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This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the
t-leap and midpointt-leap methods of Gillespie@D. T. Gillespie, J. Chem. Phys.115, 1716~2001!#,
binomial random variables are used in these leap methods rather than Poisson random variables. The
motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger
stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity,
binomial random variables have a finite range of sample values. This probabilistic property has been
used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic
simulations when larger stepsize is used. In this approach a binomial random variable is defined for
a single reaction channel in order to keep the reaction number of this channel below the numbers of
molecules that undergo this reaction channel. A sampling technique is also designed for the total
reaction number of a reactant species that undergoes two or more reaction channels. Samples for the
total reaction number are not greater than the molecular number of this species. In addition,
probability properties of the binomial random variables provide stepsize conditions for restricting
reaction numbers in a chosen time interval. These stepsize conditions are important properties of
robust leap control strategies. Numerical results indicate that the proposed binomial leap methods
can be applied to a wide range of chemical reaction systems with very good accuracy and significant
improvement on efficiency over existing approaches. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1810475#

I. INTRODUCTION

Stochastic modeling of biological systems has become a
very important research field in recent years. Experimental
and theoretical studies have shown the importance of sto-
chastic processes in genetic regulatory networks and cellular
processes.1–5 For biological systems involving molecules of
small populations, the stochastic simulation algorithm~SSA!
derived by Gillespie6 is an essentially exact procedure for
studying noise in chemical kinetic systems. However, the
computational load of the SSA is often very high when it is
applied to simulate large biological systems. Thus it is im-
perative to design efficient numerical methods for simulating
stochastic chemical kinetics.

There are two significant approaches for reducing the
computational time of the SSA. The first approach is based
on a new approach of Gillespie through the use of leap meth-
ods with Poisson random variables.7 In the Poissont-leap
method a number of reactions are allowed to fire in a relative
larger time interval rather than a single reaction firing in the
next-reaction time interval, as is the case of the SSA. Fol-
lowing the Poissont-leap method, the midpointt-leap
method,7 implicit t-leap method,8 and Poisson Runge–Kutta
methods9 have been designed recently in order to improve
the accuracy and efficiency of the simulations. However, ro-
bust leap control strategies should be developed before these
methods can be considered for practical applications.7 Re-
cently Gillespie and Petzold have presented an improved

leap size selection procedure for determining the maximum
leap size for a specified degree of accuracy.10

The second approach is to partition a chemical reaction
system into subsets of slow and fast reactions and then to
apply different simulation methods to each subset. Rao and
Arkin demonstrated how to reduce computational time by
applying the quasisteady state assumption to the subset of
fast reactions.11 Haseltine and Rawlings improved the com-
putational efficiency by approximating fast reactions either
deterministically or as Langevin equations.12 The open prob-
lem in the second approach is how to simulate chemical
reactions with reactant species of intermediate molecular
numbers and/or with intermediate values of propensity func-
tions. Recently Burrageet al.13 partitioned chemical reaction
systems into three subsets of slow, intermediate, and fast
reactions and used the Poissont-leap method to simulate the
subset of intermediate reactions. The improvement over the
SSA implementation is substantial rather than dramatic. The
complexity of the partitioning process eroded potential effi-
ciency gains. In addition to the methods mentioned above,
other methods have also been proposed recently, for ex-
ample, Gibson and Bruck’s method with less required ran-
dom numbers,14 Gillespie’s continuous model15 and the
probability-weighted Monte Carlo approach by Resatet al.16

In this paper we will use binomial random variables in
the leap methods instead of Poisson random variables. This
is not intended just to provide an alternative sampling from a
Poisson distribution but will also address the issues of robust
leap control strategies. It will be seen that the proposed bi-
nomial leap methods are robust and very efficient for simu-
lating chemical reaction systems. The rest of this paper is
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organized as follows. We give a brief review of the SSA and
Poisson leap methods in Sec. II, and present the Binomial
leap methods in Sec. III. In Secs. IV–VI we report the accu-
racy and efficiency of binomial leap methods by simulating
three reaction systems, namely, the isomerization reaction in
Sec. IV, a small system with four reaction channels in Sec. V
and the expression and activity of LacY and LacZ inE. coli
in Sec. VI.

II. STOCHASTIC SIMULATION ALGORITHMS

In this paper we will study the evolution of molecular
numbers in a well stirred chemical reaction system. This sys-
tem containsN molecular species$S1 ,...,SN% with number
Xi(t) of the speciesSi at time t. These species of molecules
chemically interact inside some fixed volumeV at a constant
temperature through reaction channels$R1 ,...,RM%.

For each reaction channelRj ( j 51,...,M ), we define a
propensity function aj (x) in a given state X(t)
5@X1(t),...,XN(t)#T5x and useaj (x)dt to represent the
probability that one reactionRj will occur somewhere inside
V in the infinitesimal time interval@ t,t1dt). In addition a
state change vectorn j is defined to characterize reaction
channelRj . The elementn i j of n j represents the change in
the number of speciesSi due to reactionRj .

The SSA is any statistically exact procedure for generat-
ing the time and index of the next occurring reaction in ac-
cordance with the current values of the propensity functions.
In the so-called direct method,7 we draw two independent
random numbersr 1 and r 2 from the uniform distribution in
the unit interval, and then take the time of the next reaction
to be the current time plusm, where

m5
1

a0~x!
lnS 1

r 1
D

and the index of the next reaction to be the value ofj that
satisfies

(
k51

j 21

ak~x!,r 2a0~x!<(
k51

j

ak~x!.

Herea0(x)5(k51
M ak(x). Then the system is updated by

x~ t1m!5x~ t !1n j .

It is assumed in the Poissont-leap method that there are
a number of reactions firing in a relatively larger time inter-
val @ t,t1t). The reaction number of channelRj firing in
@ t,t1t) is a sample value generated from a Poisson random
variableP@aj (x)t# with meanaj (x)t. The probability func-
tion of P@aj (x)t# is

Pr$P@aj~x!t#5K%5
@aj~x!t#K

K!
e2aj ~x!t, K50,1,...,̀ .

After generating a sample valuesK j from P@aj (x)t# for
each reaction channel, the system is updated by

x~ t1t!5x~ t !1(
j 51

M

n jK j . ~1!

The stepsizet should satisfy the leap condition10

t5 min
j P@1,M #

H ea0~x!

um j~x!u
,
e2a0

2~x!

s j
2~x!

J , ~2!

where

f jk~x!5(
i 51

N
]aj~x!

]xi
n ik , j ,k51,...,M ,

m j~x!5 (
k51

M

f jk~x!ak~x!, j 51,...,M ,

s j
2~x!5 (

k51

M

f jk
2 ~x!ak~x!, j 51,...,M .

This procedure attempts to ensure that the change in each
propensity function during a leap of sizet will be no larger
than ea0(x), wheree is a prespecified error control param-
eter ~0,e!1!. In addition, it would be better to forego the
leap strategy and instead use the SSA if the determined step-
sizet is less than a few multiples of 1/a0(x). The SSA will
be used if the selected leap size satisfies

t<
k

a0~x!
, ~3!

wherek can be any number between 1 and 10.7

In the Poissont-leap method, statex(t) is used to ap-
proximate the states of the system in the time interval@ t,t
1t). In order to improve the accuracy, a predicted state at a
point in @ t,t1t) can be used to approximate the states of the
system. Similar to the midpoint Runge–Kutta method for
solving ordinary differential equations, a predicted state at
the midpoint (t1t/2) is defined by

x5x1 b12 t(
j 51

M

aj~x!n j c, ~4!

wherebxc is the largest integer inx. In the Poisson midpoint
t-leap method,7 a sample valueK j is generated from the
Poisson random variableP@aj ( x̄)t# for each j 51,...,M and
the system is updated by

x~ t1t!5x~ t !1(
j 51

M

n jK j . ~5!

The Poissont-leap and midpointt-leap methods are spe-
cial cases of the followings-stage Poisson Runge–Kutta
methods,9 defined by

Yi5x~ t !1 (
k51

M

nkPF (
j 51

s

wi j ak~Yj !tG , i 51,̄ ,s,

~6!

x~ t1t!5x~ t !1 (
k51

M

nkPF (
j 51

s

b jak~Yj !tG .

In addition, the Heun andR2 methods have also been pre-
sented by Burrage and Tian.9

III. BINOMIAL LEAP METHODS

When applying the Poissont-leap methods to stochastic
chemical kinetics, we should be very careful about stepsize

10357J. Chem. Phys., Vol. 121, No. 21, 1 December 2004 Binomial leap methods for kinetics

Downloaded 03 Nov 2005 to 129.215.32.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



selection. Negative molecular numbers may be obtained if
certain species have small molecular numbers and the step-
size is large. Recently, Gillespie and Petzold have proposed a
procedure~2! for improving the robustness of stochastic
simulations.10 Instead of using more cautious stepsize selec-
tion procedures, we will propose another approach in order
to improve the efficiency of the Poissont-leap method by
using larger stepsizes. Probabilistic properties of random
variables will be used to restrict the reaction numbers and to
avoid possible negative molecular numbers when a large
stepsize is used.

There are two ways of obtaining negative molecular
numbers in stochastic simulations. The first way is that the
sample value for the reaction number may be greater than
one of the molecular numbers in that reaction channel. For
example, consider a reaction

S11S2→
c1

S3 ~7!

with x151000,x251, andc150.1. The reaction number in
the time interval@ t,t1t) is a sample value of the Poisson
random variable P(c1x1x2t)5P(100t) in the Poisson
t-leap method. If reaction~7! is one of the reactions in a
system with largea0(x), it is possible to generate a sample
value that is greater than 1. An example of this possibility
can be found in Sec. VI.

The second case can arise due to the simultaneous oc-
currence of different reaction channels. For example, if a
system contains reaction channels

S11S2→
c1

S3 ,

S1→
c2

S4 ,

the total reaction number of these two reaction channels may
be greater than the molecular number of speciesS1 even if
the reaction number of each channel is less than the number
of S1 .

For tackling the problem of negative numbers, we intro-
duce binomial random variables to restrict the possible reac-
tion numbers in the next time interval. A binomial random
variableB(N,p) denotesN repeated independent Bernoulli
trials and each trial has probability of successp. A sample
value of B(N,p) is a integer between 0 andN. This finite
range of sample values allows us to properly bound the num-
bers of reactions and avoid negative populations. In addition,
Poisson and binomial random numbers are simular to each
other. The probability function ofB(N,p) is

Pr@B~N,p!5K#5
N!

K! ~N2K !!
pK~12p!N2K,

K50,1,...,N.

The mean ofB(N,p) is Np that equals to the mean of
P(Np). If N is large andp is small, a binomial random
variableB(N,p) can be approximated by a Poisson random
variableP(Np).

In the Poissont-leap method, the reaction number of
channelRj in the time interval@ t,t1t) is a sample value of

the Poisson random variableP@aj (x)t#. In the binomial
t-leap method introduced in this paper, the reaction number
of channelRj is defined by a sample value of the binomial
random variableB@Nj ,aj (x)t/Nj # under the condition

0<
aj~x!t

Nj
<1. ~8!

In order to keep positive molecular numbers in stochas-
tic simulations, we define functionsNj below for the widely
used three types of elementary reactions.

~1! The first-order reaction

S1→
c1

S3 , aj~x!5c1x1 , Nj5x1 . ~9!

~2! The second-order reaction

S11S2→
c2

S4 , aj~x!5c2x1x2 , Nj5min$x1 ,x2%.
~10!

~3! The homodimer formation (x1>2)

S11S1→
c3

S5 , aj~x!5 1
2c3x1~x121!, Nj5 b 1

2x1c.
~11!

According to Eq.~10!, the reaction number of the second-
order reaction is less than or equal to the smaller of the two
molecular numbers. In the case of the homodimer reaction,
we useNj5 b1/2x1c since two molecules are needed for one
reaction. For one single reaction, the definedNj above can
ensure positive molecular numbers after one time step.

Now we return to the example reaction~7!. Using defi-
nition ~10!, the reaction number now is a sample value of the
binomial random variableB(x2 ,c1x1t)5B(1,100t) under
the condition 100t<1, which is either 1 or 0.

Next we consider the second issue of obtaining negative
molecular numbers. A sampling technique will be designed
for the total reaction number of a reactant species that under-
goes two or more reaction channels. This technique is based
on the following two properties of the Poisson and binomial
random variables.

Property 1. IfP15P(l1) and P25P(l2) are two inde-
pendent Poisson random variables with meansl1 and l2 ,
respectively, thenP11P2 is also a PoissonP(l11l2) with
meanl11l2 .

Property 2. IfP15P(l1) and P25P(l2) are two inde-
pendent Poisson random variables with meansl1 and l2 ,
respectively, then the conditional probabilityPr(P15K1uP1

1P25K) equals to the probabilityPr(B5K1) of a Binomial
random variableB5B(K,l1 /(l11l2)) for K150,1,...,K.

Property 1 can be found in a textbook of probability
theory. ForK150,1,...,K, property 2 can be derived as fol-
lows:
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Pr~P15K1uP11P25K !

5
Pr~P15K1!Pr~P25K2K1!

Pr~P11P25K !

5Fe2l1

K1!
l1

K1
e2l2

~K2K1!!
l2

K2K1G Y
Fe2l12l2

K!
~l11l2!KG

5
K!

K1! ~K2K1!! S l1

l11l2
D K1S 12

l1

l11l2
D K2K1

5PrFBS K,
l1

l11l2
D5K1G .

Now we consider a sampling technique for generating
reaction numbers of two reaction channelsRj andRk which
speciesSi undergoes. Similar consideration can be given to
three or more simultaneous reaction channels. Let the pro-
pensity functions ofRj andRk be written as

aj~x!5Nj

aj~x!

Nj
, ak~x!5Nk

ak~x!

Nk
,

where Nj and Nk , defined by Eqs.~9!, ~10!, or ~11!, are
functions of the populationxi of speciesSi . Note thatNj is
either given byNj5xi or Nj5 bxi /2c. Here we use the Pois-
sont-leap method as the starting point. In the Poissont-leap
method, reaction numbers ofRj and Rk in @ t,t1t) are
sample values from the Poisson random variablesPj

5P@aj (x)t# andPk5P@ak(x)t#, respectively. According to
property 1, the total reaction number of channelsRj andRk

is a sample valueK jk from the Poisson random variable

Pj1Pk5P$@aj~x!1ak~x!#t%. ~12!

Then by using property 2, the probability ofPj5K j , given
that the sample value ofPj1Pk is K jk , is given by

Pr~Pj5K j uPj1Pk5K jk!5PrFBS K jk ,
aj~x!

aj~x!1ak~x! D5K j G .
~13!

In order to keep positive molecular numbers, the total
reaction number ofRj andRk is not generated from the Pois-
sion random variable~12! but from a binomial random vari-
able. Similar to the consideration for a single reaction chan-
nel, the Poission random variable~12! is replaced by the
following binomial random variable:

BS Ni ,
aj~x!1ak~x!

Ni
t D ~14!

under the conditionNi5min$Nj ,Nk%Þ0 and

0<
aj~x!1ak~x!

Ni
t<1. ~15!

Based on the discussion above we have the following
sampling technique for reaction numbers of channelsRj and
Rk .

~1! Generate a sample valueK jk for the total reaction
number ofRj and Rk from the binomial random variable
~14!;

~2! generate a sample valueK j for the reaction number
of Rj from

BFK jk ,
aj~x!

aj~x!1ak~x!G ;
~3! and the reaction number of channelRk is Kk5K jk

2K j .
Then we can define the Binomialt-leap method which is

given below.
Method 1.For a given error control parametere, choose

a stepsizet from the t-selection process (2), that satisfies
stepsize conditions (8) for each reaction channel. Then gen-
erate a sample value Kj from the binomial random variable
B@Nj ,aj (x)t/Nj # for j 51,...,M . If there are reactant species
undergoing two or more reaction channels, apply the simul-
taneous reaction stepsize condition (15) and sampling tech-
nique for these reaction channels. Finally update the system
by

x~ t1t!5x~ t !1(
j 51

M

n jK j .

Similarly we can consider the binomial midpointt-leap
method. It should be noticed that the predicted statex̄ in the
Poisson midpointt-leap method is used to provide more ac-
curate propensity functions, and the update is based on
sample values from the Poisson random variables
P(aj ( x̄)t). When using binomial random variables, we have
the following two schemes after the midpoint prediction~4!.

Scheme 1 Use the predicted statex̄ to defineN̄j , and
then generate a sample value from the binomial random vari-
ableB@N̄j ,aj ( x̄)t/N̄j #.

Scheme 2 Use the statex at t to defineNj and calculate
the propensity functionaj ( x̄). Then generate a sample value
from the binomial random variableB@Nj ,aj ( x̄)t/Nj # under
the midpoint prediction conditions

NjÞ0, 0<
aj~ x̄!

Nj
t<1. ~16!

In fact NjÞ0 is a condition for both schemes above. If
Nj50, it is difficult to make the midpoint prediction. By
using scheme 1, any movement from the number zero to a
nonzeroN̄j will lead to either possibly unreasonable sample
values (N̄j.0) or a meaningless binomial random variable
(N̄j,0). If NjÞ0, numerical simulations in Sec. V suggest
that it would be better to use scheme 2 although additional
time is needed for checking the midpoint prediction condi-
tions ~16!. Then we have the following binomial midpoint
t-leap method.

Method 2. Select the leaping timet by using the
t-selection process (2) and stepsize conditions (8) with a
given error control parametere. Then compute the expected
state x̄ (4) at t1t/2, use the statex at t to define Nj (Nj

Þ0), and generate a sample value Kj of the binomial ran-
dom variableB@Nj ,aj ( x̄)t/Nj # for j 51,...,M . If there are
reactant species undergoing two or more reaction channels,
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apply the simultaneous reaction stepsize condition (15) and
sampling technique for these reaction channels. Finally up-
date the system by

x~ t1t!5x~ t !1(
j 51

M

n jK j .

Random number generation is an important issue for the
efficiency of stochastic simulations. Computer programs for
generating Poisson and binomial random numbers can be
found in Presset al.17 and Netlib ~www.netlib.org/random/
random.f90! in FORTRAN. The latter is a random number gen-
eration library ofFORTRAN routines including generators for
14 random variables such as the normal, gamma, Poisson,
and binomial random variables.18,19 Here we recommend to
use the generatorrandomIPoissonin Presset al.17 for Pois-
son samples and the functionrandomIbinomial for binomial
samples that is based on the algorithm BTPE.18

Functionspoissrndandbinornd in Matlab are also avail-
able for generating sample values of the Poisson and bino-
mial random variables, respectively. Computing time~flops
in Matlab! for generating Poisson samples is a linear func-
tion of the sample value, but for binomial samples, it is a
function of the number of trialsN. Computing time in Matlab
normally is large but these two functions can be used to
simulate small systems for measuring the accuracy of differ-
ent methods.

IV. SYSTEM 1: THE ISOMERIZATION REACTION

In this section the isomerization reaction

X→
c

Y ~17!

is used to test the accuracy of different simulation methods.
The propensity function of this reaction isa(x)5cx and the
state change vector isn521. The solution to the chemical
master reaction equation~CMR! is7

Pr~x2k,t1tux,t !5
x!

k! ~x2k!!
@12e2ct#k@e2ct#x2k,

~0<k<x;t>0!, ~18!

which is the probability that, given the populationx at t,
there arek isomerization reactions in the time interval@ t,t
1t).

By using the binomialt-leap method, the number ofX at
t1t is x(t1t)5x(t)2k. Here k is a sample value of the
binomial random variableB(x,ct) under the stepsize condi-
tion 0<ct<1. The density function ofB(x,ct) is

PB~k;x,ct!5
x!

k! ~x2k!!
~ct!k~12ct!x2k, k50,...,x,

~19!

which can be regarded as a linear approximation to solution
~18! since

e2ct512ct1O~c2t2!.

For the binomial midpointt-leap method, the molecular
number att1t is also x(t1t)5x(t)2k but the sample
value k is from the binomial random variable

B(x,ct x̄/x) (xÞ0) with a predicted statex̄5x2 bcxtx/2c.
The stepsize condition is 0<ct x̄/x<1 and the density func-
tion of B(x,ct x̄/x) is

PBS k;x,
ct x̄

x D5
x!

k! ~x2k!! S ct2
ct

x bcxt

2 c D k

3S 12ct1
ct

x bcxt

2 c D x2k

, ~20!

for k50,...,x. If bctx/2c5ctx/2, the density function~20!
can be regarded as a second-order approximation to solution
~18!, namely,

e2ct512ct1 1
2c

2t21O~c3t3!.

When bctx/2cÞctx/2, function ~20! can still give very
good approximation to solution~18! because the difference
betweenct/xbctx/2c andc2g2/2 is small.

Compared with the density function of the Poisson
t-leap method7

PP~k;cxt!5
~xct!k

k!
e2xct, k50,...,̀ ~21!

and that of the Poisson midpointt-leap method7

PP~k;cx̄t!5
~ x̄ct!k

k!
e2 x̄ct, k50,...,̀ ~22!

with x̄5x2 bctx/2c, the density functions~19! and ~20! of
the binomial leap methods give better approximations to the
solution of the CMR~18!.

Figure 1 gives probability density functions~18!, ~19!,
~20!, ~21!, and~22! for c51, x5100, and different stepsizes

FIG. 1. Probability density functions for the numberk of isomerizations in
system 1 occurring in a given timet for c51 andx5100. @~a! and ~b!#
Distributions of thet-leap methods with Poisson and binomial random vari-
ables, respectively.@~c! and ~d!# Distributions of the midpointt-leap meth-
ods with Poisson and binomial random variables, respectively.~Solid line:
solution of CMR; dash-line: a Poisson leap method; dot-line: a binomial
leap method!.
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t. When t50.1, both the Poisson and binomial midpoint
t-leap methods give very good approximations to the solu-
tion of the CMR@Fig. 1~c!# while the Poisson and binomial
t-leap methods only give acceptable results@Fig. 1~a!#. In
addition, there is not any significant difference between the
distributions of the binomial leap methods and the corre-
sponding Poisson leap methods. However, for a larger step-
size t50.4 @Figs. 1~b! and ~d!#, the binomial leap methods
give better approximations to the variance of the distribu-
tions than the corresponding Poisson leap methods, although
the Poisson and binomial leap methods have the same shift
in the first moment of distributions. For both stepsizes the
binomial midpointt-leap method gives a better approxima-
tion than the binomialt-leap method. Similar phenomena
can be observed for the Poisson leap methods.

Note that the stepsize in any practical computation is
quite small. Stepsizet for simulating reaction~17! with c
51 andx5100 is min$e,100e2% if the selection process~2!
is applied. For the systems in Secs. V and VI, values of
e50.05, 0.03, or 0.01 are used in order to attain good ap-
proximations.

V. SYSTEM 2: A SYSTEM WITH FOUR REACTION
CHANNELS

The second test system contains three reactant species
and four reaction channels, defined by

R1 : S1→
c1

~ !,

R2 : S11S1→
c2

S2 ,
~23!

R3 : S2→
c3

S11S1 ,

R4 : S2→
c4

S3 .

Detailed simulations of this system in the time interval@0,30#
can be found in Gillespie7 and Burrage and Tian9 based on
the initial conditionx(0)5(105,0,0)T and rate constantsc
5(1,0.002,0.5,0.04)T.

System~23! is used here as a test problem for measuring
the accuracy and efficiency of differentt-leap methods. We
simulate the evolution of this system in the time interval
@0,40# with initial condition x(0)5(104,0,0)T and reaction
ratesc5(0.1,0.002,0.5,0.04)T. Figure 2 gives a simulation of
this system obtained by the SSA.

We first give a brief description of the numerical process
of the binomialt-leap method. Similar numerical procedure
can be obtained for the binomial midpointt-leap method.
After choosing a stepsizet by using the improvedt-selection
process~2!, the following process is used to generate bino-
mial samples at each step.

~1! Check the Binomial stepsize conditions

R1 and R2 , Fc1x11
1

2
c2x1~x121!Gt/ b12 x1c<1;

R3 and R4 , ~c31c4!t<1.

~2! For reaction channelsR1 andR2 , generate a sample
value K12 from the binomial random variable
B$ bx1/2c,@c1x11c2x1(x121)/2#t/ b1/2x1c% and a sample
value K1 from B$K12,c1 /@c11c2(x121)/2#% for the reac-
tion number ofR1 . The reaction number ofR2 is K25K12

2K1 .
~3! For R3 and R4 , generate a sample valueK34 from

the binomial random variableB@x2 ,(c31c4)t# and a sample
valueK3 from B@K34,c3 /(c31c4)# for the reaction number
of R3 . The reaction number ofR4 is K45K342K3 .

~4! Update the system byx(t1t)5x(t)1( j 51
4 n jK j .

This system was simulated by the SSA, the Poisson and
binomial t-leap methods, and the binomial midpointt-leap
method. We use the improvedt-selection process~2! to
choose the stepsize with one of the three error control pa-
rameters:e50.05, 0.03, and 0.01. For these three error con-
trol parameters, all of the stepsizes satisfyta0(x)>5 and it
is not necessary to use the SSA in the leap methods. This is
a very good test system to test the accuracy and efficiency of
the three leap methods. Programs were written inFORTRAN

and computations were carried out in a Sun workstation with
a 500 MHz CPU.

Regarding the SSA as giving exact results, we calculated
the means and variances of molecular numbers at integer
time points based on 20 000 simulations. For each method,
we sum the absolute errors of the three molecular species in
the mean and variance, that are presented in Fig. 3. The
Poissont-leap method has slightly better accuracy in the first
moment than the binomialt-leap method. However, the ac-
curacy in variance of the binomialt-leap method is better
than the Poissont-leap method. For a small error control
parametere50.01, these twot-leap methods have similar
accuracy in the mean and variance. These results are consis-
tent with those presented in Fig. 1. The midpointt-leap
method can always achieve better accuracy of the first mo-
ment than the Poisson or binomialt-leap method. An unex-
pected result is that the binomialt-leap method has better
accuracy in variance than the binomial midpointt-leap
method.

Based on the computing time of the SSA, that is, 4188 s
for 20 000 simulations, the speedup, defined by

FIG. 2. A simulation of system 2 by the SSA.
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speedup5
computing time of the SSA

computing time of at-leap method
~24!

is used to measure the improvement on efficiency of at-leap
method over the SSA. Table I gives the averaged numbers of
time steps of one simulation, computing time for 20 000
simulations ~in seconds! and the speedup over the SSA.
Based on the same error control parameter, these threet-leap
methods have similar computational efficiency in terms of
the averaged number of time steps. The computational time
of the Poissont-leap method is larger than that of the bino-
mial t-leap method due to different computational time for
generating the random numbers. If the same time was used
for generating Poisson and binomial random variables, the
binomial t-leap method would have slightly larger comput-
ing time than the Poissont-leap method. The computing
time of the binomial midpointt-leap method is slightly
larger than that of the binomialt-leap method, since addi-
tional time is needed for midpoint prediction.

Simulations of this system suggest that random number
generator is one of the key issues for the efficiency of the
t-leap methods. It is worthwhile to have a detailed study of
the accuracy and efficiency of different random number gen-
erators for Poisson and binomial random variables. This is-
sue is beyond the scope of this paper and will not be dis-
cussed here.

VI. SYSTEM 3: EXPRESSION AND ACTIVITY OF LacZ
AND LacY

The third system describes the expression of LacZ and
LacY genes and activity of LacZ and LacY proteins inE.
coli. A detailed description of this system can be found in
Kierzek.20 Here we just give a full list of reaction channels
and deterministic reaction rates of the chemical kinetics in
Table II. As indicated by Kierzek,20 reaction rates of the
second-order reactions are dependent on the volume of cell.

This system was simulated by the software package
STOCKSusing the SSA.20 Populations of the reactant species
range from 0 or 1 for PLac to 30 000 for LacZ, and values of
propensity functions range from 0.15 for reaction channel 5
(R5), 24.0 for R12 to 500 000 forR20. In addition, there is

FIG. 3. Simulation results of the Poissont-leap method, Binomialt-leap
method and Binomial mid-pointt-leap method for system 2.@~a!, ~b! and
~c!# Sum of absolute errors of the means of simulated molecular numbers of
these three method withe50.05,e50.03, ande50.01, respectively.@~d!, ~e!,
and ~f!# Sum of absolute errors of the variances of simulated molecular
numbers of these three method withe50.05,e50.03, ande50.01, respec-
tively. ~Dash-line: the Poissont-leap method, solid line: the binomialt-leap
method, dot-line: the binomial midpointt-leap method!.

TABLE I. Averaged numbers of time steps of one simulation, computing time for 20 000 simulations~in
seconds!, and the speedup over the SSA of the binomial midpointt-leap method, and binomial and Poisson
t-leap methods for simulating system 2.

e50.05 e50.03 e50.01

Steps Time Speedup Steps Time Speedup Steps Time Speedup

Poissont-leap 211 122 34.33 417 235 17.82 2902 1169 3.58
Binomial t-leap 202 68 61.59 415 132 31.73 2902 793 5.28
Binomial midpoint 209 72 58.17 420 138 30.35 2904 827 5.06

TABLE II. A full list of reaction channels and deterministic reaction rates
for system 3.

Reaction channel Reaction rate

R1 PLac1RNAP → PLacRNAP 0.17
R2 PLacRNAP→ PLac1RNAP 10
R3 PLacRNAP→ TrLacZ1 1
R4 TrLacZ1 → RbsLacZ1PLac1TrLacZ2 1
R5 TrLacZ2 → TrLacY1 0.015
R6 TrLacY1 → RbsLacY1TrLacY2 1
R7 TrLacY2 → RNAP 0.36
R8 Ribosome1RbsLacZ→ RbsRibosomeLacZ 0.17
R9 Ribosome1RbsLacY→ RbsRibosomeLacY 0.17
R10 RbsRibosomeLacZ→ Ribosome1RbsLacZ 0.45
R11 RbsRibosomeLacY→ Ribosome1RbsLacY 0.45
R12 RbsRibosomeLacZ→ TrRbsLacZ1RbsLacZ 0.4
R13 RbsRibosomeLacY→ TrRbsLacY1RbsLacY 0.4
R14 TrRbsLacZ→ LacZ 0.015
R15 TrRbsLacY→ LacY 0.036
R16 LacZ → dgrLacZ 6.42E25
R17 LacY → dgrLacY 6.42E25
R18 RbsLacZ→ dgrRbsLacZ 0.3
R19 RbsLacY→ dgrRbsLacY 0.3
R20 LacZ1lactose→ LacZlactose 9.52E25
R21 LacZlactose→ product1LacZ 431
R22 LacY → lactose1LacY 14
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not any significant gap between the populations of different
reactant species or between the values of propensity func-
tions of different reaction channels. By using a multiscale
method the improvement on efficiency is substantial but not
significant.13 Much time was used for carefully classifying
reaction channels into three subsets of fast, intermediate, and
slow reactions at each time step.

Now we discuss numerical implementation of the bino-
mial t-leap method for system 3. At each time step the num-
bers of RNAP and Ribosome are drawn from random pools
that are distributed normallyN(35,3.52) and N(350,352),
respectively. In addition, the mean values of these pools
grow, together with the volume of cell so that the concentra-
tions of these molecules remain constant. For reaction chan-
nelsR1 , R8 , andR9 , the numbers of trials of the binomial
random variables are the populations of PLac, RbsLacZ, and
RbsLacY, respectively.

For reaction channelR20, the number of trials of the
binomial random variable is the smaller of the populations of
LacZ and Lactose. Denote the number of moleculeP as
N(P), then the binomial random variable forR20 is defined
by

B~min$N~LacZ!,N~Lactose!%,tc20max$N~LacZ!,

N~Lactose!%!.

In addition, there are seven reactant species that undergo two
reaction channels. These reactant species are PLacRNAP
~channelsR2 andR3), RbsLacZ (R8 andR18), RbsLacY (R9

and R19), RbsRibosomeLacZ (R10 and R12), RbsRibo-
someLacY (R11 and R13), LacZ (R16 and R20), and LacY
(R17 and R22). The simultaneous reaction sampling tech-
nique is applied to these pairs of reaction channels.

This system was simulated by the SSA and binomial
t-leap method with the improvedt-selection process~2!.
Table III gives the computational time for one simulation by
using the SSA, which is averaged over 20 simulations, and
by using the binomialt-leap method with different error con-
trol parametere, which is averaged over 50 simulations. It
took about 4.5 h for one simulation by using the SSA but
much less time by using the binomialt-leap method. The
binomial t-leap method withe50.03 results in a nearly 60-
fold reduction in computational time over the SSA. We can
still get a 16-fold improvement in computing time when a
smallere50.01 was used. The improvement in efficiency is
significant.

Due to the huge computing time of the SSA, it is diffi-
cult to test the accuracy of the binomialt-leap method based
on a large number of simulations over the time interval

@0,2100#. Instead we considered the accuracy of the binomial
t-leap method in a short time interval. As the SSA was fre-
quently used at the initial stage of each simulation, we simu-
lated this system in the time interval@300,330# and used the
SSA to get a state of the system att5300 that was used as
the initial value of our simulations. We calculated the means
and standard deviations of simulated molecular numbers
over 10 000 simulations obtained by the SSA and binomial
t-leap method with error control parametere50.03. As an
example, we give the means and standard deviations of Rb-
sLacY, TrLacZ2, TrRbsLacY, and TrRbsLacZ in Fig. 4.
Simulation results suggest that the binomialt-leap method
can give very good approximations to the evolution of this
biochemical reaction system.

We note that it is very difficult to apply the Poisson
t-leap method to simulate this system. We simulated system
3 by using the Poissont-leap method withk53 and 10 in
the method selection criterion~3!, respectively, and the SSA
was used ink steps ifta0(x),k. All 100 simulations were
aborted for eachk due to negative molecular numbers. As the
SSA was used frequently at the initial stage of each simula-
tion, a largerk just delayed the time for using the Poisson
t-leap method and the time of abortion. Negative molecular
number in most simulations was obtained from reaction
channelR8 or R9 when the reaction number was 2 but the
number of RbsLacZ or RbsLacY was just 1. The difficulty is
that we may get negative number from channelR8 or R9 at
any time point of a simulation. The numbers of RBsLacZ
and RbsLacY are 0 or 1 at most steps when 0<t<2100 but
the number of Ribosome is a sample fromN@350(1
1t/2100),352#. On the other hand, the sum of the expected
reaction numbers of channelsR20, R21, and R22 began to
increase and exceededk when t was large.

It is also difficult to apply the binomial midpointt-leap

TABLE III. Averaged computing time~in seconds! of one simulation of
system 3 by using the SSA and binomialt-leap method with different error
control parametere in the improvedt-selection process.

Method Computing time Speedup

Binomial t-leap ~e50.05! 225.46 70.53
Binomial t-leap ~e50.03! 281.44 56.50
Binomial t-leap ~e50.01! 952.28 16.70
SSA 15 902 1

FIG. 4. Means and standard deviations~6s! of four molecular species in
system 3 by the SSA and binomialt-leap method withe50.03 in the leap
condition.~Solid line: the SSA, dot-line: thet-leap method!.
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method to simulate this system. The problem now is the
midpoint prediction because the populations of a few reac-
tant species are zero in the simulations. There are a number
of reactant species, for example, PLac, PLacRNAP, Tr-
LacZ1, and RbsLacZ, whose population is just 0, 1, or 2. If
the molecular number is zero, any change made to it may
cause unreasonable sample values for the reaction numbers.

VII. CONCLUSIONS

In this paper we have derived efficient numerical meth-
ods with robust leap control strategies for simulating chemi-
cal reaction systems. The motivation of this approach is to
improve the efficiency of the Poissont-leap methods by us-
ing larger stepsizes and avoiding possible negative molecular
numbers in the stochastic simulations. The first contribution
of this approach is to use binomial random variables in the
t-leap methods. For a single reaction channel, the generated
binomial sample, that represents the reaction number of this
reaction channel in a given time interval, is less than or equal
to the populations of reactant species that undergo this reac-
tion. For simultaneous occurrence of different reaction chan-
nels, a sampling technique has been proposed for the total
reaction number of a reactant species that undergoes two or
more reaction channels. Numerical results for all three test
systems indicated that the binomial leap methods can be used
to simulate a wide range of chemical reaction systems with
very good accuracy and significant improvement of effi-
ciency over existing approaches. More work is needed in
designing robust prediction strategies in the midpointt-leap
method.

Another significant contribution of this paper is a robust
leap control strategy. For a binomial random variable
B(N,p), the probabilityp must satisfy 0<p<1. This prop-
erty has been used in the binomial leap methods as stepsize
conditions to restrict the possible reaction numbers in a cho-
sen time interval. If the leap condition is the leap control
strategy based on the property of propensity functions, these
stepsize conditions can be regarded as the leap control strat-
egy based on the relationship of molecular numbers and re-
action numbers. The combination of these two conditions
provides a robust control strategy for practical applications.

Stepsize conditions can be used as additional conditions
for choosing the leaping time. For the Lotka reactions,6 for
example,

R1 : S11S2→
c1

2S2 ,

R2 : S21S3→
c2

2S3 , ~25!

R3 : S3→
c3

S4 ,

it is not appropriate to generate sample values for the total
reaction numbers ofS2 in channelsR1 andR2 andS3 in R2

and R3 at the same time. But the stepsize conditions ofS2

and S3 can be used as additional conditions to choose the
leaping size. This consideration for a simple system can be
applied to more complex chemical reaction systems.
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