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Abstract. Malicious web pages are among the major security threats
on the Web. Most of the existing techniques for detecting malicious web
pages focus on specific attacks. Unfortunately, attacks are getting more
complex whereby attackers use blended techniques to evade existing
countermeasures. In this paper, we present a holistic and at the same
time lightweight approach, called BINSPECT, that leverages a combi-
nation of static analysis and minimalistic emulation to apply supervised
learning techniques in detecting malicious web pages pertinent to drive-
by-download, phishing, injection, and malware distribution by introduc-
ing new features that can effectively discriminate malicious and benign
web pages. Large scale experimental evaluation of BINSPECT achieved
above 97% accuracy with low false signals. Moreover, the performance
overhead of BINSPECT is in the range 3-5 seconds to analyze a sin-
gle web page, suggesting the effectiveness of our approach for real-life
deployment.

Keywords: malicious web page, static analysis, lightweight emulation,
machine learning.

1 Introduction

The Web has become an indispensable global platform that glues together daily
communication, sharing, trading, collaboration, and service delivery. Web users
often store and manage critical information that attracts cybercriminals who mis-
use the Web and the Internet to exploit vulnerabilities for illegitimate benefits.

Malicious web pages, that exploit vulnerabilities and launch attacks for just
one time visit, take an alarmingly significant share of web-based attacks in recent
years [1–4]. When an innocent victim visits a web page, an attacker might have
compromised the page under visit (or crafted it purposefully) and the outcome
of the visit could be stealing of critical credentials (e.g., credit card details) to
impersonate the victim, installation of a malware binary on the victim’s machine
for future attacks, or even a complete takeover of the victim’s system to remotely
command and control it as a member of botnet [5–7]. In recent years, not only
is the prevalence of malicious web pages on the rise but also the way in which
attackers trick victims to malicious web pages is also getting sophisticated [2].
It has become a daily encounter to get contaminated search results from search
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engines on trendy terms, malicious links shared on social media, and legitimate
web pages injected with malicious scripts [3].

The thus-far proposed defenses against malicious web pages fall into two major
blocks, i.e., static analysis and dynamic analysis techniques. However, the use
of blacklists is still a common way to facilitate and enrich these techniques by
making use of heuristics and learning techniques.

Static analysis techniques, [5, 8–16], inspect web page artifacts without ren-
dering the page in a browser. The inspection usually involves quick extrac-
tion of discriminative features from the URL string, host identity, HTML, and
JavaScript code. The feature values are then encoded to train machine learning
techniques to build classifiers based on which unknown web pages are classified.
The major assumption in static analysis is that the statistical distribution of fea-
tures in malicious URLs (e.g., spam URLs, phishing pages) tend to differ from
that of benign.

In static analysis, it is difficult to detect attacks that require rendering of a
page to take action. More precisely, when using page source there is a high risk
of obfuscated content (e.g., JavaScript) and overlooking of malicious JavaScript
that exploits vulnerabilities of browser plugins. In addition, host details of fresh
(benign) URLs, registered by registrars with low reputation, are likely to be
misclassified as malicious due to their low reputation scores. In effect, there is a
high risk of false positives. On the other hand, false negatives may arise as well-
reputed registrars may host malicious web pages which have escaped the static
analysis effort. Other sources of false negatives are web pages that use free host-
ing services or already compromised sites with benign-looking URLs and host
details. For static anlaysis relying on lexical URL features, an attentive attacker
may evade these features to mislead detection techniques by carefully crafting
malicious URLs which look statistically indistinguishable from the benign ones.

Dynamic analysis approaches, [11, 17–25], inspect the execution dynamics
when a page is executed. Such techniques could be deployed at a proxy-level
(e.g., [20]) to intercept requests (responses), visit the URL in a controlled envi-
ronment (e.g., disposable virtual machine), analyze its execution dynamics for
hints of malicious activity (e.g., unusual process creation, repeated redirection),
and decide if it is safe to render the page in the browser. Alternatively, client-
side sandboxing of critical page content (e.g., JavaScript) could be used (as in
[18]) to log critical actions (e.g., invoking a plugin) and match logs with known
patterns of malicious activities or apply learning-based techniques to model and
classify malicious intentions.

While effective at uncovering daunting malicious web pages, dynamic analysis
approaches are resource intensive as they need to load and execute the page
under analysis and modern web pages are usually stuffed with rich client-side
code and content which take longer analysis time. Moreover, not all web pages
are likely to launch attacks when visited. There are web pages which require user
interaction or wait for certain conditions to take action.

Blacklisting-based techniques maintain a list of known malicious URLs, IP
addresses, and domain names collected by manual reporting, honeyclients, and
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custom analysis techniques. For example, Google Safe Browsing service
[26] maintains a blacklist against which it checks URL requests from browsers
to alert users if the requested URL happens to be in the blacklist. Another tool
powered by blacklisting is McAfee Site Advisor [27] which is pluggable to
Mozilla Firefox and Internet Explorer to rate safety of web pages and
search engine results prior to rendering the page in the browser.

Although lightweight to deploy and easy to use, blacklisting is effective only if
one can exhaustively patrol the Web to identify malicious web pages and timely
update the blacklist. In practice, to do so is infeasible due to: fresh web pages are
too new to be blacklisted even if they are malicious right from the outset, some
web pages may escape from the blacklisting due to ‘cloaking’, and attackers may
frequently change where the malicious web pages are hosted. Consequently, the
URLs and IP addresses may also change accordingly [5], [17].

Heuristic-based techniques (e.g., [15]) build signatures of known attack pay-
loads to be used by antiviral systems or intrusion detection systems to scan a
web page and flag it as malicious if its heuristic pattern matches signatures in
the database. Unfortunately, such signatures are easily bypassed by attackers
(mainly through obfuscation) and the heuristics fail to detect novel attacks. In
addition, the rate at which the signature database of heuristic-based systems is
updated is way slower than the pace at which attackers overwhelm victims with
novel attacks, resulting in zero-day exploits.

In addition to the afore-mentioned limitations, most approaches focus on one
prominent attack while attack techniques are getting more and more complex
whereby attackers use blended attack techniques by combining existing attack
techniques to evade existing countermeasures. More importantly, applying static
or dynamic analysis approaches in a complementary fashion is limited to cap-
turing partial snapshot of a malicious web page.

To this end, the ideal solution is to leverage static and dynamic analysis
to capture a comprehensive snapshot of a malicious web page and ensure that
the overhead cost of analyzing a web page is optimal. This can be achieved by
holistically characterizing and then analyzing, and detecting malicious web pages
to capture a comprehensive snapshot of malicious web pages while ensuring that
the analysis and detection remains lightweight in terms of its responsiveness and
resource consumption.

In this paper, we present the design, implementation, and experimental eval-
uation of a holistic and lightweight system, called BINSPECT, that leverages
a combination of static analysis and minimalistic emulation to apply super-
vised learning techniques in detecting malicious web pages pertinent to drive-by-
download, phishing, injection, and malware distribution. BINSPECT achieved
detection accuracy above 97% with low false signals and an average performance
overhead of at most 5 seconds.

The contributions of this paper are the following:

– we developed a holistic approach to analyze and detect malicious web pages
by leveraging static analysis and lightweight emulation of web page rendering
with low performance overhead.
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– we introduced novel features and enhanced existing ones so as to improve
their discriminative power in the characterization of malicious and benign
web pages.

– we designed, implemented, and evaluated our approach over a large dataset
of malicious and benign web pages and demonstrated that our approach is
effective in practice.

The paper is structured as follows. In Section 2, we present a real motivational
example pertinent to malicious web pages. Section 3 covers details of holistic
characterization of malicious web pages focusing on features we introduce as
new and enhance from existing ones. In Section 4, a high-level description of our
approach is presented. Details of the experimental setup and evaluation of our
approach are discussed in Section 5. Section 6 positions our approach relative to
prior work. Finally, Section 7 concludes the paper.

2 Motivational Example on Malicious Web Pages

In this section, we provide illustrations of real threats posed by malicious web
pages.

A malicious web page is a web page that exploits one or more vulnerabili-
ties of the browsing environment to launch one or more attacks when visited by
an unsuspecting victim. Usually, malicious web pages perform attacks in four
ways: obfuscation (e.g., obfuscated malicious JavaScript), setting up malicious
web pages (e.g., using HTTP or JavaScript redirection), victim luring (e.g., so-
cial engineering tricks), and victim takeover (e.g., installing malware). To give
context to threats of malicious web pages, in what follows we describe a real
malicious website attack that compromised a high-profile website [28].

On September 26, 2011, when users visited http://mysql.com, the file at
http://mysql.com/common/js/s_code_remote.js?ver=20091011
was infected by a heavily obfuscated malicious JavaScript code (the de-
obfuscated code is shown in Listing 1.1). The malicious code embeds an iframe to
http://falosfax.in/info/in.cgi?5&ab iframe=1&ab badtraffic
=1&antibot hash=1255098964&ur=1&HTTP REFERER=http://mysql.
com/ malicious domain and then throws an HTTP 302 redirection to
load the http://truruhfhqnviaosdpruejeslsuy.cx.cc/main.php
exploit domain. This exploit domain hosts the BlackHole exploit pack which,
upon discovering a vulnerable browsing environment (Java plugin vulnerability
in this case), leads the browser to download a malware binary to the user’s
machine. All this happens without the user’s knowledge. In this attack, the
actual payload is an exploitation of Java runtime vulnerability in the browser
(Internet Explorer 6) to download and execute malware that steals and
sends back to the attacker FTP client passwords from the user’s machine. Such
an attack is called drive-by-download [29].

http://mysql.com
http://mysql.com/common/js/s_code_remote.js?ver=20091011
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://truruhfhqnviaosdpruejeslsuy.cx.cc/main.php
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if (document.getElementsByTagName(’body’)[0]){
iframer();
}else{
document.write(<iframe src=’http://falosfax.in/info/in.

cgi?5’width=’10’height=’10’style=’visibility:hidden;
position:absolute;left:0;top:0;’></iframe>);

}
function iframer(){
var f=document.createElement(’iframe’);
f.setAttribute(’src’, ’http://falosfax.in/info/in.cgi?5

’);
f.style.visibility=’hidden’;
f.style.position=’absolute’;
f.style.left=’0’;
f.style.top=’0’;
f.setAttribute(’width’, ’10’);
f.setAttribute(’height’, ’10’);
document.getElementsByTagName(’body’)[0].appendChild(f)

;
}

Listing 1.1. De-obfuscated JavaScript exploit code of the attack [28]

Discussion. The attack described before sounds specific to a compromised legit-
imate website, i.e., http://mysql.com. However, there are a couple of inter-
esting aspects in the attack chain. First, the attacker has to target a high-profile
website with solid user-base and daily traffic. Secondly, she exploited a vulnerable
spot on the website (to inject malicious code) and abused HTTP redirection to
lead the browser to where the actual exploit is hosted. Then after, she exploited
a vulnerability of the browser extension to trick the browser into downloading a
malware binary. Even if the target in this attack is the Java plugin, in principle
this could have been any one of the vulnerable browser components or its exten-
sions (e.g., PDF Renderer, Flash Player) since the malware usually runs with
the privilege of the current user. The downloaded binary could be a key-stroke
sniffer to steal and submit passwords and credit card details to a remote server
controlled by the attacker. Or even worse, it could be a malware that compro-
mises the victim’s machine to remotely control it as a member of botnet to use
it in future criminal activities (e.g., spam campaigns). Similarly, the vulnera-
bility of the browsing environment could be of various risks depending on the
client operating system, browser type and version, and browser extensions and
configuration. An essential part of the attack chain is fingerprinting of the envi-
ronment which provides clues to vulnerable spots based on which actual exploit
is orchestrated.

http://mysql.com
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3 Holistic Characterization of Malicious Web Pages

Given an unknown web page, BINSPECT analyses and classifies the web page as
malicious or benign. To do so, BINSPECT extracts features from the page under
inspection and applies a number of models that evaluate the features extracted
from the page. The models are derived from training on a known mix of benign
and malicious web pages. BINSPECT considers malicious web pages related to
drive-by-download, phishing, injection, and malware delivery.

The features on which BINSPECT bases its statistical characterization of
web pages leverages three classes of features, i.e., URL features, Page-Source
features (HTML and JavaScript), and Social-Reputation features. The underly-
ing assumption in using these features, in prior work and in ours, is based on
the discriminative power of the statistical distribution of benign and malicious
web pages. In what follows, we describe the 39 features we extract and inspect
(focusing on the new features) which are the basis for building the models we
use to classify malicious web pages in BINSPECT.

3.1 URL Features

In BINSPECT, we rely on 11 URL features among which 8 features are reused
from prior work ([5], [10]) and we introduce 3 new features. The URL features we
reuse are: length of URL string, length of host name, number of dots (‘.’), number
of hyphens (‘-’), number of underscores (‘ ’), number of forward slashes (‘/’),
number of equal signs (‘=’), and availability of the client and/or server
words in the URL. After evaluating the F-Score measure of candidate URL fea-
tures, we found the 3 new features to be of significant relevance as a high F-score
value of a feature indicates a higher potential of the feature to split benign and
malicious web pages. These features are: length of the path in the URL,
length of the query in the URL, and length of the file-path in
the URL. Apart from the F-Score, manual inspection revealed that most mali-
cious URLs have abnormally long path and query as compared to benign URLs.
In Section 5, we show the experimental verification as to the effectiveness of
these new URL features in practice.

3.2 Page-Source Features

While most prior work extract HTML and JavaScript features statically, we use
an emulated browser to parse and render the HTML and execute JavaScript
on page-load so as to capture what is manifested by JavaScript code. In this
sense, the granularity of most HTML features used in our work is high because
the JavaScript that is executed on page-load particularly enriches the HTML
features. Another reason to use an emulated browser is to capture the side-
effects of obfuscated JavaScript code that is usually executed when the page loads
because malicious JavaScript is often ‘shipped’ with a strong shell of obfuscation.

In total, we extract 25 Page-Source features. These are : document length,
number of words, number of lines, number of blank spaces, average length
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of words, number of links, number of same-origin links, number of different-
origin links, number of external JavaScript files, number of hidden ele-
ments, number of iframes, and number of suspicious JavaScript functions (in-
cluding suspicious functions : subString(), fromCharCode(), eval(),
setTimeout(), document.write(), createElement(), unescape(),
escape(), link(), exec(), and search()).

Although the Page-Source features we use are mostly from prior work, we
introduce new (e.g., exec() function) and enhance existing features for a
more fine-grained characterization of web pages. For instance, apart from ex-
tracting the total number of links on the page, we split links to: number
of same-origin links, number of different-origin links, and
number of external-JavaScript files. We enhanced link features be-
cause manual analysis shows that malicious web pages link to remote origins and
malicious JavaScript is often downloaded from external domains.

3.3 Social-Reputation Features

The ubiquitous effect of social network platforms, such as Facebook, Twitter, and
Google Plus, is continuously changing the landscape of online social interaction
and reputation building about what is shared online. Search engines are partly
relying on social network reputation of URLs to enrich their ranking algorithms
because of human involvement in rating URLs [30]. To evaluate if these social-
reputation indicators are of use in the characterization of malicious and benign
URLs, we examined the statistical distribution of URL-Sharing on Facebook and
Twitter as these platforms keep track of the public share-count of URLs.

Experimental evaluation of these features suggests that for benign web pages,
the share-count is usually higher as users are confident enough to share a URL
that they know as harmless or they re-share after seeing that their friends have
done so. On the contrary, the share-count for malicious URLs suggests that,
either the URLs are not circulated across the social network or users refrain
from sharing a URL they know less about.

Figure 1 shows a statistical separation in distribution of public share-counts
for benign and malicious URLs on Twitter over a part of the training set we used
for this work. The three new features we introduce are the Facebook Share
Count, Twitter Share Count, and Google Plus Share Count which
tell the number of times a URL is publicly shared on Facebook, Twitter, and
Google Plus, respectively.

An attentive reader may argue that these features may contribute to false
negatives in the case where a malicious user publicly shares a malicious URL
on a social network and accumulates large share-count. However, as time passes
by, the tendency that a malicious URL is circulated across the social network
will reduce or the share-count of the URL does not increase because of built-in1

URL analysis and detection techniques in the social network platform.

1 Such as Link Shim of Facebook
(http://www.facebook.com/note.php?note_id=10150492832835766)

http://www.facebook.com/note.php?note_id=10150492832835766
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Fig. 1. Distribution of the top 100 Twitter share-counts for benign and malicious URLs
on the training set

4 BINSPECT System Overview

In a nutshell, BINSPECT has three major components: feature extraction and
labeling, multi-model training, and classification, as shown in Figure 2. In the
following, we provide a high-level discussion of the components of BINSPECT.

Feature Extraction and Labeling. As shown in Figure 2, we use a dataset
of benign and malicious samples (described in Section 5) to label the samples
and extract the necessary features which characterize malicious and benign web
pages. The URL feature extraction is implemented based on the URL class
of Java and the features are collected by lexical scanning of the URL string.
The Page-Source features are collected by visiting the page via a lightweight
emulated browser so as to capture the details of what is rendered (HTML) and
executed (JavaScript) using a feature extraction engine we implemented in Java.
We customized the HTMLUnit [31] headless browser for the emulation and used
it with two User-Agent personalities (Internet Explorer 6 and Mozilla Firefox 3).
For each URL we visit for feature extraction, a fresh instance of the emulated
browser is created to ensure a unique session for each URL. We used the Facebook
Graph API [32], the Twitter URLs API [33], and a custom2 script on Google
Plus to automatically extract the Social-Reputation features. Features extracted

from each web page are represented as a vector of the form [v
(i)
1 , v

(i)
2 , ..., v

(i)
n−1,

v
(i)
n , class(i)] where the v

(i)
k ’s are feature values (k = 1, .., n), n is the number

of features, and class(i) is the class label of URL(i) which is either benign or
malicious.

2 There was not a standard API for Google Plus at the time of this experiment.
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Fig. 2. BINSPECT System Overview

Multi-model Training. Using the extracted features, we train 7 supervised
learning algorithms namely Decision Trees (J48, Random Tree, and Random
Forest), Bayesian Classifiers (Naive Bayes and Bayes Net), Support Vector Ma-
chines, and Logistic Regression. At the end of the training, one model for each
classifier is maintained as shown in the second block of Figure 2.

Confidence-Weighted Majority Vote Classification. For classification of
an unknown web page using the learned models, we use the Confidence-Weighted
Majority Vote algorithm that we customized (see Algorithm 1) to decide the
class of the web page. To flag a page as either malicious or benign, instead
of just taking the count of votes of the individual models, the vote count of
the class label is multiplied with the sum of confidences with which the votes
are made by each model (lines 17, 20, and 23 in Algorithm 1). The benefit
of weighted-confidence majority vote is twofold. First, it minimizes the bias of
relying on a single model to do classification. Secondly, it allows comparison of
different models and makes the overall result more resistant to evasion attempts
by attackers.
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Algorithm 1 Confidence-Weighted Majority Vote Classification

1: Confbenign ← 0
2: Confmalicious ← 0
3: V otebenign ← 0
4: V otemalicious ← 0
5: for i = 1→ numModels do
6: features← extractFeatures(URL)
7: V otei, Confi ← getPredictionWithConfidence(features,Modeli)
8: if V otei == benign then
9: V otebenign ← V otebenign + 1
10: Confbenign ← Confbenign + Confi
11: end if
12: if V otei == malicious then
13: V otemalicious ← V otemalicious + 1
14: Confmalicious ← Confmalicious + Confi
15: end if
16: end for
17: if (V otemalicious × Confmalicious) > (V otebenign × Confbenign) then
18: Prediction← malicious
19: end if
20: if (V otemalicious × Confmalicious) < (V otebenign × Confbenign) then
21: Prediction← benign
22: end if
23: if (V otemalicious × Confmalicious) == (V otebenign × Confbenign) then
24: Prediction← suspicious
25: end if

5 Experimental Setup and Evaluation

In this section, first we describe the data collection, dataset construction, and the
experimental procedure. Then, we evaluate BINSPECT from the standpoint of
its accuracy, significance of the features we introduced, its performance overhead,
and its immunity to possible evasion.

5.1 Dataset and Experimental Setup

Data Source and Dataset. We collected samples from multiple sources for
both malicious and benign web pages and divided the dataset into a training and
a testing set. As shown in Table 1, for the malicious dataset, we collected 71,919
URLs from the malware and phishing blacklist of Google [26], the Phishtank
database of collaboratively verified phishing pages [34], and the malware and
injection attack URL list of MalwareURL [35]. The dataset of 414,000 benign
URLs is also drawn from three popular sources. These are the Alexa Top
sites [36], the Yahoo random URL generation service [37], and the DMOZ
directory [38].
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Table 1. Dataset for training and testing

Purpose Benign Malicious Total

Training 300, 000 50, 000 350, 000

Testing 114, 465 21, 919 136, 384

Experimental Protocol. Using the training set, we extracted 39 features of
which 3 are Social-Reputation features, 11 are URL features, and the remain-
ing 25 are Page-Source features. When extracting the Page-Source features, we
configured the emulated browser to manifest two different browser personalities
(Internet Explorer 6 and Mozilla Firefox 3) and we used only the core compo-
nents of the browser, i.e., Necko HTML Engine, Rhino JavaScript Engine, and
the default CSS Parser in order to make the analysis lightweight. We used the
Weka [39] machine learning toolbox to train the 7 standard classifiers with 10-
fold cross validation. As a sanity check of the ground truth, we removed, from
the training set, all unreachable URLs when visiting using the emulated browser.

5.2 Evaluation Results and Insights

Classification Accuracy
To decide the best combination of classifiers in BINSPECT, we evaluated the 7
classifiers in terms of accuracy, False Positive Rate (FPR), and False Negative
Rate (FNR). Figures 3, 4, 5, and 6 show performance evaluation of the classifiers
over the training set across the four classes of features, i.e., all features, URL
features, Page-Source features, and Social-Reputation features respectively. As
shown in Figure 3, training on all the features suggests that tree-based classi-
fiers outperformed the other classifiers. In particular, the Random Tree classifier
achieved 100% accuracy, 0% FPR, and 0% FNR.

Fig. 3. With all features Fig. 4. With URL features

We also evaluated how the classifiers perform on individual feature classes and
the results suggest that some classifiers perform way better than the union of the
features. For instance, accuracy of Naive Bayes increased by 30% (Figure 4) on
URL features probably because the URL features have a statistical distribution
that fits into the high degree of independence assumed in the algorithm. Another
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Fig. 5. With Page-Source features Fig. 6. With Social-Reputation features

Table 2. Performance of BINSPECT in comparison to a public malicious web page
analysis and detection service on the testing set

Measure BINSPECT Wepawet [40]

Classification Accuracy 97.81% 61.62%

False Positive Rate 0.189 0.983

False Negative Rate 0.011 0.073

interesting insight from Figure 6 is the high FNR of all the classifiers on social-
reputation features which is attributed to the fact thatmalicious URLswhich have
higher share-count are likely to be misclassified as benign, suggesting that it is
more effective to combine social-reputation features with other features to increase
their predictive power. In general, the overall classification performance is better
on all the features than the individual feature classes with the exception of Naive
Bayes, which did not perform well in most cases (see Figures 3, 5, and 6).

For testing, we used all the classifiers except Naive Bayes due to its poor
performance on the training set. Table 2 shows the overall classification accuracy
of BINSPECT over the testing set. We measured the classification accuracy as
the ratio of correct classifications to the total size of the testing set. We submitted
the same testing set to Wepawet [40] to compare BINSPECT with a publicly
deployed analysis and detection service. As can be seen from Table 2, BINSPECT
correctly classified 97.81% of the test set with a FPR of 0.189 and FNR of 0.011.
On the other hand, Wepawet achieved a lower accuracy of 61.62% on the same
testing set. The only speculation behind the low performance of Wepawet in our
opinion is the difference in the class of features we use in BINSPECT which
span URL, HTML, JavaScript, and social reputation scores while Wepawet uses
emulation to dynamically analyze web pages. The high accuracy of BINSPECT
and its very low FNR on the testing set is an indication that our approach is
effective at analyzing and detecting malicious web pages in a holistic manner
with low performance overhead while covering malicious web pages leading to
drive-by-download, phishing, injection, and malware delivery.

Significance of New Features
To verify whether the new features are of predictive importance in enhancing the
accuracyofdetectingmaliciouswebpages,we compared the classificationaccuracy,
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FPR, andFNRof the classifierswith andwithout our newly introduced (enhanced)
features on the training set. As shown in Table 4, the new features, particularly the
new URL features, improved the overall performance of 5 of the 7 classifiers (J48,
Random Forest, Naive Bayes, Bayes Net, and Logistic Regression) shown with (↑)
for accuracy and with (↓) for FPR and FNR. The new Page-Source features im-
proved the overall performance of only 2 classifiers (Random Forest and Logistic
Regression). Social-Reputation features have also improved the overall classifica-
tion accuracy ofRandomForest,BayesNet, andLogisticRegression classifiers.Not
surprisingly, the performance of Naive Bayes has not improvedmuch with the new
features as its overall performance is also very low.

In addition to the individual contribution of the new features, we also mea-
sured the overall improvement in accuracy of the classifiers as a result of the
new features as shown in Table 3. The new features improved the accuracy of 4
of the 7 classifiers with improvements in the range 0.21% to 3.08%. Among the
remaining 3 classifiers, on 2 (Random Forest and SVM), the new features seem
to have no contribution on accuracy. The Random Tree classifier is an excep-
tion in this case as its accuracy was 100% even without the new features. Out
of curiosity, we measured its accuracy with the new features and it remained
the same, which most probably implies that this is the best classifier given the
feature set and the dataset we used for training.

Table 3. Overall Contribution of new features on the accuracy of classifiers

Classifier Without new (%) With new(%) Change(%)

J48 Decision Tree 98.97 99.27 ↑ 0.30
Random Tree 100.0 100.0 −
Random Forest 99.94 99.94 −
Naive Bayes 28.16 30.62 ↑ 2.46
Bayes Net 91.28 94.36 ↑ 3.08
SVM 96.62 96.62 −
Logistic Regression 96.94 97.15 ↑ 0.21

Performance Overhead
The experimental infrastructure we used is an Intel dual-core 2.66GHz CPU
and 64-bit MacOSX operating system with 8GB of memory. Under this com-
putational resource, the average time it takes to train a classifier is only 1.51
seconds. BINSPECT, took between 3 to 5 seconds (under variable system load)
to analyze and detect a single page, which is an acceptable overhead given the
fact that part of the analysis requires rendering the page in an emulated browser.
Unfortunately, we could not compare performance overhead of BINSPECT with
Wepawet due to the long delay it took to get back the results from Wepawet
server which uses queueing to process batch requests for analysis.

Immunity to Evasion
Given the holistic nature of our approach, we claim that BINSPECT is not
easily evadable. However, by closely inspecting the features we use, there are
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Table 4. Performance of classifiers with and without new features on the training set

Classifier Accuracy(%) False Positive Rate False Negative Rate

Without new features

J48 Decision Tree 98.97 0.260 0.268

Random Tree 100.00 0.000 0.000

Random Forest 99.94 0.017 0.017

Naive Bayes 28.16 0.122 0.100

Bayes Net 91.28 0.381 0.391

Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.94 0.845 0.874

With new URL features

J48 Decision Tree 98.98(↑) 0.254(↓) 0.262(↓)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 46.45(↑) 0.184(↑) 0.171(↑)
Bayes Net 93.32(↑) 0.350(↓) 0.360(↓)
Support Vector Machine 96.62 0.966 1.000(↑)
Logistic Regression 97.05(↑) 0.798(↓) 0.825(↓)
With new Page-Source features

J48 Decision Tree 98.93(↓) 0.260 0.268 ↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 28.08(↓) 0.119(↑) 0.095(↓)
Bayes Net 90.85(↓) 0.381(↓) 0.391(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.96(↑) 0.0842(↓) 0.871(↓)
With new Social-Reputation features

J48 Decision Tree 98.99(↑) 0.265(↑) 0.274(↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 26.69(↓) 0.075(↓) 0.051(↓)
Bayes Net 93.29(↑) 0.353(↓) 0.362(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 97.06(↑) 0.806(↓) 0.834(↓)

a few things an attentive attacker has to do to try evading our analysis and
detection technique. One method an attacker might use is to craft a benign-
looking URL so as to imitate lexical aspects of benign URLs, which makes the
URL features less useful in discriminating benign URLs from malicious ones.
Another likelihood of evasion is for the attacker to use highly obfuscated client-
side code (e.g., JavaScript). In such a case, BINSPECT is likely to be partly
tricked because of the low consideration of obfuscated content in our approach.
With regards to the Social-Reputation features, the only risk is that the attacker
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might lure users on social networks to publicly share a link to a malicious URL
in order to collect reputation scores that could mislead BINSPECT. Even in
this case, the luring would not last long because users stop sharing the link
or the built-in URL scanning facility of the social network platform discovers
the maliciousness of the URL. In general, it requires a great deal of effort from
the attacker’s side to completely bypass BINSPECT as it is quite difficult for
the attacker to take control of the three complementary classes of features used in
our approach and due to the nature of the classification that relies on weighted-
confidence of each classifier.

6 Related Work

Canali et al. [5] proposed Prophiler, a purely static pre-filtering technique that
deems web pages that launch drive-by-download attacks as likely malicious or
likely benign. Prophiler achieved a very low false positive rate over a large testing
set of URLs using 79 features on URL, host details, HTML, and JavaScript fea-
tures. In BINSPECT, we apply static analysis and lightweight dynamic analysis
to deem a web page as benign or malicious. Unlike Prophiler, where the best
classifiers are used for testing, BINSPECT uses confidence-weighted majority
vote for classification. Except the new features we introduced, all other features
used in BINSPECT are also used by Prophiler. In BINSPECT, the number of
features are half the number of features used in Prophiler.

Cova et al. [40] built Wepawet, an emulation-based dynamic analysis and
detection framework for malicious content (mainly malicious JavaScript and
malware). It is based on anomaly detection and the analysis and detection is
available as a public service. Wepawet is reported by the authors to have a low
false negative rate, particularly for drive-by-download web pages. BINSPECT,
however, is a learning-based approach using mostly static features with a mini-
malistic emulation support.

Ma et al. [10] proposed a purely static analysis technique based on URL lexical
features and host details and applied supervised learning and online learning
techniques to achieve about 99% accuracy with a very low false positive rate.
However, BINSPECT differs in that they use URL and host-based information
only and the focus is to quickly classify URLs without further analysis of the
page content and the execution dynamics in a browser. In our case, we reuse
most of the URL features used by them in a statistical manner than lexical
(presence/absence). More importantly, we use an emulated browser to visit and
render the page and execute client-side code up on page load.

Dewald et al. [18] proposed ADSandbox, a client-side JavaScript sandboxing
and signature-based, analysis technique that executes JavaScript embedded in
a page within an isolated environment and logs every critical action to detect
malicious web pages. ADSandbox achieved false positive close to zero but at a
high performance overhead. BINSPECT, however, is a learning-based approach
not only limited to web pages that host malicious JavaScript but also includes
phishing pages, malware delivery pages, and pages that initiate injection attacks.
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Compared to most prior work, BINSPECT characterizes malicious web pages
spanning four classes of attacks (drive-by-download, phishing, malware-delivery,
and injection) to build a lightweight detection system that relies on only 39
features of URL string, HTML, JavaScript, and Social-Reputation of URLs.

7 Conclusion

Existing techniques for detecting malicious web pages are effective at combating
specific attack types. However, they are limited to partial snapshot of a malicious
payload which limits their ability to cope up with the ever-changing and com-
plex threats posed by malicious web pages. We presented BINSPECT, a holistic
approach to defend users against malicious web pages by leveraging static anal-
ysis and lightweight emulation based on supervised learning. We have shown
through large scale evaluation that BINSPECT is effective at precisely detect-
ing malicious web pages with very low false signals. Moreover, the new features
we introduced are relevant enough in improving the performance of the analysis
and detection of malicious web pages. Our experiments suggest that BINSPECT
incurs acceptable overhead cost to analyze web pages in a realistic scenario due
to few and effective features reused from prior work and novel features.

BINSPECT lacks analysis of obfuscated JavaScript and emulation of the
browser with plugins. In the future, we would like to incrementally improve
BINSPECT by introducing these missing analysis steps. Another line of im-
provement is to further investigate additional features from social networks to
characterize malicious web pages. We would also like to make BINSPECT an
evolution-aware analysis and detection framework that takes into account the
evolution of features and tunes its detection models accordingly.

Acknowledgments. We thank the anonymous reviewers for their insightful
comments and the Authors of Wepawet for allowing us to submit and evaluate
our test set.
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