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We study curve motion by the binormal �ow with curvature and torsion depending velocity and sweeping out immersed surfaces.
Using the Gauss-Codazzi equations, we obtain 	laments evolving with constant torsion which arise from extremal curves of
curvature energy functionals. �ey are “soliton” solutions in the sense that they evolve without changing shape.

1. Introduction

A large class of physical systems are modelled in terms

of motion of curves and surfaces in Euclidean space R
3.

A remarkable example is the so-called localized induction
equation (LIE)

�� = �� × ���, (1)

which is a soliton equation used to model the dynamics of a
thin vortex 	lament in an incompressible, inviscid, homoge-
neous, 3-dimensional �uid [1–3]. Quite o
en, by resorting to
the underlying geometry one can gain considerable insight
into the dynamics of physical systems [3, 4]. Here, we use
a geometrical approach to investigate an extension of (1)

obtained by considering a smoothmap� : � ⊂ R
2 →�3� (�),�(�, 	), verifying

�� = 
(�����∇̃��������� , det (��, ∇̃����, ∇̃2����)�����∇̃���������2 )�� × ∇̃����, (2)

where 
 is a suitable smooth function, ∇̃ denotes the Levi-

Civita connection on �3� (�), � ∈ {0, 1}, and �3� (�) is a
Riemannian (� = 0) or Lorentzian (� = 1) 3-space form with
constant curvature �; that is, �3� (�) is one of the following:
R
3, the sphere S3, the hyperbolic space H3, the Minkowski

spaceR31, the de Sitter space S
3
1, or the anti de Sitter spaceH

3
1.

Under mild conditions we will see that a curve motion
following (2) describes a curve � evolving under the binormal

�ow, with velocity depending on curvature and torsion (19),

and determines an immersed surface, ��, in �3� (�). �en,
fundamental results of the theory of submanifolds can be
applied and it will be seen that solving geometrically (2)
amounts to solving the Gauss-Codazzi equations (40) and
(41), since that would give us the curvature and torsion of
a geodesic foliation of ��. Alternatively, one can determine
the evolution by 	nding a single solution, working as initial
condition �(�, 0) = �(�), and then giving a geometrical
description of the binormal �ow.

If �3� (�) = R
3 and 
 ≡ 1, (2) reduces to LIE (1) and it

can be seen that Gauss-Codazzi equations boil down to Da
Rios equations found in 1906 [2]. In Lorentzian backgrounds
(1) has been studied in [1, 5], while long time existence of
closed solutions in Riemannian ambient spaces are analyzed

in [6]. If 
 ≡ 
(|∇̃����|), travelling wave solutions of the
Gauss-Codazzi equations have been investigated in [7]. In the
second part of this work, we focus on curves evolving by (2)
with constant torsion and use theGauss-Codazzi equations to
construct solutions bymeans of extremal curves for curvature
dependent energies and associated 1-parameter groups of
isometries.

2. Preliminaries

Consider the Euclidean semispace E�
]
, that is, R� endowed

with the canonical metric of index ], denoted by ⟨⋅, ⋅⟩, and
the Levi-Civita connection, denoted by ∇. �en, the semi-

Riemannian 3-space forms �3� (�) (the Riemannian case,
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� = 0 will be simply denoted by�3(�)) can be isometrically

immersed in E
4
]
, the 4-dimensional Euclidean semispace, in

a standard way [8].�e �at case,�3� (�) = E
3
� , � = 0, � = 0, 1,

corresponds to either R3 or the Minkowski space R31 ≡ L
3.

�ey can be isometrically immersed in L
4 = R

4
1 endorsed

with the metric

� = ��21 + ��22 + ��23 − ��24 (3)

in an obvious manner:

R
3 = {(�1, �2, �3, �4) ∈ L

4 | �4 = 0} ,
L
3 = {(�1, �2, �3, �4) ∈ L

4 | �1 = 0} . (4)

When � > 0,�3� (�) correspond to the 3-sphere, S3(�) (� =0), and the de Sitter 3-space, S31(�) (� = 1), de	ned by

S
3
� (�) = {x ∈ E

4
� | ⟨x, x⟩ = 1�} , (5)

where x = (�1, �2, �3, �4). Finally, for � < 0 we obtain the

hyperbolic 3-space, H3(� = 0), and the anti de Sitter 3-space,
H
3
1 (� = 1)

H
3
� (�) = {x ∈ E

4
�+1 | ⟨x, x⟩ = 1�} . (6)

�e standard isometric immersions of�3� (�) into E
4
]
([8] p.

20) will be all denoted by " and the induced metrics also by⟨⋅, ⋅⟩, while the Levi-Civita connections on E
4
]
and�3� (�) are

denoted by ∇ and ∇̃, respectively. As usual, the cross product
of two vector 	elds #,$ in �3� (�), denoted by # × $, is
de	ned so that ⟨# × $,%⟩ = det(#, $, %) for any other

vector 	eld % of �3� (�), where det(#, $, %) stands for the
determinant.

Now, for a given isometric immersion of a surface, � :&2
]
→ �3� (�), ] ∈ {0, 1}, we denote by ∇ the Levi-Civita

connection of the immersion (&2
]
, �). As it is also customary,

for a surface&2
]
in any 3-dimensional space form�3� (�), we

require the 	rst fundamental form to be nondegenerate. Take#,$, %,' tangent vector 	elds to&2
]
and choose * a normal

vector 	eld to &2
]
in�3� (�). �en the formulas of Gauss and

Weingarten are, respectively, as follows [8]:

∇�$ = ∇̃�$ − � ⟨#, $⟩ �= ∇�$ + ℎ (#, $) − � ⟨#, $⟩ �, (7)

∇̃�* = −/	# + 2⊥�*, (8)

where � = " ∘ � is the position vector, ℎ denotes the
second fundamental form of &2

]
in �3� (�), /	 stands for

the Weingarten map, and 2⊥ denotes the connection on the

normal bundle of&2
]
. By using (7) and (8) and denoting by 6

and 6̃ the Riemann curvature tensors associated with ∇ and∇̃, respectively, the following relation holds:

6̃ (#, $)% = � (⟨$, %⟩# − ⟨#,%⟩$) , (9)

while the equations of Gauss and Codazzi are given, respec-
tively, by [8]

⟨6̃ (#, $)%,'⟩ = ⟨6 (#, $)%,'⟩
− ⟨ℎ (X,') , ℎ ($, %)⟩+ ⟨ℎ (#, %) , ℎ ($,')⟩ ,

(10)

(∇ℎ) (#, $, %) = (∇ℎ) ($,#, %) , (11)

where ∇ℎ is de	ned by

(∇ℎ) (#, $, %) = 2⊥�ℎ ($, %) − ℎ (∇�$,%)− ℎ ($, ∇�%) . (12)

Now choosing an adapted local orthonormal frame {91, 92, 93}
in�3� (�) such that the vectors 91, 92 are tangent to&2] and 93 is
normal to&2

]
in�3� (�), and denoting by {;1, ;2, ;3} the dual

frame of {91, 92, 93}, the Cartan connection forms are de	ned
by

∇̃�9� = ∑
�
@̃�;�� (#) 9�, (13)

for ", A ∈ {1, 2, 3}, where @̃� = ⟨9�, 9�⟩ is the causal character of9�. �en, ;�� = −;�� and
ℎ (9�, 9�) = @̃3ℎ��93,

ℎ�� = −⟨∇̃�93, 9�⟩ = ;3� (9�) , (14)

", A ∈ {1, 2} [8]. We will o
en resort to the standard abuse of
notation and identi	cation tricks in submanifold theory.

3. Binormal Evolution Surfaces

�e covariant derivative of a vector 	eld # along a curve �
will be denoted by (2#/��)(�) fl ∇̃�#(�). Let �(�) be a unit
speed nongeodesic curve immersed in �3� (�) with nonnull
velocity (2�/��)(�) = E(�), ∀�; therefore, it is assumed to be
either spacelike or timelike. If it also has nonnull acceleration(2E/��)(�), then �(�) is a Frenet curve of rank 2 or 3 and
the standard Frenet frame along �(�) is given by {E,&, G}(�),
where G is chosen so that det(E,&, G) = 1. �en the Frenet
equations de	ne the curvature, H(�), and torsion, I(�), along�(�)

2E�� (�) = @2H (�)& (�) , (15)

2&�� (�) = −@1H (�) E (�) + @3I (�) G (�) , (16)

2G�� (�) = −@2I (�)& (�) , (17)
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where @�, 1 ≤ " ≤ 3, is the causal character of E, &, and G,
respectively. Notice that the following relations hold:

E = @1& × G,& = @2G × E,G = @3E × &.
(18)

Curves for which both curvature and torsion are constant
are called Frenet helices. In a semi-Riemannian space form
any local geometrical scalar de	ned along Frenet curves can
always be expressed as a function of their curvatures and
derivatives.

Given a smooth map � : � ⊂ R
2 → �3� (�), �(�, 	),

satisfying (2), we usually identify � and " ∘ �. Assume that
the initial condition �(�) fl �(�, 0) is a unit speed Frenet
curve of rank 2 or 3; then ��(�) fl �(�, 	), which will be
called the �lament at time 	, is also unit speed parametrized∀	. In fact, we have (K/K	)⟨��(�, 	), ��(�, 	)⟩ = 2⟨∇̃����, ��⟩ =0, where the last equality is obtained from (2). So, since⟨��(�, 0), ��(�, 0)⟩ = ⟨��/��, ��/��⟩ = ⟨E, E⟩ = @1, then so is∀	; that is, (2) is a length-preserving evolution. Assuming also

that ∇̃����(�, 	) is nonnull everywhere, the associated Frenet

frame will be de	ned for all �� and combining (2) and (15) we
obtain

�� = 
 (H, I) �� × ∇̃���� = 
 (H, I) E × 2E��= @2H
 (H, I) E × & = @2@3H
 (H, I) G = F (H, I) G. (19)

�is means that �(�) evolves by the binormal �ow with
velocity F(H, I). We are going to suppose also that 
 is never

zero so that (�, �) de	nes an immersed surface in �3� (�)
swept out by �(�). It will be denoted by �� and called a
binormal evolution surface (BES) with initial condition � and
velocity F. �e curves ��(	) fl �(�, 	), perpendicular to the
	laments, are called �bers of ��. �e time variation of the
Frenet frames is described in the following proposition (cf.(3.15) of [3] for surfaces in R

3).

Proposition 1. Let (�, �) be a BES of�3� (�) with velocity F
(19). 	en

∇̃�/��(E&G)(�, 	) = ( 0 H 0−H 0 I0 −I 0)(@1E@2&@3G)(�, 	) , (20)

∇̃�/��(E&G)(�, 	)

= ( 0 −IF @3F�IF 0 @2ℎ22F−@3F� −@2ℎ22F 0 )(@1E@2&@3G)(�, 	) ,
(21)

where ℎ22 = (1/H){@3(F��/F) − @2I2 + @1@3�} and H(�, 	) andI(�, 	) denote the curvature and torsion of the curves ��(�).

Proof. Under our assumptions, all �� are unit speed
parametrized and they all have well de	ned Frenet frame
satisfying (15)–(17), so (20) is clear. As for the second part,

since ��(�) = �(�, 	) is not a geodesic in �3� (�) and ∇̃���� is
not null, then, for su�ciently small �, the unit Frenet normal
to ��(�), &(�, 	), is parallel to a (local) unit normal to ��.
�is means that ��(�) are geodesics in �� for any 	 and the
parametrization

� (�, 	) = �� (�) (22)

determines a geodesic coordinate systemwith respect to which
the metric ⟨,⟩ ≡ � can be written as

� = @1��2 + @3F2�	2. (23)

Now, the Gauss and Weingarten formulas (7) and (8), in
combination with the Gauss and Codazzi equations (10)
and (11), will give us all the relevant geometric information
about the immersion (�, �). �is requires bringing in some
computational stu� and very long calculations whose details
are omitted here. �us, the Christo�el symbols of the Levi-
Civita connection of (23) with respect to the parametrization
(22) (see, e.g., [8], Proposition 1.1) can be computed from the
metric coe�cients ���. In our case, we have

Γ111 = Γ211 = Γ112 = 0,
Γ212 = F�

F
,

Γ122 = −@1@3FF�,
Γ222 = F�

F
,

(24)

where subscripts � and 	mean partial derivative with respect
to � and 	, respectively. �is makes it possible to know the
expression for the Levi-Civita connection of �� ([8], §1.4),
denoted here by ∇

∇�/�� KK� = 0,
∇�/�� KK	 = F�

F

KK	 ,
∇�/�� KK	 = −@1@3FF�

KK� + F�
F

KK	 .
(25)

As before, {E(�, 	),&(�, 	), G(�, 	)} represent the Frenet frames
along ��(�), and we choose the following local adapted frame
on ��:

91 = �� = E,
92 = ��

F
= G,

93 = * = −@2&,
(26)
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where * is the unit normal to �� (locally de	ned). �en,
combining (7), (8), (13), (14), and (15)–(17), one gets

;21 (91) = 0,
;21 (92) = @3F�

F
,

;31 (91) = ℎ11 = −@2H,;31 (92) = ;32 (91) = ℎ12 = @2I,;32 (92) fl ℎ22,
(27)

where H(�, 	) and I(s, 	) denote the curvature and torsion of
the curves ��(�).

�e second fundamental form can be considered as a
quadratic form given by ℎ(#) fl ⟨/	#,#⟩; therefore, we
obtain from (27) that

ℎ = −@2H��2 + 2@2IF���	 +F
2ℎ22�	2, (28)

with respect to the parametrization (22), where ℎ22 is the
coe�cient of the second fundamental form ([8], §2.3) of ��
in�3� (�) given by ℎ22 fl −@2⟨∇̃�G,&⟩. Since ∇ is determined
by �, ℎ22 can be computed with the aid of (25) and the Gauss
formula (7) giving

ℎ22 = 1H {@3F��F − @2I2 + @1@3�} . (29)

Using again the Gauss and Weingarten formulas (7) and

(8), it can be shown that � : � → �3� (�) → E
4
]
satis	es the

following PDE system:

��� = − H
F
�� × �� − @1��, (30)

��� = F�
F
�� − IFH ��� − @1 IFH ��, (31)

��� = −@1@3FF��� − @2 ℎ22F2H ���
− (@1@2ℎ22H + @3)F

2�� + F�
F
��. (32)

�is system can be expressed equivalently in terms of the
time variation of the Frenet frame. In fact, from the Gauss
formula (10) and (30), we have2E�	 = ∇̃�/��E = −@2FI& +F�G. (33)

So, di�erentiating �� = FG and using once more Gauss and
Weingarten formulas, we have

��� = F�G +F (∇̃�/��G − @3�F�) , (34)

which combined with (32) gives2G�	 = ∇̃�/��G = −@1@3F�E − ℎ22F&. (35)

Finally, from (33), (35), and the cross product relations (18),
one has 2&�	 = ∇̃�/��& = @1IFE + @2@3ℎ22FG, (36)

which ends the proof.

Now, combining (9) and Gauss and Codazzi equations
(10) and (11) with (13), (25), (26), and (27), we obtain a
er
a long computation

@2@3F��
F

= @2Hℎ22 + I2 − @1@2@3�, (37)

H� = −2F�I − I�F, (38)

I� = @1@3HF� + @2 (ℎ22F)� . (39)

Notice that the Gauss equation (37) is equivalent to (29). By
substitution of (29) in (39) we get that the Codazzi equations
(38) and (39) for (�, �) boil down to

H� = −2F�I − I�F, (40)

I� = @1@3HF� + @2 (FH (@3F��
F

− @2I2 + @1@3�))
�
. (41)

Observe that if F = H, (40) and (41) are precisely Da Rios
equations for the vortex 	lament [2]. Moreover, (40) and (41)
are the compatibility conditions of the PDE system (30)–(32).
�us, from the fundamental theorem of submanifolds ([8],
§2.7), given functions H(�, 	), I(�, 	), and F(�, 	), smoothly
de	ned on a connected domain � and satisfying (40) and
(41), there exists a solution of (30)–(32) (and, consequently, of
(20)-(21)) determining a smooth isometric immersion (�, �)
(unique up to rigid motions, if � is simply connected) of a

surface in�3� (�) whose metric and the second fundamental

form are given, respectively, by � = @1��2 + @3F2�	2 and@2ℎ = −H��2 + 2IF���	 + @2F2ℎ22�	2, where ℎ22 is obtained
from (29).

Computing the Christo�el symbols from the metric
coe�cients for such an immersion, (�, �), we see that ��(�) are
arc-length parametrized geodesics∀	.�en, a combination of
theGauss formula (7) and (15)–(17) for the Frenet frame along
the coordinate curves ��(�), {�� = E(�, 	),&(�, 	), G(�, 	)},
shows that the unit Frenet normals&(�, 	) are perpendicular
to the surface (�, �). Hence, �� = R(�, 	)G(�, 	), but then the
second coe�cient of � (23) implies that F(�, 	) = R(�, 	)
and (�, �) is a solution of (19). Since (�, �) is foliated by
geodesics ��(�) having H�(�) fl H(�, 	) and I�(s) fl I(�, 	)
as curvature and torsion, respectively, the immersion itself,�, is geometrically determined by H�(�) fl H(�, 	) andI�(�) fl I(�, 	), because, from the fundamental theorem of
curves, for any 	xed 	, there exists a unique curve ��(�) (up
to congruences and causal character of the Frenet frame)
having H�(�) and I�(�) as curvature and torsion.�en, smooth
assembling of these curves ��(�), 	 ∈ S, would give �. So,
geometrically solving (19) amounts to solving system (40),
(41).
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Another consequence of the Gauss-Codazzi equations
(40) and (41) is that, besides length, other geometric quanti-
tiesmay also be invariant for closed 	laments.More precisely,
we have the following.

Proposition 2. Let (�, �) be a binormal evolution surface

in �3� (�) with velocity F and assume that � ∈ [0, 1] and
all �lament curves ��(�) = �(�, 	) are T4-closed in [0, 1]. If
F(H, I) = F(H), then ∫10 I �� and ∫10 (V(H) + WI)��, with�V/�H = F(H), W ∈ R, are independent of 	. Furthermore,

if F(H) is constant, then also ∫10 H �� is invariant. Finally, if
F(H, I) = XH + YI, then ∫1� (YH − @1@3XI)�� does not depend
on 	.
Proof. Only 	rst part is proved since the others are similar.

If F(H, I) = F(H), then, the invariance ∫10 I �� is a direct

consequence of HF� = (HF−V)�, because using (41) we have(�/�	) ∫10 I �� = ∫10 I��� = 0. Now, from (40)

��	 ∫10 (V (H) − WI) �� = ∫10 H�F �� − W∫1
0
I���

= ∫1
0
(F2I)� �� = 0.

(42)

4. Evolution with Constant Torsion

Now we study binormal evolution surfaces, whose 	laments
have the same constant torsion. Since I = I� ∈ R, F(�, 	) =
F(H(�, 	), I�) fl F̃(H(�, 	)). Choose V(^) so that V̇(^) fl�V/�^ = F̃(^). Assume 	rst I = 0.
Proposition 3. Let �� be a binormal evolution surface, whose
�laments satisfy I = 0. 	en � is extremal for the energyΘ(�) fl ∫�(V(H) + R)�� and �� = {a�(�), 	 ∈ R}, where{a�, 	 ∈ R} is a 1-parameter group of isometries of �3� (�).
Moreover, the �bers of �� have constant curvature and zero

torsion (if they are not geodesics) in �3� (�). In particular, if� = 0, �� are either ruled surfaces or rotational surfaces.
Proof. By substituting I = 0 in (40) we have H(�, 	) = H(�) and
themetric with respect to the chosen coordinate system is� =@1��2+@3F̃2(�)�	2.�ismeans that (�, �) is awarped product
surface [8], and since K���/K	 = 0, we have that ��(�, 	) =
F̃(�)G(�, 	) is a Killing 	eld of (�, �). Now, integrating (41)
we get

0 = V̇�� + @1@2V̇ (H2 + @2�) − @1@2H (V + R) , (43)

for some R ∈ R. Moreover, since I = 0, we have that (43) is
the Euler-Lagrange equation forΘ(�) ([9, 10]) and ��must be

an extremal ofΘ in�2� (�), ∀	. On the other hand, for a given
	eld along �,', the following variation formulas for V = | ̇�|,

H, and I can be obtained using standard computations and
the Frenet equations (see, [9, 10])

'(V) = @1V ⟨∇̃�',E⟩ ,
' (H) = ⟨∇̃2�',&⟩ − 2@1H ⟨∇̃�',E⟩ + @1� ⟨',&⟩ ,
' (I) = @2 (1H ⟨∇̃2�'+ @1�', G⟩)

�
− @1I ⟨∇̃�',E⟩

+ @1H ⟨∇̃�',G⟩ ,
(44)

where the subscript � denotes di�erentiation with respect to
the arc-length. Now, combining (43), (44), and the Frenet
equations, one can see that

I (V) = I (H) = I (I) = 0, (45)

along �, where I = V̇G. �is means that I = V̇G is a
Killing 	eld along � ([9–11]), but this 	eld is precisely �� =
F̃G. Now, (44) imply that the Killing vector 	elds along a
curve � form a six-dimensional linear space. Moreover, the

Lie algebra of�3� (�) is six-dimensional and the restriction of

a Killing vector 	eld in�3� (�) to any curve � gives a Killing
vector 	eld along �. Hence, every Killing vector 	eld along
a curve, �, is the restriction to � of a Killing vector 	eld of�3� (�) [11]; in other words, �� can be extended to a Killing

	eld on �3� (�) (denoted also by I). Hence, the associated1-parameter group {a�, 	 ∈ R} is formed by isometries of�3� (�) and �� = �(�) is obtained as �� = {a�(�(�)), 	 ∈ R},
where �(�) = �(�, 0). Since �� = E(�, 	), �� = V̇(H(�))G(�, 	),
and ∇̃��G(�, 	) = −@2I&(�, 	) = 0, we get that G(�, 	) does not
depend on �. Moreover, as 	bers are orbits of a Killing 	eld

of�3� (�), they have constant curvature. Now, for any �� take
an arc-length parametrization, d(	), of the 	ber of �� through��. With the subscript d denoting the geometric elements
associated with the curve d, we have E�(	) = G(	/V̇(H(��)))
and, using the last equation of (21), we obtain

@�2H�&� = −@1@3 V̇�V̇ E − ℎ22&, (46)

if d has nonnull acceleration. �us, di�erentiating (46) with
respect to 	 and using again (21), we have that d(	)must verify

H� (�, 	) = H� (�) ,H�I� = 0,
@�2H2� = @1 V̇2�V̇2 + @2ℎ222,

(47)

from which we see that either H� = 0 and d(	) is a geodesic in�3� (�) or H� ̸= 0 and d(	) is a planar circle.
On the other hand, if d has null acceleration and is not a

geodesic, then we can consider the following frame along �.
De	ne&�(	) as the lightlike 	eld on d given by (2E�/�	)(	) =&�(	) and denote by G�(	) the only lightlike vector such that
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⟨&�, G�⟩ = 1 and ⟨E�, G�⟩ = 0. In this case, we have the
following equations:

2E��	 (	) = &� (	) ,
2&��	 (	) = I� (	)&� (	) ,
2&��	 (	) = −E (	) − I� (	) G� (	) ,

(48)

for certain function I�(	) which will be also called the torsion
of � (here, the “curvature” is considered to be 1). �en, from
the second equation of (21), it is clear that I�(	) = 0.

Finally, we restrict ourselves to �at ambient spaces R3 or
L
3. For simplicity, we take 	rst�3� (�) = R

3. If V(H) = ]H, ] ∈
R, then any planar curve � is critical for Θ [12] and �� must
be a right cylinder shaped on �. Assume then that V(H) ̸= ]H,
] ∈ R. �en the Killing 	eld along �, I, can be written as
I = V̇G = R1(� × f) + R2f, for some R1, R2 ∈ R, R1 ̸= 0,
and a constant vector f in R

3. By scalar multiplication of f
with the covariant derivative ofI = V̇G = R1(� × f) + R2f
along �, we obtain R2 = 0 and, then, �� is a rotational surface
inR
3 with pro	le curve �. �ese facts can be extended to the

Minkowski space L3 by similar arguments.

Moreover, if V(H) ̸= ]H, ] ∈ R, it is not di�cult to see
that, identifying the plane containing � and R

2, choosing a
coordinate system containing f, and using I = V̇G, it is
possible to 	nd a coordinate system in R

2 where � = (�1, �2)
and �1 = WV̇, for some constant W ∈ R. �is also works in the

Minkowski space L3. In particular, take an extremal curve for∫�(V(H) + R)�� either in R
2 or in L

2 and choose a coordinate

system where � = (�1, �2) and �1 = WV̇ = WF̃, for some
constant W ∈ R. Assuming W ̸= 0, then
� (�, 	) = (WF̃ sin (	) , WF̃ cos (	) , g (�)) ,

if @�1@�2 = 1,
� (�, 	) = (WF̃ sinh (	) , g (�) , WF̃ cosh (	)) ,

if @�1 = −1,
� (�, 	) = (WF̃ cosh (	) , g (�) , WF̃ sinh (	)) ,

if @�2 = −1,

(49)

where g(�) veri	es that @�2((WF̃)�)2 + @�3(g�(�))2 = @1 are
rotation surfaces with planar 	laments evolving by (19). If

the extremal curve lies in the Minkowski plane L
2, then

choosing the same coordinate system as before, one could
also construct a surface with planar 	laments evolving by
(19) by rotating � around a lightlike axis. In fact, suppose

without loss of generality that the lightlike axis is determined
by K/K�3 + K/K�4; then, the parametrization of �� is given by

� (�, 	) = (Wĩ + (g (�) − Wĩ) 	22 , (g (�) − Wĩ) 	, g (�)
+ (g (�) − Wĩ) 	22 ) ,

(50)

where g(�) veri	es ((WF̃)�)2 −(g�(�))2 = @1. In this case, 	bers
are spacelike curves with null acceleration.

We remark that a periodic solution H(�) of (43) does
not determine a closed 	lament necessarily, and closure
conditions have to be derived. For instance, if H(�) is a
periodic solution of (19) with period � and �(�) is the

corresponding curve in R
2, then integrating (43) we have� = V̇2� +(HV̇−V−R)2, for some � ∈ R. Choosing a coordinate

system in R
2 where � = (�1, �2) and �1 = (1/√�)V̇, we see

that �1 is also periodic. Using the fact that � is arc-length-

parametrized, we have ��2(�) = (1/√�)(HV̇ − V − R). Hence, �
closes up, if and only if ∫�� (HV̇ − V − R) = 0.

Take now I� ̸= 0. If H(�, 	) is also constant, 	laments are
Frenet helices. �e unit binormal G is a Killing vector 	eld
on Frenet helices; hence, their evolution under the G-�ow
satis	es�� = G, so we assume H(�, 	) is not constant.�en (40)
suggests studying travelling wave solutions of the form H(� −@1@3l	), l ∈ R, which implies F̃(H(�, 	)) = (@1@3l/2I0)H + R,
for some R ∈ R. Call m = � − @1@3l	. �en, by substitution in
(41) we obtain

0 = @1@2l2I� H�� + l4I� H3 + (−1)� l2I� H (@1@3� − @2I2�)
+ R ((−1)� � − I2�) . (51)

Proposition 4. Assume that �(m) is a curve in �3� (�) with
nonconstant curvature and constant torsion I = I� ̸= 0 which
is an extremal of the energy Θ̃(�) = ∫�((@1@3l/4I�)H2+RH+lI+W), where l ̸= 0 and R, W ∈ R. 	en, there exists a 1-parameter

group of isometries of�3� (�), {a�, 	 ∈ R}, such that a suitable
parametrization of the surface �� fl a�(�(m)) is a solution of

(19) with F̃(H(�, 	)) = (@1@3l/2I0)H + R.
Proof. It is easy to verify from (51) that H(m) and I = I�
satisfy the Euler-Lagrange equations for the above energy Θ̃
([9, 10]) for a suitable W ∈ R. Consider H(m) a solution of
(51) (observe that (51) can be explicitly solved with the aid
of Jacobi elliptic functions); then H(m) and I = I� determine

a curve �(m) in �3� (�) which is an extremal for Θ̃. Now, the
vector 	eld I(m) fl @1@3lE(m) + F̃(m)G(m) is a Killing 	eld
along �(m) ([9, 10]). As in previous proposition, I can be

extended to a Killing 	eld on�3� (�) with 1-parameter group
of isometries {a�, 	 ∈ R}. Consider the surface �� fl n(m, 	) =a�(�(m)), 	 ∈ R. �en, the reparametrization �(�, 	) fl n(� −@1@3l	, 	) satis	es �� = ((@1@3l/2I0)H + R)G, all 	laments
having constant torsion I = I�.
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If l = 0, then H(�, 	) = H(�) and F̃(H(�)) = R and �� is �at
since, combining (10) and (25), we obtain that the Gaussian
curvature of �� is given by

o fl

6 (K/K�, K/K	, K/K	, K/K�)� (K/K�, K/K�) � (K/K	, K/K	) − � (K/K�, K/K	)2
= −@1F��

F
= 0. (52)

Moreover, (51) implies that � = (−1)�I2� . �us �3� (�) has
to be either S

3(�) or H31(�). Flat surfaces in S
3(�) can be

locally described as the product, with respect to the Lie group

structure of S3(�), of two curves with torsions � and −�,
respectively, [13]. In order to construct explicit parametriza-
tions solving (19) in this case, we take the complex plane, C,

and consider the maps p� : C2 → C
2 de	ned by p�(q1, q2) =(1/2r)(q1q1 − @q2q2, 2q2q1), where q� ∈ C, " ∈ {1, 2}, q�

denotes complex conjugate, @ = ±1, and r ∈ R. Endow

C
2 with the semi-Riemannian metric ⟨q, s⟩ = Real(q1s1 +@q2s2). �en, the restriction of p� to the hyperquadrics⟨q, q⟩ = @r2, @ = ±1, gives two maps which are known as

the standard Hopf mappings

p+ : S3 ( 1r2 ) t→ S
2 ( 4r2 ) ,

p− : H31 (−1r2 ) t→ H
2 (−4r2 ) .

(53)

Let � be a curve in either S
2(4/r2) or H

2(−4/r2). �en,

the complete li
 T+� = p−1+ (�) (resp., T−� = p−1− (�)) is a

Riemannian (resp., Lorentzian) �at (zeroGaussian curvature)
surface in S

3(1/r2) (resp., in H
3
1(−1/r2)) which is called the

Hopf cylinder on �. �e covering maps Ψ+ : R2 → T+� andΨ− : L2 → T−� Ψ± (	, �) = 9��� (�) , (54)

where �(�) denotes a horizontal li
 of �, can be used to
parametrize T±� . Assuming without loss of generality r = 1,
that is, � = ±1, critical curves of ∫� H in S

3(1) or H31(−1) are
characterized by having torsion I2 = 1 [5, 12], and, therefore,
they must be horizontal li
s via Hopf maps. Hence, we have
the following.

Proposition 5. Horizontal li
s via the Hopf map p± of

arbitrary curves � of S2(4) or H2(−4) parametrized by (54)
evolve under �� = G by rigid motions and the corresponding

binormal evolution surface is a Hopf cylinder of S3(1) or

H
3
1(−1) shaped on �, T±� .
�us, explicit parametrizations of T±� are obtained as fol-

lows. Take an arbitrary curve �(�) = (/1(�), 0, /2(�), /3(�))
in S
2(4) or H2(−4); then horizontal li
s of � via p+ or p− are

given by� (�) = (� (�) cosv (�) ,� (�) sinv (�) , 2 (�) cosv (�)− V (�) sinv (�) , 2 (�) sinv (�) + V (�) cosv (�)) , (55)

where

�(�) = √2/1 (�) + 1√2 ,
2 (�) = √2/2 (�)√2/1 (�) + 1 ,
V (�) = √2/3 (�)√2/1 (�) + 1 ,
v (�) = ±2∫ /3 (�) /�2 (�) − /2 (�) /�3 (�)2/1 (�) + 1 .

(56)

Hence, one uses (54) and (55) to obtain a solution of (19).
Notice that if the curve � is embedded in either S

2(4) or
H
2(−4), then so is T±� in S

3(1) or H31(−1) and we have binor-

mal Hopf cylinders with no self-intersections. Moreover, if� is a closed curve then T±� is a closed surface (a �at Hopf

Tori) but the evolving 	lament �(�) is not closed because
of the nontrivial holonomy. However, if, in addition, the

area enclosed by �(�) in either S2(4) or H2(−4) is a rational
multiple of p, then there are Y ∈ Z such that the horizontal
li
 of anY-cover of �(�) is a closed 	lament [12].
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ported by Programa Predoctoral de Formación de Personal
Investigador No Doctor, Gobierno Vasco, 2015.

References

[1] Q. Ding, X. Liu, and W. Wang, “�e vortex 	lament in the
Minkowski 3-space and generalized bi-Schrödinger maps,”
Journal of Physics. A. Mathematical and 	eoretical, vol. 45, no.
45, Article ID 455201, 455201, 14 pages, 2012.

[2] L. S. da Rios, “Sul moto d’un liquido inde	nito con un
	letto vorticoso di forma qualunque,” Rendiconti del Circolo
Matematico di Palermo, vol. 22, no. 1, pp. 117–135, 1906.

[3] W. K. Schief and C. Rogers, “Binormal motion of curves of con-
stant curvature and torsion. Generation of soliton surfaces,”	e
Royal Society of London. Proceedings. Series A. Mathematical,
Physical and Engineering Sciences, vol. 455, no. 1988, pp. 3163–
3188, 1999.

[4] S. Kida, “A vortex 	lament moving without change of form,”
Journal of Fluid Mechanics, vol. 112, pp. 397–409, 1981.

[5] M. Barros, A. Ferrández, P. Lucas, and M. A. Meroño, “Solu-
tions of the Betchov-Da Rios soliton equations: a Lorentzian
approach,” Journal of Geometry and Physics, vol. 31, pp. 217–228,
1999.

[6] N. Koiso, “Vortex 	lament equation in a Riemannianmanifold,”
Tohoku Mathematical Journal, vol. 55, no. 2, pp. 311–320, 2003.



8 Advances in Mathematical Physics
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