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Recently, Gillespie introduced thet-leap approximate, accelerated stochastic Monte Carlo method
for well-mixed reacting systems@J. Chem. Phys.115, 1716~2001!#. In each time increment of that
method, one executes a number of reaction events, selected randomly from a Poisson distribution,
to enable simulation of long times. Here we introduce a binomial distributiont-leap algorithm
~abbreviated as BD-t method!. This method combines the bounded nature of the binomial
distribution variable with the limiting reactant and constrained firing concepts to avoid negative
populations encountered in the originalt-leap method of Gillespie for large time increments, and
thus conserve mass. Simulations using prototype reaction networks show that the BD-t method is
more accurate than the original method for comparable coarse-graining in time. ©2005 American
Institute of Physics.@DOI: 10.1063/1.1833357#

INTRODUCTION

The foundations of microscopic or exact Monte Carlo
~MC! simulation, termed also as stochastic simulation algo-
rithm ~SSA!, for well-mixed, chemically reacting systems
were laid down several years ago by Gillespie.1,2 Since then,
SSA has become one of the most widespread computational
tools in chemical sciences. Yet, its microscopic nature, i.e.,
the execution of one reaction per SSA time increment, has
severely limited SSA to relatively short time scales and small
and fairly similar size populations. In order to accelerate the
exact stochastic simulation, the next reaction method was
recently proposed.3 In addition, several approximate methods
that capitalize on separation of time scales have been pro-
posed to accelerate the exact SSA.4–7 Finally, separation of
time scales based on the master equation has also been ex-
plored to deal with the inherent stiffness of chemical
kinetics.8,9 A review of the various acceleration MC methods
is given in Ref. 10. A major limitation of most acceleration
MC methods is that usually the noise is either amplified or
reduced substantially~see Ref. 10 for a comparison of vari-
ous methods!.

The t-leap method was recently introduced by
Gillespie11 for approximate, accelerated MC simulations of
chemical kinetics in well-mixed reacting systems. The es-
sence of thet-leap method is that instead of executing one
reaction in every microscopic time interval and changing the
participating species by stoichiometric populations, one se-
lects a coarse-time increment,t, which is usually larger than
the microscopic one. In this coarse time increment, one
‘‘fires’’ each reaction multiple times and updates the popula-
tions after each time step accordingly. The number of times
each reaction is fired is selected randomly from a Poisson

distribution ~see Ref. 11 for details and below!. We refer to
the originalt-leap method of Gillespie as the Poisson distri-
bution basedt-leap method~the PD-t method!. The mid-
point t-leap11 and the implicitt-leap method12 attempt to
improve the accuracy and robustness of the original method.

The PD-t leap method and its variants partially sacrifice
accuracy for greater speed by enabling molecular ‘‘bundles,’’
i.e., a large number of firings, sampled from the Poisson
distribution to react over coarse~mesoscopic! time intervals.
Several examples studied using the PD-t leap method have
evidenced that it is a significant advancement over the exact
SSA in terms of computational requirements while providing
nearly the correct noise when the time leaps are not as large.
This is in contrast to most other acceleration methods men-
tioned above. Since inclusion and understanding of noise is a
main reason for performing a stochastic simulation at the
first place, the PD-t leap method, along with its variations, is
the most promising single acceleration technique. It is not
then surprising that despite its short life time, the PD-t leap
method has already been employed in various, mainly bio-
logical, studies.13,14

A problem with the PD-t leap method is that physically
unrealistic negative populations~concentrations in the con-
tinuum terminology! may result, arising from the unbounded
Poisson random variable and the fact that reaction firings are
independent. In fact, this problem occurs with probability 1
given a sufficient long computation. In our experience, this
problem is encountered when molecular population sizes are
small and/or the time leaps are large. The work of Ref. 14
highlights this problem of thet-leap method that in their
case limited the acceleration of hybrid multiscale simulation
of complex reaction networks.

In order to overcome the negative populations resulting
in the PD-t leap method encountered in moderately large
values oft, in this paper we introduce the binomial distribu-
tion basedt-leap method~abbreviated as BD-t method!. In
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this new method, aside from choosing the random variable
from the bounded binomial distribution, motivated from our
recent work on spatially coarse-grained MC simulation,15–17

the limiting reactant and constrained firings concepts are also
invoked to ensure mass conservation. In a mathematical con-
text, mass conservation ensures that a well-defined Markov
process can be written for the populations in the system; this
step is crucial in obtaining eventually rigorous numerical
analysis results for thet-leap method. Prototype reaction ex-
amples are employed to illustrate the performance of the
methods. Numerical examples indicate that for comparable
coarse-graining in time, the BD-t method is more accurate
than the PD-t leap method.

THE BD-t LEAP METHOD ALGORITHM AND ITS
MATHEMATICAL RATIONALE

A well-mixed reacting system ofN molecular species is
considered. The state vectorX(t)5(X1(t),...,XN(t)) con-
tains the number of molecules~population size! Xi(t) of all
species Si at time t, 1< i<N. Species participate inM
chemical reactions denoted byRj , j 51,2,...,M , with a pro-
pensity function~or transition probability per unit time! aj .
Hereajdt is the probability that one reactionRj will happen
in the infinitesimal time interval@ t,t1dt) ~see discussion in
Ref. 11 on propensity functions! andn i j is the stoichiometric
coefficient of speciesSi in reactionRj .

The original PD- t leap method

A brief outline of the PD-t leap method is first given. In
each time leapt of the original PD-t leap method one selects
the numberkj of each reactionRj to be executed~also called
‘‘firings’’ ! from a Poisson distribution

PPD~kj ;ajt!5
e2ajt

kj !
~ajt!kj . ~1!

In the case of a single reaction, the problem with such a
selection step is thatkj may exceed the available population
size of one or more chemical species, resulting in negative
populations. Furthermore, in the PD-t leap method the fir-
ings of all reactions are independent random numbers. Thus,
even though eachkj may not lead to negative populations
per se, the simultaneous execution of all reactions in a reac-
tion network may do so. In simple words, one needs to con-
strainkj to conserve mass at all times. Next we describe an
algorithm that is capable of doing that.

The proposed BD- t leap algorithm

An important conceptual assumption in allt leap meth-
ods is thatt must be sufficiently small so that the change in
the state vectorX(t) and consequently in the propensities is
negligible. This condition was termed the leap condition in
Ref. 11. When the leap condition is approximately satisfied,
the reaction firings of reactionRj can be assumed to be sta-
tistically independent from one time step to the next and also
of firings of other reactionsRj 8 , j 851,...,M , j 8Þ j during
each time step. Furthermore, the propensity functions would
be nearly constant during@ t,t1t), whereaj5aj (t) is com-
puted based onX(t). In practice, of course, one is interested

in taking as large changes in population as possible to in-
crease the time steps and reduce the CPU. In doing that, the
leap condition is violated, i.e., the propensity functions,
which are kept constant during a time step, actually change
considerably because of changes in population via the same
reaction and other reactions. Violation of the leap condition
unavoidably leads to some error and possibly to negative
populations.

Negative populations are avoided in the BD-t leap
method by placing an upper bound on the number ofSi mol-
ecules, 1< i<N, consumed in the time interval@ t,t1t). In
the BD-t leap method, molecular bundles for each of theM
reactions are allowed to fire sequentially in a given order in
@ t,t1t). The maximum number of firingskmax

(j) for reaction
Rj is determined by the limiting reactant, i.e., the species that
can be consumed completely if the reaction were to go to
completion. The elementary chemistry concept of limiting
reactant is required for bimolecular and trimolecular reac-
tions only. The identification of the limiting reactant is a
crucial step that ensures that the number of firings of each
chemical reaction does not lead to negative populations ina
single reactionfor any chemical species participating in this
reaction.

Given that out ofkmax
(j) maximum firings,ajt fire on the

average, and the leap condition is satisfied, we will approxi-
mate the true microscopic dynamics by assuming that each
Rj firing has a probabilityp5ajt/kmax

(j) of happening and a
probability (12p) of failing to occur. It can be mathemati-
cally shown that the number of firingskj of Rj then belongs
to the binomial distribution,

PBD~kj ;p,kmax
~ j ! !5

kmax
~ j ! !

kj ! ~kmax
~ j! 2kj !!

pkj~12p!kmax
~ j !

2kj ~2!

~see for example the binomial distribution generated as sum
of coin-tossings in Ref. 18!.

Introducingkmax
(j) alone is insufficient of ensuring mass

conservation of an entire reaction network. Oncekj is deter-
mined from Eq.~2!, the number of molecules left to react via
the remaining reactions has been reduced. To account for
this, we introduce the vectorX̃ that tracks the currently avail-
able reacting population size during a time leap. At timet
~before execution of any reaction!, X̃(t)5X(t). After ex-
ecuting thejth reaction,X̃ is updated by subtracting the num-
ber of reactant molecules of all species consumed inRj .
This update also modifieskmax

(j11) for the next reaction. This
step ensures that the maximum allowed firings,kmax

(j11) , left
over in executing the subsequent reactionRj 11 would not
exceed the actually available populations and ensures mass
conservation of an arbitrary complexreaction network,
which is the main objective of this paper.

Finally, once allM reactions are allowed to trigger, the
populations of all species are updated based on the stoichi-
ometry of the chemical reactions. From an efficient imple-
mentation point of view, updating of populations can be done
only locally, as suggested in Ref. 3, and is well known in the
molecular simulation literature,19 i.e., update only the species
participating in a certain reaction.
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Summarizing, the BD-t algorithm consists of the follow-
ing steps:

~1! Obtain the stoichiometric coefficientsn i j , the initial
population sizeX~0!, and the rate constantsc needed in
computing the propensities.

~2! Initialize the time,tªt0 .
~3! Repeat steps 4–6 until a maximum time,tmax, is

reached.
~4! Compute the propensitiesaj (X(t)) using the population

X(t) and setX̃ªX.
~5! Selectt ~see text below! and update time according to

tªt1t.
~6! For j 51 to M reactions

~a! Find kmax
(j) 5min

i51,...,N
(n ij,0) (int(X̃i /un i j u)), where int~ ! is

the greatest integer function.
~b! With p defined asp5ajt/kmax

(j) , samplekj from the
binomial distribution Eq.~2!.
~c! Set X̃iªX̃i1n i j kj for i 51,...,N if n i j ,0.

~7! ~d! Go to step 6a.
~8! Update populationsXiªXi1n i j kj , for i 51,...,N.
~9! Go to step 3.

Steps 1 and 2 initialize the state of the system, and step 4
computes the propensities for the nextt-leap. Step 5 updates
the time, while step 6 randomly selects the number of firings
for each reaction in the reaction network. These steps occur
in every MC simulation.

Note that ifajt.kmax
(j) , j 51,2,...,M , we setp51. Thus,

all available molecules of the limiting reactant inRj react. As
a result, no more molecules than the available population can
ever be consumed. However, in the results presented below,
we have never encounteredajt.kmax

(j) despite taking large
time steps. In case thatp approaches 1, the time increment is
already too large to provide good results and it should be
reduced, i.e., the conditionp51 can be viewed as an upper
bound for the time increment of the leap methods. Finally,
note that the choice of reaction firings rather than species
population and the continuous update of the vectorX̃ after
each reaction has been executed are judicious. Specifically,
by choosing species population from a Binomial distribution,
i.e., carry out the loop~6! over species, instead of chemical
reaction firings proposed above, it would be nearly impos-
sible to ensure mass conservation for complex reaction net-
works where many species are shared between multiple re-
actions.

Implications of constrained firings
in the new algorithm

The departure of the new methodology from the original
PD-t leap method stems from~a! the binomial distribution,
which provides a bounded random variable, and~b! the fact
that thefirings of reactions are coupled or constrainedby the
availability of species~throughkmax

j ) during the execution of
a t-leap.

As mentioned in Ref. 11, when the time intervalt is
microscopic~i.e., of the order of the average time increment
of the exact SSA, 1/( jaj ) the time trajectories of species

populations predicted by the PD-t method and the exact SSA
match. Furthermore,

ajt6Aajt ~3!

firings of reactionRj are triggered int. On the other hand,
for the BD-t method one has from Eq.~2! that

ajt6~ajt!1/2~12ajt/kmax
~ j ! !1/2 ~4!

firings are expected int, where ajt and (ajt)1/2(1
2ajt/kmax

(j) )1/2 are the mean and standard deviation of the
binomial distribution, respectively. Whent is microscopic,
ajt!kmax

j , j 51,...,M , the correct zeroth and first moments
are also obtained for the BD-t method. While in the infinite
size limit the binomial distribution in Eq.~2! and the Poisson
distribution in Eq.~1! yield the same asymptotic behavior,
for finite sizes the noise of the BD-t method is less than that
of the BD-t method. This feature has important ramifications
regarding the accuracy of the BD-t leap method, as numeri-
cal examples below demonstrate.

The higher computational cost of generating random
variables for the Poisson or binomial distributions in com-
parison to a uniform distribution~needed in the exact SSA!
renders the approximate methods inefficient whent is micro-
scopic or nearly so~see comparison of CPU in the next sec-
tion!. Thus, in practice one is interested in taking large time
leaps where the leap condition is satisfied approximately. At
this point one may wonder about the effect of sequential
order of reactions in computingX̃ and kmax

(j) . The average
number of firingskj5ajt is unaffected bykmax

(j) . However,
the noise (ajt)1/2(12ajt/kmax

(j) )1/2 is affected bykmax
(j) and,

thus, the sequential~in a deterministic order! execution of
reactions could affect the noise of the solution. Numerical
comparison between the exact SSA and the approximate
methods ~see next section! for several reaction networks
demonstrates that the accuracy of the solution obtained via
both the PD-t and BD-t method is lost~due to serious vio-
lation of the leap condition! before biased solutions can be
noticed. Alternatively, the bias in the noise could potentially
be improved by randomly choosing the execution of allM
reactions. An example using this approach is also presented
below.

EXAMPLES COMPARING THE PD- t
AND BD-t METHODS

The two t-leap methods are numerically compared for
different prototype reaction networks. In all reaction net-
works the magnitude oft varies from small, to satisfy the
leap condition and numerically validate the BD-t leap
method, to large, where the leap condition is violated in or-
der to observe the effect of coarse time intervals on the so-
lution. In all results below reactions are picked sequentially,
as indicated in the loop~step 6! of the algorithm, except for
one example where reactions are randomly ordered in each
time leap.

The following reaction network of first-order reactions is
first considered with rate constants indicated

S1�
1

2

S2�
2

1

S3 .
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Since these are unimolecular reactions, the limiting reactant
problem is trivially fulfilled. The choice of this slightly more
complicated example compared to a simple isomerization re-
action stems from our intention to have a single species,
namelyS2 , participating in several reactions so we illustrate
how the new method overcomes the problem of negative
populations via coupled or constrained firings. The time in
each MC iteration is updated with time increments

t5 f Y (
j 51

M

aj ~5!

for both the BD-t and PD-t methods. Here 1/( j 51
M aj is the

averaged microscopic time increment of the SSA andf is a

coarse-graining factor~we choosef .1). Besides allowing
control of temporal coarse-graining in a simple, transparent
way, Eq. ~5! ensures nearly the samet for both BD-t and
PD-t leap methods and thus enables a direct comparison of
accuracy and CPU requirements of the two methods. Obvi-
ously, this is not an optimal way of time stepping but is
sufficient for method comparison.

Initially only speciesS1 is assumed to be present, with
X1(0)520 000 molecules,X2(0)5X3(0)50. The equilib-
rium probability density function~pdf! for speciesS1 andS2

using the exact SSA and the BD-t and PD-t methods is
plotted in Fig. 1 for different values off. Note that in all
figures the normalized population,u i5^Xi&/( j 51

N Xj (0), is
graphed. For smallf ~such asf 5103) the equilibrium pdfs of
all methods overlap. For larger values off ~e.g., 104 and
1.83104) the mean population size is correct. The noise of
the BD-t is fairly close to the exact SSA, whereas that of the
PD-t methods is substantially overestimated. For even larger
values off, negative populations result in the PD-t method,
whereas the BD-t method does not give negative popula-
tions.

Simulations for this first reaction system indicate that the
new BD-t leap method is potentially more accurate than the
PD-t leap method for similar acceleration while preventing
negative populations. The latter aspect permits use of larger
time steps, and thus further acceleration, that cannot be real-
ized with the PD-t method. The difference in noise between
the BD-t and PD-t methods observed in Fig. 1 can be ratio-
nalized in terms of the mean and the standard deviation of
the probability distributions of Eqs.~1! and~2!. Specifically,
according to~4!, the noise in the BD-t leap method is lower
than that of the PD-t method because of the term (1
2ajt/kmax

(j) )1/2. In the limit of large populations,Xi→`, this
term is equal to 1, and the twot-leap methods give identical
solutions.

Figure 2 compares the pdf for all three species for the
above example obtained by sequentially sampling the six

FIG. 1. Equilibrium probability density function~pdf! for species popula-

tions S1 ~top! and S2 ~bottom! in the reactionS1�
1

2

S2�
2

1

S3 , using SSA

~solid lines! and the BD-t and PD-t methods with an initial population of
X1(0)520000, X2(0)5X3(0)50. Coarse-graining factors aref 5103

~circles!, 104 ~crosses!, and 1.83104 ~diamonds!. The BD-t gives more
accurate results than the PD-t method.

FIG. 2. Comparison of equilibrium probability distribution functions~pdf!

for all species in the reactionS1�
1

2

S2�
2

1

S3 using the BD-t method with

sequential~circles! and random~crosses! execution of reactions. The coarse-
graining factor isf 51.83104. For this example the noise is slightly better
when reactions are executed in random order.
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elementary reactions in a deterministic manner (j 51,...,M
56) and by randomly ordering the reactions at each time
leap. It is clear that while the means of the pdf are not af-
fected by how the reactions are picked, the noise of species
S1 and S3 improves whereas that ofS2 remains relatively
unaffected, when random selection of reactions is imple-
mented. This change in noise stems from the constraint fir-
ings and the fact that the noise depends onkmax

(j) for relatively
large time leaps. Based on limited examples, it appears that
random sampling may perform better. However, further work
is needed to fully understand this issue.

Figures 3~a! and 3~b! show single trajectories obtained
with the twot-leap methods and the exact SSA, and Fig. 3~c!
shows the corresponding change in the population sizeX1

per MC iteration as a function of time. Note that the molecu-
lar bundles of the twot-leap methods follow each other rela-
tively closely, so CPU comparison~discussed below! is
meaningful. For relatively small values off, the transient,
single trajectory solutions of the approximate methods agree
well with the solution of the exact SSA@Figs. 3~a! and 3~b!#.
On the other hand, forf 5104 too many firings occur, and
deviations are visible at short times. These errors at short
times for large values off persist upon ensemble average
over 104 trajectories as shown in Fig. 4 for a chosen time,
i.e., these are not an artifact of examining the single trajec-
tories displayed in Fig. 3. While at short times the accuracy
can be improved by taking lower values off ~see pdfs in Fig.

FIG. 3. Single trajectories using~a! BD-t and~b! PD-t methods. Deviations
of the BD-t and PD-t transient solutions from those of SSA occur only for
large time incrementst. ~c! Corresponding changes in populationX1 per
time leap versus time. Other parameters are those of Fig. 1.

FIG. 4. Probability density functions~pdf! for species populationS1 at t
50.75 time units. SSA is denoted by solid line, and the BD-t and PD-t
results are denoted by dotted lines and squares, respectively. Deviations in
pdf are observed in both BD-t and PD-t for large coarse-graining factorsf.
Other parameters are those of Fig. 1.

FIG. 5. CPU comparison between various methods for parameters of Fig. 1.
The maximum error in noise is set as 40%. The BD-t method is twice as
slow as the PD-t method for the same value off but larger values off are
possible for the former method. Significant acceleration compared to the
exact SSA is found for larget-leaping. Other parameters are those of Fig. 1.
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3 for various values off!, comparison of Figs. 2 and 3 clearly
indicates that adaptivef or t-leap strategies are highly desir-
able. Some such strategies have already been proposed11,20

and an alternative approach is proposed in the conclusions.
Figure 5 compares the CPU time of the BD-t and PD-t

methods for advancing the same real time at equilibrium
with a maximum allowable error in noise of 40%. The CPU
decreases inversely proportional with increasingf, and sig-
nificant savings occur upont-leaping compared to the exact
SSA. We have found that the higher cost of the BD-t com-
pared to the PD-t is associated with the specific implemen-
tation of random number generation, that here is done fol-
lowing Ref. 21. This comparison may change if different
algorithms of random number generation are followed. Fi-
nally, larger time steps can be realized with the BD-t leap
method, since mass is always conserved and the method ap-
pears to be more accurate. Larger time increments may allow
for lower computational cost when the BD-t leap method is
used.

In addition to the above example, the reversible recom-
bination reaction

S11S2�
150

1

S3

with an initial population ofX1(0)550, X2(0)5120, and
X3(0)50 was also studied. This example tests the species
constraint arising from the presence of a limiting reactant.
The results, shown in Fig. 6, are qualitatively similar with
the previous example.

Finally, a more complex, nonlinear, stiff reaction net-
work is considered

2S1�
1

0.02

S2

S11S2�
1

1

2S3

S31S4�
1

0.05

S1

S2�
1

1

S4

with initial conditionsX1(0)5100, X2(0)575, X3(0)525
and X4(0)50. The equilibrium population sizes are rela-

FIG. 6. Equilibrium probability density function~pdf! for species popula-

tions in the reactionS11S2�
150

1

S3 , using SSA~solid lines! and~a! the BD-t

and ~b! PD-t method with an initial population ofX1(0)550, X2(0)
5120, andX3(0)50. Coarse-graining factors aref 510 ~circles! and 15
~squares!. Negative populations are encountered using the PD-t method for
f .13 ~not shown!.

FIG. 7. Equilibrium probability density function~pdf! for species popula-
tions in the complex reaction network using SSA~solid lines! and the BD-t
and PD-t methods with an initial population ofX1(0)5100, X2(0)575,
X3(0)525, andX4(0)50. Coarse-graining factors arer 50.1 ~circles!, 0.2
~squares!, and 0.5~crosses!. The results of the BD-t method forr 50.1 are
indistinguishable from SSA~not shown for clarity!. Negative populations
are encountered using the PD-t method forr .0.2 ~not shown!, whereas the
BD-t method still gives reasonable results forr 50.5.
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tively small, namely^X1&546.2, ^X2&521.3, ^X3&544.6,
and^X4&520.9 molecules. In this specific example, we have
explored an alternative method of choosingt that is based on
small changes in the instantaneous conversion of all reac-
tants, namely usingt5mini(rXi /(j51

M un i j uaj ), s.t. 0,r ,1,
n i j ,0. The coarse-graining scaled factorr captures the mag-
nitude of propensities. Note that this selection is simply pos-
tulated~it has been found to work well for all reaction net-
works tested herein! and, as noted in Refs. 11 and 20,
efficient adaptive criteria should further be researched.

Figure 7 shows the equilibrium pdf of selected species
for different values of the coarse-graining factorr. Qualita-
tively, the same conclusions are reached as for the simpler
reaction networks discussed above, with the differences be-
tween the twot-leap methods being less profound for small
values ofr. For moderate values ofr, the PD-t method leads
again to negative concentrations during the course of a com-
putation.

CONCLUSIONS

Motivated by the recent work of Gillespie11 for time ac-
celeration of Monte Carlo~MC! methods in well-mixed sys-
tems, a binomial distribution basedt-leap ~BD-t! method
was introduced as an approximate, accelerated MC technique
that can reach longer time scales of well-mixed systems. This
method combines the bounded nature of the binomial distri-
bution variable with the limiting reactant and constrained
firing concepts to avoid negative populations encountered in
the t-leap, Poisson distribution based~PD-t! method of Ref.
11, and thus conserve mass. Furthermore, mass conservation
ensured by the BD-t leap method allows one to write accel-
erated dynamics as a well-defined population Markov pro-
cess. It would be desirable to derive accelerated,t-leap type
of methods, from the microscopic MC via coarse-graining in
time of the underlying generator in the spirit of systematic
derivations of spatial coarse-graining of microscopic MC.16

The latter point is important in order to mathematically de-
rive theoretical error estimates, using ideas from information
loss theory~for such an example of error derivation in spatial
MC, see Ref. 17!, which would allow dynamic error control

in time leaping analogous to well-established techniques em-
ployed in ordinary differential equations. These points will
be explored in future work.

Numerical examples indicate that the BD-t method is
more accurate than the PD-t method for comparable time
increments. Several extensions of the BD-t method are pos-
sible for future work. As an example, in analogy to the im-
plicit t-leap method based on the Poisson distribution of Ref.
12, an implicit BD-t scheme is possible. As another exten-
sion discussed in Ref. 10, combination of the BD-t method
with spatially coarse-grained MC methods,15–17 is also en-
tirely possible.
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