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Abstract 

Whole genome and exome sequencing studies have become increasingly available and are being 

used to identify rare genetic variants associated with health and disease outcomes. Investigators 

routinely use mixed models to account for genetic relatedness or other clustering variables (e.g. 

family or household) when testing genetic associations. However, no existing tests of the 

association of a rare variant association with a binary outcome in the presence of correlated data 

controls the Type 1 error where there are (1) few carriers of the rare allele, (2) a small proportion 

of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in 

developing the carriers-only test framework for testing rare variant association with a binary 
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trait. In this framework, we estimate outcome probabilities under the null hypothesis, and then 

use them, within the carriers, to test variant associations. We extend the BinomiRare test, which 

was previously proposed for independent observations, and develop the Conway-Maxwell-

Poisson (CMP) test, and study their properties in simulations. We show that the BinomiRare test 

always controls the type 1 error, while the CMP test sometimes does not. We then use the 

BinomiRare test to test the association of rare genetic variants in target genes with small vessel 

disease stroke, short sleep, and venous thromboembolism, in whole-genome sequence data from 

the Trans-Omics for Precision Medicine program.  

 

Introduction 

Whole-genome and exome-sequencing studies are becoming increasingly available to public 

health researchers, for example, from NHLBI’s Trans-Omics for Precision Medicine (TOPMed) 

program (1), NHGRI’s Centers for Common Disease Genetics (CCDG), and the UK Biobank 

(2). As most variant in sequencing datasets are rare, researchers may be interested in using such 

datasets for detecting rare-variant associations, genome-wide or in a genomic region of interest. 

They may also seek to confirm suggested associations from other studies or populations, or to 

assess pathogenicity in large population-based studies of rare variant alleles reported from small 

family-based studies. For example, Amininejad et al. (3) studied the association of genetic 

variants within genes associated with monogenic immunodeficiency disorders with Crohn’s 

Disease. Wright et al. (4) assessed the pathogenicity and penetrance of rare variants identified in 

clinical studies, in the population-based UK Biobank. Tuijnenburg et al. (5) studied rare genetic 

variants within NGKB1 for association with primary immunodeficiency disease. Do et al. (6) 

studied risk of myocardial infarction in carriers of rare LDLR and APOA5 alleles. Kendall et al. 
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(7) studied cognitive outcomes in carriers of rare copy number variants. These studies 

demonstrate that there is an interest in testing single rare genetic variant associations with a wide 

range of health outcomes, including binary outcomes such as disease or affection status. 

 

Testing rare variant associations with binary traits is challenging. It was previously shown that 

likelihood-based tests such as the Wald, Score, and likelihood ratio tests poorly control Type 1 

error when testing for rare variant associations with a binary trait (8; 9). The Score test 

performance depends on the case-control ratio, and for rare variants, even a small imbalance 

causes “inflation” (i.e. too many false positive results). A few approaches have been used 

previously to study rare variant associations in a set of unrelated individuals. Amininejad et al. 

used a permutation approach to test for association of rare genetic variants with Crohn’s Disease. 

Wright et al. used Fisher’s exact test. While it is possible to adjust for covariates in the  

permutation approach and when using Fisher’s exact test to some extent through stratification 

(10), they do not have the full flexibility of covariate adjustment of a generalized linear model; 

i.e. they still require the identification of distinct groups in which no additional adjustment is 

required. Further, permutation tests may also be computationally intensive if low p-values are 

desired, because the number of required permutations may be large, although there are ways to 

reduce this computational burden (10). Alternatively, Tuijnenburg et al. used a method called 

BeviMed (11), implementing a Bayesian model to estimate posterior disease probabilities. The 

BinomiRare test has also been proposed as a powerful method to test for rare variant associations 

that can account for covariates (9). The BinomiRare test uses standard methods to compute the 

disease probabilities in the entire dataset, under the null hypothesis of no association between a 

specific genetic variant and the binary outcome. Then, for each specific genetic variant, it uses 
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the estimated probabilities in the variant carriers to test the hypothesis that the disease 

probabilities under the null are the true outcome probabilities in the carriers. The null hypothesis 

is rejected if the number of carriers with the outcome is inconsistent with their outcome 

probabilities. However, the previously published version of this method assumed the sample 

contains only unrelated individuals. Currently, there is no single-variant test that is generally 

appropriate for testing rare variants when individuals are correlated, e.g., due to known or cryptic 

genetic relatedness. Notably, the saddlepoint approximation to compute p-values (henceforth 

SPA; (12)) was first developed to improve the calibration of the Score test when there is case-

control imbalance, and then extended in the SAIGE framework for the settings where related 

individuals are used (13). However, it does not reliably control the Type I error rate when the 

number of carriers of the rare variants is very small (i.e. tens of individuals; (14)).  Therefore, 

there is a need for a statistical test that is well-calibrated when the number of carriers is low, 

individuals are potentially related, and there is case-control imbalance.  

 

The previously published version of BinomiRare test  (14) is useful in the presence of case-

control imbalance, allows for covariate adjustment, controls the Type I error rate for any number 

of carriers, and can also be used when combining heterogeneous studies and here, we expand its 

framework for testing rare variant associations when study individuals are correlated. We 

developed two tests: first, we extended the BinomiRare test to the mixed models setting by 

applying it on conditional probabilities computed with a mixed model, rather than on marginal 

probabilities. Second, we developed the Conway-Maxwell-Poisson (CMP) test, which follows 

the carriers-only framework by using estimated (conditional) disease probabilities like the 

BinomiRare. For a given rare variant it uses the estimated disease probabilities in the variant 
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carriers to fit the parameters of the CMP distribution, under the null. It then tests whether the 

observed number of carriers with the outcome is consistent with this distribution. We study these 

tests using synthetic simulations with varying outcome probabilities, variant allele frequencies, 

and strengths of correlation between individuals due to genetic relatedness, and also in realistic 

simulation studies, using real phenotypes and WGS-based variant call set from the TOPMed 

program. We finally apply the BinomiRare test to test rare variant associations in known disease 

causing genes for specific disorders: the NOTCH3 gene and small vessel disease (SVD)ischemic 

stroke; the DEC2 (also known as BHLHE41) gene and “short sleep”, and the F5 gene and venous 

thromboembolism (VTE).  

 

Methods 

Statistical approach 

Let 𝐷! be an indicator of the disease, or another binary outcome, of participant 𝑖, with value 1 if 

the person is affected and 0 otherwise, where 𝑖 = 1,… , 𝑛 and the 𝑛 individuals may be 

correlated. Let 𝒙! be a 𝑝 × 1 vector of covariate values for the 𝑖th participant, and 𝑔! be their 

count of minor alleles for a specified genetic variant. Under the logistic disease model for 

correlated data: 

logit(𝑝!) = 𝒙!"𝜶 + 𝑔!𝛽 +	𝑏! , 𝑖 = 1,… , 𝑛 

 with 𝑝! = Pr	(𝐷! = 1|𝒙! , 𝑔! , 𝑏!) is the conditional outcome probability in the sample (regardless 

of the population probability), and 𝑏! is the 𝑖th entry of the vector 𝒃 = (𝑏#, … , 𝑏$)" ∼
𝑁(𝟎,∑ 𝜎%&'

%(# 𝑉%) of correlated random effects with possibly 𝐾 variance components 𝜎%&, 𝑘 =
1,… , 𝐾 and 𝑉% modelling the correlation structure corresponding to a particular source of 

correlation. While the methods proposed here can be applied for an arbitrary 𝐾 ≥ 1, we simplify 
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presentation by focusing on the scenario of a single correlation matrix modeling genetic 

relatedness, possibly cryptic, so that 𝒃 ∼ 𝑁(𝟎, 𝜎)&𝑮) with 𝑮 being any genetic relationship matrix 

(GRM), or possibly kinship matrix, and 𝜎)& is the corresponding variance component.   

 

We assume that the genetic variant is rare, so that the minor allele frequency (MAF) is low and 

that carriers of the minor allele are overwhelmingly heterozygotes. While having homozygotes 

does not invalidate our approach, it also does not increase statistical power. Our carriers-only 

approach first estimates a disease probability for each individual in the sample under the null 

hypothesis of no association between the genetic variant and disease status, i.e. under the 

assumption that 𝛽 = 0 by not including any variant of interest in the regression (step 1, 

demonstrated in Figure 1), and then considers carriers of the rare variant, testing whether the 

number of diseased carriers is consistent with their estimated disease probabilities (step 2, 

demonstrated in Figure 2).  

 

Step 1: Estimating disease probabilities under the null hypothesis. At step 1, we fit a null 

model under the assumption 𝛽 = 0, using the existing penalized quasi-likelihood algorithm for 

logistic mixed models (15). This approach is implemented in multiple software, including the 

GENESIS R package (16), GMMAT (17), and SAIGE (13). In both GENESIS and GMMAT, the 

vector of fixed effects 𝜶 and the variance component 𝜎)& are estimated using an implementation 

of an AI-REML (Average Information Restricted Maximum Likelihood) algorithm on top of the 

penalized quasi-likelihood (PQL) approach (17), but the proposed tests do not depend on the 

specific algorithm used for estimating the outcome probabilities. From the fitted null model, we 

obtain estimates 𝜶G, 𝒃H, and an estimated disease probability vector by plugging them in to obtain 
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�̂�! = expitM𝒙!"𝜶G + 𝑏N!O, 𝑖 = 1,… , 𝑛, where expit is the inverse of the logit function. If the variance 

component 𝜎)& is estimated as 0, so is 𝒃H = 0, and the analysis reverts to the independent 

individual settings.  

 

Step 2: Testing the association between a genetic variant and disease status. 

Suppose that we obtained disease probability estimates 	�̂�! , 𝑖 = 1,… , 𝑛, under the null as 

described above. Denote 𝑛* as the number of carriers of the rare variant (“carriers” henceforth), 

i.e. those with 𝑔 > 0, so that ∑ 1(𝑔!$
!(# > 0) = 𝑛*. Without loss of generality, assume that 

participants 𝑖 = 1,… , 𝑛* are the carriers. Let 𝑛+ be the number of diseased carriers  

𝑛+ =	Q1(𝑑! = 1)
$!

!(#

=Q1(𝑑! = 1, 𝑔! > 0).
$

!(#

 

Let 𝒑$!U = M𝑝#U,… , 𝑝$!U O"denote the vector of estimated disease probabilities for carriers of the 

rare variant. Despite 𝒑$!U  being estimated, we treat it as fixed. For testing, we assess the 

goodness-of-fit of the estimated model to the observed disease status in the carriers, by testing 

the null hypothesis:  

𝐻,: 𝒑$! = 𝒑$!U , 
where 𝒑$! is the true, unknown, vector of outcome probabilities among the carriers. 

 

The p-value for testing the null hypothesis of no variant-disease association is given by: 

 𝑝-value = Pr{𝑛+ 	diseased	carriers	or	more	extreme| 𝑝$!U }. (1) 

This is a two-tailed p-value, because 𝑛+ can appear to be lower or higher than expected. When 

only a single person carries the rare variant, i.e. 𝑛* = 1, the calculation is trivial; Equation (1) 

reduces to the single carrier’s fitted probability  �̂�! if they are a case,  and 1 − �̂�! if they are a 
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control. When 𝑛* > 1, there are two special cases that are already developed. If �̂�! for all carriers 

are equal, and outcomes for all carriers are independent, then 𝑛+ ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, �̂�!), and the p-

value is the tail area (possibly two tails) of the standard Binomial distribution, i.e. a Binomial 

exact test. If the �̂�! for the carriers differ but independence still holds, the distribution is the 

Poisson-Binomial distribution, and the test is the previously-proposed BinomiRare test for 

independent data (9).  In the general case, an arbitrary sum of binomial variables, possibly 

correlated, has the Conway-Maxwell-Poisson (CMP)-Binomial distribution, which can be 

approximated by the CMP distribution (18; 19) when the number of carriers is “large enough” 

(see appendix).  

 

In addition to the p-value above, we also study the mid-p-value, which was previously shown to 

improve properties of discrete tests (20) and to be less conservative. The mid-p-value is always 

smaller than the p-value, because when summing the tail areas probabilities, it accounts for only 

half of the probability of the observed event 𝑛+, whereas the p-value uses it as it is, without 

dividing in half.  

 

BinomiRare and CMP tests using conditional probabilities 

In the appendix, we show that the distribution of 𝑛+ in the general case can be approximated by 

the CMP distribution and develop the CMP test. However, because approximations may not 

work well in practice for low carrier count 𝑛*, we also attempt a different approach. Note that for 

two individuals 𝑖	and 𝑗, we have that 𝐷! 	and	𝐷- were independent if the true conditional disease 

probabilities were known. In other words, given conditional disease probabilities, knowing the 

disease status of individual 𝑖	does not inform of the disease status of individual 𝑗. Therefore, we 
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consider using the BinomiRare test which was developed for independent data – with the 

conditional probabilities. We note that this independence may not hold when probabilities are 

estimated, and therefore it is not trivially true that the BinomiRare is appropriate in this setting. 

Both the CMP and the BinomiRare tests for correlated data are available in the GENESIS R 

package for genetic association analysis (21).  

 

Simulation study: testing rare variant associations using BinomiRare and CMP in a sample 

of trios 

We carried out a simulation study to evaluate the performance of BinomiRare and CMP tests in 

samples of correlated individuals. In each simulation, we generated 3,000 individuals as 1,000 

trios (two parents and one offspring), as follows. For 1,000 pairs of parents, and each of two 

chromosomal copies, we generated 20 independent “non-causal” genetic variants by first 

sampling minor allele frequencies (MAF) from a uniform 𝑈[0.05, 0.5] distribution and setting 

MAF ∈ {0.05, 0.02, 0.01, 0.001} for one “causal” variant, followed by sampling of genetic 

variants using a Binary distribution based on these MAF. For each parent, allele count was the 

sum of the two sampled alleles. For each variant independently, an offspring inherited one allele 

from each of the parents. The parental allele was sampled at random with equal probabilities 

from the two alleles. We used the 21 (1 causal and 20 non-causal) simulated genotypes to 

generate a variable mimicking a principal component (PC), as a weighted sum of all allele 

counts, with weights sampled from a standard Normal distribution 𝑁(0,1).	Next, we simulated 

probability of disease using a mixed logistic model: 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝐷! = 1)] = β, + 𝑃𝐶! × 𝛽.* + 𝑔!𝛽) + 𝑏! ,			𝑖 = 1,… , 𝑛. 
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Here, exp	(𝛽,) ∈ {0.01, 0.05, 0.5} is the probability of disease in non-carriers (𝑔! = 0) with 

genetic PC and 𝑏! equal to zero; 𝛽.* models the association of the PC with disease probability, 

𝛽)	is the effect of the (causal) variant of interest, and 𝒃 = (𝑏#, … , 𝑏$)", representing the 

correlation across individuals, is sampled from a multivariate normal distribution 𝒃 ∼
𝑀𝑉𝑇-𝑁(𝟎, 𝜎)&	𝑲), with the correlation matrix 𝑲 being a block diagonal kinship matrix, having 

twice the kinship coefficient between a child and each of their parents, i.e. 0.5. We set 𝜎)& ∈
{0.06, 0.6}. In all simulations we had 𝛽.* = 0.1. The variant effect was varied from zero when 

evaluating Type 1 error rate, to 𝛽) = log	(𝑂𝑑𝑑𝑠	𝑅𝑎𝑡𝑖𝑜) ∈ {log(2) , log(3) , log(4)} when 

evaluating power. We then sampled disease status for each individual from a Binary distribution 

with the computed disease probability. Finally, we applied the BinomiRare and CMP tests and 

computed p-values and mid-p-values. We performed 1𝑥10/ replicates to estimate Type 1 error 

rate and 1𝑥100 replicates to estimate power. We estimated Type 1 error rate and power for p-

value threshold for declaring significance {1𝑥101&, 1𝑥1012, 1𝑥1013}. For tests that did not, 

empirically, control the Type I error rate for a given p-value threshold (i.e. the proportion of 

simulations passing the threshold was higher than the threshold), we computed a “calibrated 

threshold”, defined as a value for which the proportion of simulations with p-value less than this 

value was the desired threshold. We then used this calibrated threshold to estimate power, 

specifically power at an “honest alpha”. Our main results are those focused in simulations in 

which the variance component had non-zero estimate, but we analyze all simulations.  

  

The TOPMed whole genome sequencing Study 

WGS was performed via TOPMed and the NHGRI’s Centers for Common Disease Genetics 

(CCDG) programs. WGS was performed using DNA from blood at multiple sequencing centers 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.21249450doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.21249450
http://creativecommons.org/licenses/by/4.0/


using Illumina X10 technology at an average sequencing depth of >30X.  Studies and samples 

were sequenced in multiple phases. Periodically, the TOPMed Informatics Research Center 

(IRC) performed variant calling on the combined TOPMed and CCDG samples, resulting in 

multiple releases of data “freezes”. Details regarding sequencing methods and quality control are 

provided elsewhere (22) and in the TOPMed website (https://www.nhlbiwgs.org/data-sets).  

 

We used three TOPMed multi-ethnic data sets: a data set of small vessel disease stroke (SVD 

stroke) in the Women Health Initiative (WHI), a study of short-sleep, and a study of venous 

thromboembolism (VTE), with the latter two comprised of individuals from multiple TOPMed 

cohorts. We performed data analysis to demonstrate the BinomiRare test.  The approaches for 

data analysis were similar. GRMs were constructed based on the analytic datasets of each of the 

analyses, using all genetic variants with minor allele frequency≥0.001. Logistic mixed models 

under the null were fit and adjusted for age, sex, and self-reported race/ethnic group, and for 

short-sleep, also for parent study/cohort. SVD stroke and short sleep analyses used TOPMed 

freeze 5b release, while the VTE analysis used TOPMed freeze 8 genotype release. All 

participants provided written informed consent at their recruitment centers.  

 

The TOPMed WHI stroke dataset 

The Women’s Health Initiative (WHI) is a long-term health study following postmenopausal 

women aged 50-79 years who were recruited from 1993 through 1998 from 40 clinical centers 

throughout the U.S. (23). In the present analysis, we focus on a subset of 5,358 WHI participants 

who were sequenced through TOPMed with data available via freeze 5b, and had SVD stroke 

case-control classification, according to the following methodology: stroke diagnosis requiring 
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and/or occurring during hospitalization was based on the rapid onset of a neurological deficit 

attributable to an obstruction or rupture of an arterial vessel system. Hospitalized incident stroke 

events were identified by semiannual questionnaires and adjudicated following medical record 

review, which occurred both locally (at individual study sites) and centrally. Ischemic strokes 

were further classified by the central neurologist adjudicators into cardio-embolic stroke, larger 

artery stroke, and SVD stroke according to the Trial of Org 10172 Acute Stroke Trial (TOAST) 

criteria (24). The TOAST classification focuses on the presumed underlying stroke mechanism 

and requires detailed investigations (such as brain computed tomography, magnetic resonance 

imaging, angiography, carotid ultrasound, and echocardiography). Baseline stroke cases were 

excluded from the analysis and VTE cases were excluded from the control samples. Further, 

participants who had non-SVD stroke were excluded.  

 

The TOPMed short sleep dataset 

We used sleep duration data from multiple TOPMed cohorts, as described in the Supplementary 

Information detailing phenotype harmonization for short sleep analysis. Short sleep was defined 

as self-reported sleep duration during weekday, or usual sleep (if sleep duration during the 

weekdays was not available) being 5 hours or less. Otherwise, if self-reported sleep duration was 

6 hours or longer and less than 9 hours, sleep was “normal”. Individuals with self-reported sleep 

duration longer than 5 hours and shorter than 6 hours were excluded to minimize risk of 

misclassification. Because of a well-known “U-shaped” relationship between sleep duration and 

cardiovascular disease (25), suggesting that potential non-linearity in genetic associations may 

exist as well, we also excluded “long sleepers” reporting 9 or more hours of usual sleep,  
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The TOPMed VTE dataset 

The TOPMed VTE dataset includes TOPMed participants from six studies, combining 

prospective cohort and case-only studies. Individuals were matched across groups defined to be 

homogeneous with respect to race/ethnicity and sex, and strata defined by age at event 

(determined according to cases). The matching strategy resulted in a sample set mimicking a 

case-control study, with 11,627 individuals of which 3,793 are cases, and 7,834 are controls. 

 

Association testing of rare coding variants within known disease causing genes  

For each of the SVD stroke, short sleep, and VTE datasets, we considered a known gene 

associated with the disorder. For stroke, we focused on the NOTCH3 gene, in which mutations 

may cause Cerebral autosomal dominant arteriopathy with subcortical infarcts and  

leukoencephalopathy (CADASIL), which causes ischemic stroke (26). For short sleep, we 

focused on the gene DEC2 (also known as BHLHE41), a transcription inhibitor of orexin, a 

neuropeptide that regulates wakefulness (27; 28). For VTE, we focused on the coagulation factor 

V gene, F5 (29; 30), which has a known common variant highly associated with VTE, factor V 

Leiden (rs6025). We performed single variant analysis within the candidate genes, as follows. 

We selected a subset of rare variants within the genes based on functional annotations, with the 

goal of increasing power by focusing on variants that are more likely to be functional compared 

to others. In detail, the filter based on functional annotation included the selection of variants that 

were: (a) high confidence loss of function variants according to the Ensembl Variant Effect 

Predictor (31), (b) missense variants if they are predicted deleterious by either SIFT 4G (32), 

Polyphen2-HDIV (33),  Polyphen2-HVAR (33), or LRT-pred (34), (c) inframe indels with 

FATHMM-XF coding score > 0.5 (35), or (d) variants that are synonymous according to the 
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Ensemble Variant Effect Predictor and have FATHMM-XF coding score > 0.5. The annotation 

based variant filtering was performed using the Annotation explorer application on the NHLBI’s 

BioData Catalyst (36). We further filtered variants to those that  passed the TOPMed QC filter 

(22), had at least 3 carriers of the rare allele, and had no more than 300 carriers. This upper 

threshold was defined because we were interested specifically in rare variants and because it was 

previously shown that properties of statistical tests of rare variant associations depend on carrier 

count, rather than on allele frequency (14).  Finally, we further restricted the set of variants to 

those that had reasonable statistical power according to a power analysis performed as follows. 

We arbitrarily assumed an odds ratio (OR) of 2 for a causal variant, and for each variant we 

computed power based on a function developed for the BinomiRare test (provided here 

https://github.com/tamartsi/Binary_combine/blob/master/compute_power.R) . The function uses 

the estimated outcome probabilities in the sample, an OR, the number of variant carriers, and p-

value threshold, to compute power. To increase accuracy, for each variant we specifically used 

the estimated disease probabilities among the variant carriers.  

 

 

Results 

Simulations studies 

We studied the performance of the tests in simulations of 1,000 trios. In the setting where 	
𝜎)& = 0.06, about half of the simulations estimated the variance component to be zero. When 

𝜎)& = 0.6, this happened in about a third of the simulations. The number of carriers of the 

simulated rare variant allele was in the range [0, 27] when MAF = 0.001, [17, 119] when MAF = 

0.01, [58, 203] when MAF = 0.02, and [195, 401] when MAF = 0.05. Table 1 provides estimated 
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Type 1 error rates in the simulations, restricted to those simulations in which the estimated 

variance component was 𝜎~)& > 0. For BinomiRare, we only provide results for the mid-p-value, 

because in our simulations it always controlled the Type 1 error rate, while the usual p-value 

controlled it as well while being more conservative. For CMP, we only provide results for the 

usual p-value, because it sometimes did not control the type 1 error and the lack of control was 

worse with the mid-p-value. The CMP test usually did not control the type 1 error when the 

variant was very rare (MAF =0.001), and when the case proportion was low (exp(𝛽,) = 0.05). 

Its performance improved as the MAF increased. In the Supplementary Information, Table S3-

S5, we provide complete simulation results, including both mid-p-value and the usual p-value for 

both the CMP and BinomiRare tests, and results computed over all simulations, and computed 

over the simulations in which 𝜎~)& = 0 

 

In power analysis, after appropriately calibrating the p-value threshold for the CMP test, CMP 

was either equally powerful as BinomiRare or more powerful (see Figures S1-S3 in the 

Supplementary Information). The patterns were similar across p-value thresholds used, and 

across the two variance component parameters used in the simulations. Notably, when the 

disease was common (exp	(𝛽,) = 0.5)	the power was lower when the variance component was 

high (𝜎)& = 0.6) compared to when it was low 𝜎)& = 0.06. When the disease was rare (exp(𝛽,) =
0.05), the power was essentially the same with both values of variance components.  
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Table 1: Estimated Type 1 error rates of BinomiRare and CMP tests in simulations with related 

individuals. Bolded numbers highlight settings in which the Type 1 error was not controlled, defined 

according to Type 1 error rate being larger than the highest value in a 95% confidence intervals around 
the expected Type 1 error rate, based on Binomial distribution with parameters being the p-value 

threshold and number of simulations used. 
 

MAF exp	(𝛽,) Estimated type 1 error by p-value threshold 

  𝜎)& = 0.06 𝜎)& = 0.6 

  101& 1012 1013 101& 1012 1013 

BinomiRare (mid-p-value) 

0.001 0.01 3.38E-03 2.08E-04 1.25E-05 3.78E-03 2.55E-04 1.88E-05 

0.001 0.05 5.61E-03 4.45E-04 2.76E-05 5.63E-03 4.4E-04 3.24E-05 

0.001 0.5 5.78E-03 3.22E-04 1.57E-05 5.44E-03 2.94E-04 1.26E-05 

0.01 0.01 6.22E-03 4.62E-04 3.25E-05 6.36E-03 4.64E-04 3.35E-05 

0.01 0.05 7.70E-03 6.58E-04 4.42E-05 7.83E-03 6.58E-04 5.1E-05 

0.01 0.5 8.68E-03 8.28E-04 6.67E-05 8.21E-03 7.3E-04 6.56E-05 

0.02 0.01 6.17E-03 4.27E-04 2.73E-05 6.41E-03 4.71E-04 3.38E-05 

0.02 0.05 7.53E-03 6.27E-04 5.34E-05 7.52E-03 6.15E-04 5.27E-05 

0.02 0.5 7.90E-03 6.87E-04 6.51E-05 7.56E-03 6.34E-04 5.55E-05 

0.05 0.01 4.99E-03 2.88E-04 1.84E-05 5.21E-03 2.97E-04 1.48E-05 

0.05 0.05 5.94E-03 4.49E-04 3.10E-05 5.93E-03 4.26E-04 2.73E-05 

0.05 0.5 6.02E-03 4.69E-04 3.91E-05 5.67E-03 4.16E-04 3.34E-05 

CMP (usual p-value) 

0.001 0.01 5.75E-02 6.59E-03 4.18E-04 6.01E-02 6.54E-03 4.41E-04 

0.001 0.05 4.50E-02 4.44E-03 2.83E-04 4.22E-02 3.89E-03 2.26E-04 

0.001 0.5 3.44E-02 9.29E-04 6.28E-06 3.34E-02 7.78E-04 8.21E-06 

0.01 0.01 2.34E-02 2.19E-03 1.70E-04 2.25E-02 2.09E-03 1.68E-04 

0.01 0.05 1.62E-02 1.55E-03 1.37E-04 1.53E-02 1.44E-03 1.20E-04 

0.01 0.5 9.30E-03 7.53E-04 4.41E-05 8.71E-03 6.74E-04 4.65E-05 

0.02 0.01 1.76E-02 1.50E-03 1.11E-04 1.69E-02 1.44E-03 1.16E-04 

0.02 0.05 1.11E-02 1.10E-03 1.02E-04 1.02E-02 9.77E-04 8.58E-05 

0.02 0.5 7.86E-03 6.30E-04 5.49E-05 7.45E-03 5.76E-04 4.36E-05 

0.05 0.01 1.06E-02 7.29E-04 4.14E-05 1.01E-02 7.19E-04 4.04E-05 

0.05 0.05 6.53E-03 4.94E-04 3.44E-05 6.38E-03 4.52E-04 3.38E-05 

0.05 0.5 5.80E-03 4.37E-04 3.30E-05 5.46E-03 3.83E-04 2.99E-05 

 

Data analysis: TOPMed data sets 
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For each of the three TOPMed datasets that we considered, Table 2 provides the sample sizes, 

gene of interest, and number of variants according to sequential filtering: the number of available 

(non-monomorphic) variants in the sample that passed the functional filters described in the 

Methods section, number of variants after applying quality filters, and after restricting to those 

with at least 3 carriers of the rare alleles and less than 300 carriers, and the number of variants 

with at least 50% power to reject the null hypothesis at the 0.05 level under the assumption of 

odds ratio =2. There were 3 such variants in the NOTCH3-SVD stroke analysis, 1 variant in the 

DEC2-short sleep analysis, and 4 variants in the F5-VTE analysis.  

Table 2: Characteristics of the TOPMed datasets and variants considered for association testing. 
 

  SVD stroke Short sleep VTE 

# individuals in the analysis 5,358 20,021 11,627 

# cases 692 (12.9%) 2,408 (12%) 3,793 (32.6%) 

# controls 4,666 (87.1%) 17,613  (88%) 7,834 (67.4%) 

Gene of interest NOTCH3 DEC2/ 

BHLHE41 

F5 

# potentially functional non-monomorphic 

variants identified 

122 58 142 

# variants further passing TOPMed quality filters 117 49 132 

# variants further having 2<carriers <300 20 9 25 

# variants with estimated power >0.5 at the 0.05 

𝛼 level 

3 1 4 

 

Table 3 provides the results from testing each of the variants passing this estimated power filter. 

Of the three tested NOTCH3 variants, rs115582213 had p-value=0.03. For short sleep, only a 

single DC2 variant was tested, it had BinomiRare mid-p-value=0.03, suggesting association with 

short sleep. For the F5 gene and VTE, none of the four tested variants showed evidence of 

association.  

Table 3: Results from association analysis of rare genetic variants within monogenic disease genes of 

interest. Genetic variants presented are those that passed functional annotation and statistical power 

filters. For each variant we provide its BinomiRare p-value and mid-p-value, the number of carriers of the 

rare allele 𝑛!, the number of carriers with the outcome 𝑛", the estimated power computed while assuming 

effect size OR=2 and p-value threshold=0.05, pathogenicity interpretation from ClinVar, CADD score, 

and FATHMM-XF coding score.  
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rsID Variant BinomiRare 
pval 

BinomiRare 
midp 

𝑛* 𝑛+ Estimated 
Power 

(OR=2) 

ClinVar 
Interpretation 

CADD 
PHRED 

FATHMM-
XF coding 

SVD Stroke: NOTCH 3 gene 

rs115582213 chr-19-

15162524-

C-T 

0.04 0.03 87 17 0.7 Benign/ 

Likely  

benign 

25.4 0.66 

rs112197217 chr-19-

15179425-

G-T 

0.53 0.49 166 23 0.91 Benign/ 

Likely benign 

21 0.42 

rs11670799 chr-19-

15188240-

G-A 

0.81 0.77 180 23 0.94 Benign/ 

Likely benign 

28.8 0.68 

Short sleep: DEC2 gene 

rs121912617 chr-12-

26122364-

G-T 

0.04 0.03 127 38 0.98 Not available 27.5 0.66 

VTE: F5 gene 

rs6026 chr-1-

169528054-

C-T 

0.37 0.34 115 31 0.94 Benign/ 

Likely benign 

25.7 0.75 

rs6034 chr-1-

169529782-

G-C 

1.00 0.94 46 16 0.57 Conflicting 

interpretations 

21.3 0.56 

rs78958618 chr-1-

169542985-

G-A 

0.67 0.63 130 32 0.94 Benign 15.18 0.11 

rs9332485 chr-1-

169586344-

C-T 

0.37 0.34 222 55 1 Benign/ 

Likely benign 

22.5 0.23 

 

 

Discussion 

We extended the BinomiRare test and proposed a CMP test for testing the association of a rare 

genetic variant with a binary outcome in the mixed model framework. These tests were 

specifically developed to handle variants with very low minor allele counts (tens of carriers), 

because it was previously shown that other tests that allow for covariates adjustment such as the 

naïve Score test and the SPA test do not always control the type 1 error in the very low count 

settings (14). Both carriers-only tests first estimate the outcome probabilities for each person in a 
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data set, while accounting for covariates and for genetic relatedness (and possibly other 

covariance matrices) via a mixed model, and then use the estimated conditional disease 

probabilities. For a single variant, the carriers of the rare alleles are identified, and based on their 

disease probabilities and the observed number of “cases”, a p-value is computed, as the 

probability of observing the given number of cases or more extreme given the estimated outcome 

probabilities. The BinomiRare test with conditional probabilities performed well, while, 

surprisingly, the CMP test did not control the Type 1 error rate for settings with low carrier 

counts. This was likely because the approximations on which it relies are asymptotic in its non-

centrality parameter 𝜆, which is related to the number of carriers.  

 

We demonstrated the application of the BinomiRare test using three TOPMed studies: of SVD 

stroke, short sleep, and VTE. Due to the low power for testing low-count variants, we filtered 

variants according to functional annotation, and according to computed statistical power. The 

limitation of this approach is that (1) The deleteriousness predicting annotations used and the 

filters applied to them may not have captured the true functional variant set; (2) the power 

analysis was based on an arbitrarily selected OR parameters. In this study, we chose OR=2 and 

only considered the handful of variants that had estimated power > 0.5 for testing while requiring 

p-value (𝛼 level)<0.05. We recognize that many rare variants have larger effect sizes. However, 

if we specified a larger OR parameter, and thus included more variants in our analysis, a more 

stringent 𝛼 level would be needed. Thus, the resulting list of variants to test may have been 

similar.  More work is needed developing strategies for identifying single rare variant 

associations.  
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For each of the phenotypes, SVD stroke, VTE, and short sleep, we searched for rare variants 

within genes with known trait associations. For SVD stroke, we considered NOTCH3, because 

some NOTCH3 variants have been in CADASIL patients, which poses a risk for stroke. Most 

NOTCH3 mutations reported as associated with CADASIL are those involving loss or gain of a 

cysteine residue, leading to unpaired cysteine (37). Single nucleotide variants in NOTCH3 have 

not yet consistently identified as associated with SVD stroke in population-based studies. Here, 

we identified the rare variant rs115582213 (BinomiRare mid-p-value=0.03). This variant was 

rare, with 87 variant carriers out of 5,358 individuals in the dataset. Of these, 17 individuals had 

SVD stroke.  

 

For VTE, we considered the F5 gene. The F5 gene harbors the strongest known, relatively 

common, genetic risk factor for VTE, the rs6025 variant (38; 39). This motivated the search for 

rare variants in this gene. We did not identify any variant associated with VTE at the p-

value<0.05 level. We did not consider rs6025 as part of our testing strategy because it was 

common with MAF=0.04, and had 839 carriers of the rare allele, a setting in which other tests 

such as the SPA should be able to control the type 1 error well and also be more powerful. Still, 

as a positive control we tested its association with VTE using BinomiRare, and the p-value was 

1.5x10-14.  

 

Short sleep has been consistently associated with cardiovascular and cardiometabolic disease 

(40; 41). Genetic determinant of short sleep may help elucidate this connection (42). We 

considered the DEC2/BHLHE4 gene, which a mutation with a know familial aggregation 

associated with short sleep. Our filtering strategy resulted in a single variant considered for 
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testing: rs121912617, the known short sleep mutation (27). In our data, it was associated with 

short sleep with BinomiRare mid-p-value=0.03. Rs121912617 is substantially more common 

(yet is still rare) in African Americans compared to European Americans (0.01 MAF in African 

Americans from the TOPMed short sleep datasets, compared to MAF < 0.001 in European 

Americans from the same dataset), allowing for observing this association in a population-based, 

rather than a family-based, study.   

 

Here, we demonstrated the BinomiRare test for testing single-variant associations in data with 

known or cryptic relatedness. It can also be used to test sets of rare variants, by defining a carrier 

as an individual with at least one rare allele in the variant set. It is a topic of future research to 

extend this framework to use the counts of the rare variant allele and increase power.  
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Appendix 

The CMP test  

Let 𝑊 = ∑ 𝐷!4
!(# , for 𝐷! ∼ 𝐵𝑖𝑛𝑜𝑚(𝑝! , 1) be a random variable with the CMP-Binomial 

probability function. When 𝑚 increases, this distribution is approximated by the CMP 

distribution (Theorem 4.1. in Daly and Gaunt (43))  so that 𝑊 ∼ 𝐶𝑀𝑃(𝜆, 𝜈). Consider 

proposition 2 in Kadane (19) stating:  
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Proposition 2 (Kadane, 2016): Suppose 𝐷#, … , 𝐷4 take values on {0,1}. Let 𝑃(𝑊 = 𝑘) = 𝑝%� ≥
0, where ∑ 𝑝%�4

%(, = 1. Then there exists a unique distribution on 𝐷#, … , 𝐷4 such that 𝐷#, … , 𝐷4 

are exchangeable of order 𝑚, and ∑ 𝐷!4
!(#  has the same distribution as 𝑊. 

According to this proposition, an arbitrary sum of binary variables is distributed as a sum of 

exchangeable binary variables, where the exchangeable variables are such that there is a unique 

combination of probability parameter 𝑝 = Pr(𝐷# = 1) = ⋯ = Pr(𝐷4 = 1) and a parameter 𝜌 

modeling the dependency between each pair 𝐷! , 𝐷- , 𝑖 ≠ 𝑗. Therefore, two parameters suffice to 

characterize the distribution of an arbitrary sum of binary variables. Specifically, for a given set 

of carriers of a rare genetic variant, the sum of their disease statuses  

𝑊$! =Q𝐷!
$!

!(#

 

is distributed like a unique sum of exchangeable binary variables.  Based on the estimated 

disease probabilities, we estimate the two parameters (different than the probability and 

dependency parameters 𝑝 and 𝜌 above) of the CMP distribution to obtain an estimated 

probability function in a variation of a method-of-moment approach that is based on estimated 

probabilities, rather than on the observed data. Daly and Gaunt (43) provided an approximation 

to the CMP distribution: 

Proposition 2.3. (Daly and Gaunt): Let 𝑊 ∼ 𝐶𝑀𝑃(𝜆, 𝜈). Then, for 𝑘 ∈ ℕ, 

𝐸[𝑊%] ∼ 𝜆%5 �1 + 𝑂 �𝜆1#5��,	 

as 𝜆 → ∞. 
Assuming that 𝜆1#/5 is small (which, as we shall see, is true when 𝜆 is very large, because 𝜈 

tends to be well bounded), we get that, approximately: 
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 𝐸[𝑊] ≈ 𝜆#/5 . (2) 

Daly and Gaunt also showed, in their equation 2.4 and based on the result in Shmueli et al (18), 

that: 

 Var(𝑊) ≈ 1
𝜈 𝜆

#
5 + 𝑂(1),		as		𝜆 → ∞. (3) 

Therefore, noting that Var(𝑊) = 𝐸[𝑊&] − (𝐸[𝑊])&, once we estimate 𝐸[𝑊] and 𝐸[𝑊&], we 

use (4) and (5) to obtain estimators of 𝜆 and 𝜈 by: 

 �̂� = 𝐸[𝑊]�
𝐸[𝑊&]� − M𝐸[𝑊]� O&

= 𝐸[𝑊]�
𝑉𝑎𝑟(𝑊)�  

(4) 

 𝜆� = M𝐸[𝑊]� O57 (5) 

Estimating parameters of the CMP distribution from estimated diseased probabilities. We 

consider two approaches to estimate components of 𝜆� and �̂�, i.e. 𝐸[𝑊],  𝐸[𝑊&], and Var(𝑊): an 

analytic approach, and a sampling-based approach. In the analytic approach, we compute 

𝐸[𝑊]� = ∑ 𝑝8G$!
!(# , and 𝑉𝑎𝑟[𝑊]� = ∑ 𝑝8G$!

!(# (1 − 𝑝8G). In the sampling-based approach, we generate 

random variables 𝑊�  with the same distribution as 𝑊$! (the sum of disease statuses among the 𝑛* 
carriers of a genetic variant), and treat them as observed data to estimate the desired quantities. 

More specifically, let 𝐷�!,: ∼ 𝐵𝑖𝑛𝑜𝑚(𝑝8G)	be the sampled disease status of the 𝑖th individual in the  

𝑠 = 1,… , 𝑆	  sample. Then: 

 𝑊�: =Q𝐷�!,:
$!

!(#

 (6) 

and we estimate: 

𝐸[𝑊]� = 1
𝑆Q𝑊�:

;

:(#

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.21249450doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.21249450
http://creativecommons.org/licenses/by/4.0/


𝐸[𝑊&]� = 1
𝑆Q𝑊�:&

;

:(#

 

To summarize, to calculate the p-value and the mid-p-value, formally given by:  

 

𝑝-value = Pr+(𝑊 = 𝑛!) +	2Pr+(𝑊 = 𝑘) × 1[Pr+(𝑊 = 𝑘) < Pr+(𝑊 = 𝑛!)]
"!

#$%

 (9) 

 mid-𝑝-value = Pr�(𝑊 = 𝑛𝑑)
2

+	Q Pr�(𝑊 = 𝑘)× 1[Pr�(𝑊 = 𝑘) < Pr�(𝑊 = 𝑛𝑑)]
𝑛𝑐

𝑘=1

 

(10) 

we estimate probabilities for each potential number of disease carriers, in the following process:  

1. Obtain individual disease probability estimates 𝑝#U,… , 𝑝$!U  via standard approaches (e.g. 

logistic mixed model).  

2. Compute estimates 𝐸[𝑊]�  and 𝑉𝑎𝑟[𝑊]�  in the analytic approach, or compute 𝐸[𝑊]�  and 

𝐸[𝑊&]�  in the sampling approach.  

3. Compute estimates  𝜆�	, �̂� using (6) and (7).  

4. Compute Pr+(𝑊 = 𝑘) for 𝑘 = 1,… , 𝑛+ using the R package COMPoissonReg (44). 
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Figures 

Figure 1: Step 1 of testing genetic association using the carriers-only tests framework. A “null model” 

of association between the binary outcomes and covariates of interest is fitted, accounting for genetic 
relationship. Then, estimated conditional outcome probabilities are extracted to be used in the testing 

step. 
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Figure 2: Step 2 of testing genetic associations using the carriers-only tests framework. Based on 

estimated outcome probabilities, variants are inspected one at a time. For a given variant, carriers of the 

rare allele are identified, and a test of the null hypothesis 𝐻#: 𝑃$! = 𝑝$!'  is performed testing whether 

𝑛" is consistent with the outcome probabilities within the carriers, based on the null model. 
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