np, n(1 – p)} and E = {nP, n(1 – P)}.

Employing a search procedure on Yates’ v2 test (i.e. converging to the criti-

cal value v
2
a
) converges to one or other bound of the continuity-corrected

Wilson interval (Newcombe, 1998a), which may be calculated using

Equation (9) below. We have already seen in Figure 7 the improved

performance that this obtains.

w� � min 0;
2npþ z2

a=2 � fza=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
a=2 �

1
n
þ 4npð1� pÞ þ ð4p� 2Þ

q

þ 1g

2ðnþ z2
a=2Þ

0

@

1

A;

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

sample probability p 

χ2(P) = Wilson(p)

 Yates’χ2(P) 

= Wc.c.(p)

pop. Bin(P)

Fig. 7. Values of P where sample p is at the upper bound of P: n = 5, α = 0.05.
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and

wþ � max 1;
2npþ z2

a=2 þ fza=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
a=2 �

1
n
þ 4npð1�pÞ � ð4p�2Þ

q

þ 1g

2ðnþ z2
a=2Þ

0

@

1

A: ð9Þ

We can also employ a search procedure to find expected values for other

χ
2-distributed formulae. In particular we are interested in log-likelihood

(G2), which is frequently claimed as an improvement on goodness of fit χ2.

The most common form of this function is given as

log-likelihood G2 � 2
X

O ln
O

E

� �

; ð10Þ

where ln is the natural logarithm function, and any term where O or E = 0

simply returns zero. Again we can obtain an interval by employing a search

method to find the limit G2 ! v
2

Figure 9 shows that log-likelihood matches the Binomial P more closely

than v
2 for r � 3, n = 5 and a = 0.05, which may explain why some research-

ers such as Dunning (1993) have (incorrectly) claimed its superiority.
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Fig. 8. “Wald”-type sample-centred lower bounds for p.

BINOMIAL CONFIDENCE INTERVALS AND CONTINGENCY TESTS 191



However it is less successful than uncorrected v
2 overall. In any event, it is

clearly inferior to Yates’ v2 (cf. Figure 7 and Table 2).

3. EVALUATING CONFIDENCE INTERVALS

Thus far we have simply compared the behaviour of the interval lower

bound over values of x. This tells us that different methods obtain different

results, but does not really inform us about the scale of these discrepancies

and their effect on empirical research. To address this question we need to

consider other methods of evaluation.

3.1 Measuring Error

Statistical procedures should be evaluated in terms of the rate of two

distinct types of error:

• Type I errors, or false positives: this is so-called “anti-conservative”

behaviour, i.e. rejecting null hypotheses which should not have been

rejected, and
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Fig. 9. Plotting the lower bound of 95% log-likelihood G2, uncorrected Wilson/v2 and exact
Binomial intervals (n = 5).
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• Type II errors, or false negatives: “conservative” behaviour, i.e.

retaining null hypotheses unnecessarily.

It is customary to treat these errors separately because the consequences

of rejecting and retaining a null hypothesis are qualitatively distinct. In

experiments, researchers should err on the side of caution and risk Type II

errors.

To estimate the performance of a different lower bound estimate for any

value of x and n we can simply substitute it for P in the cumulative

Binomial function (4). This obtains the error term ɛ representing the

erroneous area relative to the correct tail B (Figure 10):

e ¼ Bðx; n; n;PÞ � a=2; ð11Þ

where B(x, n; n, P) is the upper “tail” of the interval from x to n if the true

value was P, and a=2 is the desired tail. This is a consequence of the

interval equality principle (2).

We plot the Binomial tail area B over values of x in Appendix 1. To

calculate the overall rate of an error we perform a weighted sum because

the prior probability of P being less than p depends on p (so when p = 0, P

cannot be less than p):

Type I error eI ¼

P

xminðex;0Þ

nðnþ1Þ=2
and

Type II error eII ¼

P

xminð�ex;0Þ

nðnþ1Þ=2

ð12Þ

Table 2. Lower bounds for Binomial, χ2, Yates’ χ2 and log-likelihood G2 (n = 5, α = 0.05).

r p Binomial χ
2 Yates’ G2

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.2000 0.0050 0.0362 0.0105 0.0126

2 0.4000 0.0528 0.1176 0.0726 0.0807

3 0.6000 0.1466 0.2307 0.1704 0.1991

4 0.8000 0.2836 0.3755 0.2988 0.3718

5 1.0000 0.4782 0.5655 0.4629 0.6810

Error rates: Type I 0.0554 0.0084 0.0646

Type II 0.0000 0.0012 0.0000
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3.2 Evaluating 2 � 1 Tests and Simple Confidence Intervals

Table 2 summarizes the result of obtaining figures for population-centred

distributions based on different formulae for n = 5 and a = 0.05. These P

values may be found by search procedures based on p and critical values of

χ
2, or, as previously noted, substituting the relevant Wilson formula.

Table 2 shows that overall, log-likelihood is inferior to Yates’ χ
2 for

small r, because the lower bound has a large number of Type I errors as r

approaches n (see also Appendix 1).

With n = 5, Yates’ χ2 underestimates the lower bound (and therefore the

interval) on approximately 0.8% of occasions. Consequently, although we

set a = 0.05, we have an effective level of a = 0.058. This error falls to

0.14% for n = 50. Yates’ formula can exceed the Binomial interval at x =

n, obtaining Type II errors, as Figure 5 observes, although this effect is

minor.

These results reinforce the point that it is valuable to employ continu-

ity-corrected formulae, and that this type of interval estimation is robust.

As we might expect, as n increases, the effect of (and need for) this

correction reduces. However, this still leaves the question as to what

happens at extremes of p. Figure 11 plots lower interval measures at

extremes for n = 50.
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• Low p, lower bound (= high p, upper bound): Log-likelihood and

Yates’ v
2 tests perform well. The optimum interval is the corrected

Wilson interval.

• High p, lower bound (= low p, upper bound): The standard goodness

of fit v2 converges to the Binomial, and the optimum interval appears

to be the uncorrected Wilson interval.

Even with large n, the Wald confidence interval is not reliable at probability

extremes. Log-likelihood performs quite well for the lower bound of small p

(Figure 11, left), but poorly for high p (i.e. the upper bound for small p, right).

The rate of Type I errors for standard v
2, Yates’ v2 and log-likelihood are

0.0095, 0.0014 and 0.0183 respectively, maintaining the same performance

distinctions we found for small n. Yates’ v2 has a Type II error rate of 0.0034,

a three-fold increase from n = 5. In Section 4.2 we evaluate intervals against

the exact Binomial for n = 1 to 100 (see Figure 15) counting errors assuming

intervals are independent. This confirms the pattern identified above.

4. EVALUATING 2 � 2 TESTS

So far we have evaluated the performance of confidence intervals for a

single proportion, equivalent to the 2 � 1 v
2 test. We next consider the per-

formance of confidence intervals in combination.
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Fig. 11. Plotting lower bound error estimates for extremes of p, n = 50, a = 0.05.
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In order to exhaustively evaluate 2 � 2 tests we will use the following

“practitioner strategy”. We wish to know how many times each test will

obtain a different result to a baseline test, and distinguish Type I and II

errors. We will permute tables in both dimensions (i.e. we try every pattern

possible) and count up each discrepancy.

We will use the notation in Table 3 to elaborate what follows. The idea is

that the table represents four observed cell values a, b, c and d, which can also

be considered as probabilities p1 and p2 in each row, out of row totals n1 and n2.

Although this distinction is rarely drawn, at the level of precision we

can divide 2 � 2 tests into two different sub-tests: those where each

probability is obtained from samples drawn from the same population

(Section 4.1) and from independent populations (4.2). Appendix 2 compares

the performance of these baseline tests.

4.1 Evaluating 2 � 2 Tests Against Fisher’s Test

Fisher’s exact test (Sheskin, 1997, p. 221) uses a combinatorial approach to

compute the exact probability of a particular observed 2 � 2 table occurring

by chance.

pFisherða; b; c; dÞ �
ðaþ cÞ!ðbþ dÞ!ðaþ bÞ!ðcþ dÞ!

n!a!b!c!d!
ð13Þ

where a, b, c, and d represent the values in the 2 � 2 table (Table 3) and n

= a + b + c + d. The resulting probability pFisher is the chance of the

particular pattern occurring. A v
2 test, on the other hand, tests whether the

observed pattern or a more extreme pattern is likely to have occurred by

chance. To compute an equivalent Fisher-based test we need to perform a

summation over these patterns, in the following form:

pFSumða; b; c; dÞ �

P

minðb;cÞ

i¼0

pFisherðaþ i; b� i; c� i; d þ iÞ if a
aþb
[

c
cþd

P

minða;dÞ

i¼0

pFisherðaþ i; b� i; c� i; d þ iÞ otherwise:

ð14Þ

Table 3. 2 � 2 table and notation.

IV # DV ! Column 1 Column 2 Row sums Probabilities

Row 1 a b n1 = a + b p1 = a/(a + b)

Row 2 c d n2 = c + d p2 = c/(c + d)

Column sums a + c b + d n = a + b + c + d
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Sheskin notes that the Fisher test assumes that “both the row and

column sums are predetermined by the researcher”. Both column totals a +

b and c + d, and row totals a + c and b + d, are constant, thereby legitimat-

ing this summation.

In ex post facto corpus analysis, this corresponds to a situation where

samples are taken from the same population and the independent variable

(as well as the dependent variable) represents a free choice by the speaker.

This is a within-subjects design, where either value of the independent

variable (IV) may be uttered by the same speaker or appear in the same

source text. Alternative tests are the 2 � 2 v
2 test (including Yates’ test)

and log-likelihood test. These tests can be translated into confidence inter-

vals on the difference between p1 and p2 (Wallis forthcoming).

We may objectively evaluate tests by identifying Type I and II errors for

conditions where the tests do not agree with the result obtained by Fisher’s

sum test. Figure 12 plots a map of all tables of the form [[a, b] [c, d]] for

all integer values of a, b, c, d where n1 = a + b = 20 and n2 = c + d = 20.

We can see that in both cases, there are slightly more errors generated by

G2 than v
2, and Yates’ v2 performs best of all.

To see what happens to the error rate as n increases, we evaluate tables for

a given a and plot the error rate. The lower graph in Figure 13 plots error rates

for evenly balanced patterns (n1 = n2) up to 100, testing 174,275 unique

points. Yates’ test has the lowest overall discrepancies, and these are solely

Type II errors. The jagged nature of each line is due to the fact that each table

consists of a discrete matrix, but the interval estimators are continuous.

This evaluation assumes that both row totals are the same. To guard

against this constraint being artificial, we repeat for values of n1 = 5n2, test-

ing a further 871,375 unique points. This obtains the smoother upper graph

in the same figure. We can also see that in this condition, Yates’ test may

now obtain Type I errors and the independent population z test some Type

II errors. The overall performance ranking does not change however. Note

that for Yates, most cases where the row total n < 10 obtains fewer than

5% errors (and these are almost all Type II). The Cochran rule (use Fisher’s

test with any expected cell below 5) may be relaxed with Yates’ test.

4.2 Evaluating 2 � 2 Tests Against Paired Exact Binomial Test

If the independent variable is a sociolinguistic choice, e.g. between different

subcorpora, text genres, speaker genders, etc., then we have a “between-

subjects” design. In this case Fisher’s method (and the 2 � 2 v
2 test) is

strictly inappropriate. Instead, we should employ tests for two independent
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proportions taken from independent populations. These tests include the z

test for two independent population proportions (Sheskin, 1997, p. 229) and

employing Newcombe’s Wilson-based interval in tests (Newcombe, 1998b:

intervals 10 and 11).

These tests compare the difference in observed probabilities p1 and p2
with a combined interval. To obtain this interval we first employ p1 = a/n1
and p2 = c/n2, where n1 = a + b and n2 = c + d (Table 3). The baseline

interval for comparison is obtained from P1 and P2 satisfying the exact

Binomial formula (Equation (7)), where x = a, c, and n = n1, n2
respectively. The interval is then combined by the following formula:

Bienaym�e interval ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP1 � p1Þ
2 þ ðP2 � p2Þ

2

q

; ð15Þ

where P1 and P2 represent the extreme values of the inner interval (i.e. if

p1 > p2, P1 is the lower bound of p1).
8 This test is slightly less conservative

than Fisher’s (see Appendix 2).

To combine other intervals (Wald z, Wilson, etc.) we also employ

Equation (15), substituting the relevant inner interval points for P1 and P2.

The Newcombe-Wilson interval is computed by applying Equation (15) to

Equation (4), substituting w1
– for P1 and w1

+ for P2 if p1 > p2. Alternatively,

to include a continuity correction, we employ Equations (15) and (9).

Consider the data in Table 1. As it stands, it obtains too great a scatter

for any clear trend to be identified, even after we employ Wilson intervals

(Figure 5). However, we can improve this picture by simply summing

frequency data in five-year periods (indicated by dashed lines in Table 1).

Figure 14 plots this data with Wilson score intervals.

Note that this Newcombe-Wilson interval can be turned into a signifi-

cance test by simply testing if the difference between p1 and p2 is greater

than this interval.9 In this case p1 and p2 are significantly different at the

0.05 level: p1 – p2 = 0.1687 is greater than the Newcombe-Wilson interval

(0.1468).

8Equation (15) is the Bienaymé formula or Pythagorean sum of two vectors, employed to

combine standard deviations of independent freely-varying variables. See also Section 2.6 in

Wallis (forthcoming).
9As a practical heuristic, when presented with a graph like that in Figure 14, if two intervals

overlap so that one interval includes the other point, there can be no significant difference

between them, and if they do not overlap at all, they must be significantly different. Only if

they partially overlap, as p1 and p2 do in this example, is it necessary to apply a test.
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Given this common derivation, we would anticipate that this second

pairwise comparison will obtain comparable results to the evaluation of

intervals for the single proportion discussed in Section 3. Figure 15 plots

the result of comparing Newcombe-Wilson tests, with and without conti-

nuity correction, and, for good measure, the log-likelihood test, against

the paired Binomial test. This shows that of these tests, the continuity-

corrected Newcombe-Wilson test seems to perform the most reliably.

This observation is borne out by Figure 16, showing performance as n

increases.

Sample error rates for n1, n2 = 20 are summarized in Table 4. Yates’

test may be used, and is slightly conservative, whereas the independent

population z test for two independent proportions, which employs the

erroneous Gaussian distribution about p1 and p2, performs the least

successfully.

Finally we evaluate the performance of these tests over a broad range of

values. Figure 16 contains two graphs. The lower graph plots error rates

where n1 = n2 from 1 to 100; the upper graph sets n1 at 5 � n2. We can

see that the continuity-corrected Newcombe-Wilson test outperforms Yates’

test in both conditions once the smaller sample n2 > 15. The resulting order

(z < G2 < Wilson < Wilson c.c.) confirms our conclusions regarding the

single-sample interval in Section 3, and we have also been able to include

standard v
2 tests in our evaluation.

5. CONCLUSIONS

This paper has concerned itself with evaluating the performance of a

number of fundamental approaches to estimating significant difference. The

optimum methods approximate the Normal to the Binomial distribution

itself (in the standard 2 � 2 v
2 test, with or without continuity correction)

or the Wilson to the inverse of the Binomial (in other cases). This analysis

has implications for the estimation of confidence intervals and the

performing of significance tests.

Confidence intervals are valuable methods for visualizing uncertainty of

observations, but are under-utilized in linguistics, possibly because they are

not well understood. The Wilson score interval, which was “rediscovered”

in the 1990s, deserves to be much better known, because, as Figure 5

demonstrates, it allows us to robustly depict uncertainty across all values of

observed probability p even when n = 1. Researchers struggling with a
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Wald interval overshooting the probability range can simply substitute the

correct Wilson interval.10
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Fig. 14. Plot of p(shall) over time, aggregated data from Table 1 with 95% Wilson intervals. To

compare p1 and p2 we compute a difference interval based on the inner interval (indicated).
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Fig. 15. Evaluating the Newcombe-Wilson test, with and without continuity correction, and

log-likelihood G2, against a difference test computed using the “exact” Binomial interval, for

error levels α = 0.05 (left) and α = 0.01 (right).

10For citation purposes it has become de rigueur in medical statistics (among others) to cite

confidence intervals rather than exact values. We recommend quoting p and bounds w– and

w+ in tables and plotting the observation p with the corrected Wilson interval in graphs. (For

plotting p in ExcelTM it is useful to use Y+ = w+
– p and Y– = p – w–.)
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The underlying model assumes that observations are free to vary, so p

can range from 0 to 1. Provided that linguistic data can be presented in terms

of the rate of a form against its alternates (as opposed to a per-million-word

estimate, where p cannot conceivably approach 1), the Wilson interval

provides a robust and effective means for estimating intervals.

We have demonstrated that the common assumption that the confidence

interval around a sample observation is Normal (Gaussian) is both incorrect

and inaccurate.

Table 4. Errors obtained by different tests against the paired exact Binomial test (n1, n2 =

20).

Yates’ χ2 z NW NW c.c. G2

α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Type I 8.5% 8.5% 4% 5% 1% 1% 6% 7%

Type II 4% 4%
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Fig. 16. Error rates against the Binomial difference interval, a = 0.05, for n1 = n2 up to 100
(lower) and n1 = 5n2 (upper).
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(1) The sample confidence interval is correctly understood as a “reflec-

tion” of a theoretical interval about the true value in the population,

and as a result can be highly skewed. The fact that P is Binomially

distributed does not imply that the interval about p is Binomial. This

means we should dispense with “Wald” type approaches to confi-

dence interval estimation, and substitute Wilson-based approaches.

(2) The most accurate approximation to the Binomial population confi-

dence interval we have discussed involves a continuity correction, i.e.

the z population interval with continuity correction or Yates’ χ2.

Consequently the most accurate estimate of the single proportion confi-

dence interval about an observation p that we have examined is the Wilson

score interval with continuity correction. This interval can be turned into a

simple significance test (see Wallis forthcoming) by simply introducing a test

value P and testing the difference (p – P) against this interval. This test per-

forms identically to Yates’ corrected 2 � 1 goodness of fit test, which is

based on assuming a Normal interval about P. The log-likelihood test does

not improve performance for small samples or skewed values: indeed, it

underperforms compared to the uncorrected χ
2 test (and the Wilson interval).

Our results mirror those of Newcombe (1998a, p. 868), who, by testing

against a large computer-generated random sample, found in practice some

95.35% sample points within the uncorrected 95% Wilson confidence inter-

val. Other evaluations of confidence intervals (e.g. Brown, Cai, & DaGupta

2001) obtain comparable results.

Having said that, a third potential source of error is the following. The

limit of the Binomial distribution for skewed p as n tends to infinity (i.e.

p! 0; n!1) is the Poisson rather than Normal distribution. Whereas the

Wilson interval is obtained by solving to find roots of the Normal

approximation (i.e. algebraically finding values satisfying P for observation

p), it seems logical that a better approximation in these cases would tend to

reflect the Poisson. Obtaining such an interval is however, beyond the

current paper, where we have been content to evaluate existing methods.

We next turn to difference intervals, which can also be conceived as 2

� 2 tests. At this level of precision, we should distinguish between same-

and different-population tests. This distinction is rarely noted in non-special-

ist texts. Sheskin (1997) notes it in passing, probably because the practical

differences are small. However these differences do exist, as Appendix 2

demonstrates.
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For ex post facto corpus research we may simply distinguish between

lexico-grammatical independent variables representing choices of speakers/

writers in the same text (same population) and sociolinguistic independent

variables dividing speakers into groups (independent populations). The same

between-subject and within-subject principle applies to lab research. If the

same speaker or writer can be found in either value of the independent

variable, then variation can be in both directions (IV and DV), which is

consistent with Fisher’s test. Alternatively, if the independent variable parti-

tions speakers, then variation can only be found separately within each

dependent variable, which is consistent with combining the results from

two “exact” Binomial tests.

We decided to evaluate performance by simply comparing each method

against these two baseline tests. Our reasoning was simple: as Fisher or the

exact Binomial represent optimal tests, what matters in practice is the

probability that any other method obtains a different result, either due to

Type I errors (informally, “incorrectly significant”) or Type II errors (“incor-

rectly non-significant”). We employed an exhaustive comparison of all 2 �
2 test permutations where n1 = n2 and n1 = 5n2 with n2 rising to 100, for

an error level a = 0.05.

We found that the optimum tests were Yates’ test (when data is drawn

from the same population) and the Newcombe-Wilson test with continuity

correction (for data drawn from independent populations). Yates’ test can

also be used in the latter condition, and is advisable if the smaller sample

size (row total) is 15 or below.

It is worth noting that the corresponding z test suggested by Sheskin

(1997) performs poorly because it generalizes from the Wald interval.

Log-likelihood also performs poorly in all cases, despite its adherents (e.g.

Dunning, 1993) whose observations appear premised on only the lower part

of the interval range. Our results are consistent with Newcombe (1998b)

who uses a different evaluation method and identifies that the tested

Newcombe-Wilson inner (“mesial”) interval is reliable.

Finally, the Bienaymé formula (15) may also be employed to make

another useful generalization. In Wallis (2011) we derive a set of “meta-

tests” that allow us to evaluate whether the results of two structurally identi-

cal experiments performed on different data sets are significantly different

from one another. This allows researchers to compare results obtained with

different data sets or corpora, compare results under different experimental

conditions, etc. Meta-testing has also been used to pool results which may

be individually insignificant but are legitimate to consolidate.
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Our approach is superior to comparing effect size numerically or

making the common logical error of inferring that, e.g., because one

result is significant and another not, the first result is “significantly

greater” than the second. (Indeed, two individually non-significant test

results may be significantly different because observed variation is in

opposite directions.)

The resulting meta-test is based on comparing the optimum sub-tests we

evaluate in the present work. On the principle that errors tend to propagate,

we can expect those methods with the fewest errors will also obtain the

most reliable meta-tests. Although the Wald vs. Wilson interval “debate”

concerns so-called “simple statistics”, it is on such foundations that more

complex methods are built. Appropriately replacing Wald (and potentially,

log-likelihood) error estimates with Wilson-based estimates represents a

straightforward step to improving the precision of a number of stochastic

methods.
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APPENDIX 1. ESTIMATING ERRORS FROM SINGLE PROPORTION

INTERVAL CURVES

As noted in Section 3, we employ Equation (11) to obtain an error rate B relative to the
target value of a=2 (here 0.025). Figure 17 plots this error rate, which we found by
substituting the curve into the Binomial function and calculated the resulting tail area
for x > 0. The graphs plot the deviation from the ideal value of these functions for a
particular value of x (the straight line marked a=2).

Positive differences above the dotted line in Figure 17 therefore represent the
probability of a Type I error (accepting a false alternate hypothesis). Negative
differences represent the chance of a Type II error (retaining a false null hypothesis).
The graphs tell us that if we know x (or p) we can identify the functions that perform
best at any point.

We need to aggregate these errors to obtain a single error rate. One way we could
do this is to simply take the arithmetic mean of each error. If we do this, log-likelihood
appears to improve on uncorrected v

2, in the same ratio as the area under the curves in
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Fig. A1. Binomial “tail” area B for x from 0 to n, n = 5 and 50, α = 0.05. Error ɛ = B – a/2.
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Figure 17. However, a simple average assumes that the chance of each error occurring
is constant for all values of x.

However, if you think about it, the probability of P being less than p is proportional
to p! It is twice as probable that P < p if p = 1 than if p = 0.5, and so on. Indeed, this
is why we do not plot the error for x = 0, because if p = 0, P cannot be less than
p. Therefore to calculate the overall error we employ a weighted average, with each
term weighted by p or x, as in Equation (12).

APPENDIX 2. FISHER’S TEST AND BINOMIAL TESTS

In Section 4 we draw a distinction between two types of 2 � 2 tests. The summed
Fisher “exact” test (Section 4.1) is computed by summing Fisher scores for more
extreme values diagonally assuming that row and column totals are constant (Equation
(14)). This is appropriate when both independent and dependent variables are free to
vary and samples are taken from the same population. The idea is that if any utterance
by any speaker could be accounted for in any cell in the table, then the summation
should be performed in both directions at the same time.

An alternative test using the same configuration is more appropriate when samples
are taken from different populations, and the independent variable is not free to vary. In
this case we sum “exact” Binomial (Clopper-Pearson) intervals (Section 4.2) in one
direction only: within each sample (finding P for Equation (7)), and then combine
intervals assuming that variation is independent (Equation (15)).

We may compare the performance of the two tests by the same method as in
Section 4 of the paper: identify table configurations where one test obtains a significant
result and the other does not. For n1 = n2 up to 100 and n1 = 5n2 we compare the
results of tests in all possible configurations and calculate the probability of both types
of errors independently (here we are really discussing the difference between two
baseline tests, so “error” is possibly a misleading term).

We find that the Fisher test is slightly more conservative than the paired Binomial
test, which makes sense when you consider that it is more constrained. Figure 18 plots
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Fig. A2. The effect of population independence: plotting the probability that the independent-

population test is significant in cases where the same-population test is not.
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the probability that the independent population test obtains a significant result when the
dependent sample (Fisher) does not. There are no cases where Fisher’s test is less
conservative than the paired Binomial.

208 S. WALLIS


