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Abstract: A variety of renewable starting materials, such as sugars and polysaccharides, vegetable
oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of
bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the
most widely used starting materials in the polymer industry due to their easy availability, low toxicity,
and relative low cost. Another bio-based plastic of great interest is poly(lactic acid) (PLA), widely
used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based
polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from
biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are
therefore crucial in order to assess the long-term environmental impact of such materials. This review
presents a brief overview of the different classes of bio-based polymers, with a strong focus on
vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature
addressing the biodegradability of bio-based polymers.
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1. Introduction

Polymeric materials can be classified into either thermoplastics or thermosetting polymers.
Thermoplastic polymers consist of well-packed, non-covalently bound polymer chains that can melt
and flow when heated above the polymer’s melting point, while thermosetting polymers consist of
networks of polymer chains interconnected through covalent bonds. The latter structures do not
melt when heated, and cannot be dissolved in a solvent. These differences between thermoplastic
and thermosetting polymers have a direct impact on polymer recyclability. It is well accepted
that thermoplastics can be easily melted and re-processed during recycling, whereas thermosetting
polymers require harsher conditions in order to be converted into other value-added products.
Because of its crosslinked chemical structure, thermosetting polymers often exhibit superior mechanical
properties, making their breaking down more challenging than that of thermoplastics. Naturally, such
aspect is also reflected on the thermal stability of thermoplastics and thermosetting polymers. It is
therefore expected that thermosetting polymers be physically harder to degrade than thermoplastics.

The versatility of thermosetting polymers lies in the possibility of easily adjusting their properties
by simply changing crosslink density without a need for modification of the overall chemical
structure [1]. Most thermoplastics and thermosetting resins in current industrial use are derived
from petroleum, imposing a limitation to the polymer industry due to the continuous depletion of
crude oil, frequent oscillation in oil price, and various environmental concerns with sustainability, gas
emissions, disposal, and recyclability [2,3]. In this context, increasing efforts have been made to date in
designing polymeric materials from renewable resources [4].
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A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils,
lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of
bio-based polymers [5,6]. Among the various sources of bio-based feedstock, vegetable oils are
the most widely used starting materials in the polymer industry due to their easy availability, low
toxicity, and relative low cost [4]. Since the year 2000, the chemical industry alone was responsible for
consuming more than 15% of the yearly global production of vegetable oils [7]. Unsaturated vegetable
oils have been used in the formulation of paints and coatings due to their ability to react with molecular
oxygen in the air and form cross-linked materials [8,9]. A variety of thermosetting polymers obtained
from the reaction of carbon-carbon double bonds in the fatty acid chains of vegetable oils have been
proposed to date [10].

Despite the lack of sufficient literature on the biodegradability properties of vegetable
oil-based thermosetting resins, the possibility of cross-linking the carbon–carbon double bonds in
polyunsaturated oils through free radical [11], or cationic [12] polymerizations makes the design of
bio-based thermosetting polymers from vegetable oils an interesting alternative to petroleum-derived
materials. Other approaches for the preparation of vegetable oil-based polymers involve more
significant structural changes, such as grafting of acrylate groups for free radical polymerization [13],
epoxidation of carbon–carbon double bonds followed by cure with various nucleophiles [14],
acyclic diene metathesis polymerization (ADMET) [15], and ring-opening metathesis polymerization
(ROMP) [16]. Finally, polyesters, one of the main classes of biodegradable polymers, and polyurethanes
have been prepared from the reaction of vegetable oil-based polyols with anhydrides [17], diacids [17],
or diisocyanates [18].

By definition, biodegradability consists in the breakdown of matter as the result of the activity
of microorganisms, such as fungi and bacteria, which typically secrete enzymes that cleave specific
chemical bonds or perform very specific chemical reactions, leading to lower molecular weight
products that can then be used in other processes, by other organisms [19]. For the same reasons
previously exposed, one would expect regular thermosetting polymers to be less biodegradable than
thermoplastics. However, because enzymes act on very specific chemical bonds, it is possible to design
polymeric materials that can be broken down by microorganisms. Indeed, in the US and Canada,
microorganisms can be genetically modified in order to produce enzymes tailored to cleave desired
chemical bonds in existing polymers. Such an approach is currently prohibited in Europe, where only
transglutaminases can be used.

There is an intrinsic expectation that novel polymers designed from renewable, and often
biodegradable resources, are also biodegradable. Although this is a logical assumption, there is
no guarantee that such polymers can be fully biodegradable. Changes in functional groups, crosslink
density, and copolymerization with non-biodegradable co-monomers can lead to materials that do
not necessarily exhibit significant or relevant biodegradability. Therefore, biodegradability studies
are crucial in order to assess the long-term environmental impact of bio-based materials. A study
comparing the degradability time of different bio-based systems would be of great interest to a broad
audience, and such a research endeavor should definitely be undertaken in a consistent manner in
the near future, as bio-based plastics become increasingly popular. Currently, however, the lack
of consistency in biodegradability studies, with varying conditions and protocols being applied to
different systems, makes it extremely hard and controversial to compare the biodegradability of
plastics in general. As an example, 84% mineralization of poly(lactic acid) (PLA) was observed after
58 days under simulated compost conditions [20], whereas poly(ethylene terephthalate) (PET) takes
approximately one year to break down into monomers and oligomers when exposed to intense UV
irradiation in the environment. The scope of this review is on bio-based materials developed over
the past decade for which biodegradability information is available. The review starts by covering
different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins due to their
versatility and the authors’ field of expertise. Secondly, an entire section is dedicated to PLA. PLA is one
of the most popular bio-based plastics and finds wide industrial use nowadays. Finally, the available
literature on the biodegradability of bio-based systems is discussed in detail.
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2. Bio-Based Polymers

When compared to petroleum-based compounds, the use of natural starting materials for the
preparation of bio-based products may result in materials with similar and sometimes possibly
improved properties [21]. Therefore, new bio-based materials represent a strategic approach for
limiting environmental concern while meeting the current demand for polymers and composites.
In the discussion of bio-based materials, one topic of great importance is biodegradability. It is
worth noting that it is possible to envision the design of bio-based materials with varying rates
of degradation in the environment, depending on their application. For example, a more durable
material is desirable for structural applications, while it is preferable for disposable goods to be readily
biodegradable. Various materials can be prepared from bio-based resources [22], such as soybean and
corn protein-based biopolymers [23,24], bio-based paints from vegetable oils [25], biocoatings [26],
polyurethane resins [27], polyester amides [28], thermosetting polyolefins [4,29], and cyanate ester
resins [30].

2.1. Vegetable Oils

Over the past decade, various polymeric systems have been developed based on the crosslinking
of vegetable oils through free radical or cationic polymerization reactions [12,31]. It has been
observed that oils bearing conjugated carbon-carbon double bonds are more reactive towards
polymerization [32]. More recently, ring-opening metathesis polymerization (ROMP) and acyclic
diene metathesis polymerization (ADMET) have also been used in the synthesis of vegetable oil-based
polymeric materials [16,33]. In a more elaborate approach, the modification of soybean oil with acrylate
groups resulted in acrylated epoxidized soybean oil (AESO), which was crosslinked with styrene
and reinforced with multi-walled carbon nanotubes and soot [34]. Poly(AESO)-co-polystyrene has
been reinforced with flax fibers to demonstrate the action of butyrated lignin as a compatibilizer [35].
Similarly, red oak leaves were introduced onto a commercial maleated AESO (MAESO)-based resin
resulting in bio-based composites [36].

In the preparation of bio-based cationic composites, glass fibers were added to a resin composed
of corn oil (COR), styrene (ST), and divinylbenzene (DVB), with crosslink density and the overall
material’s properties being directly dependent on DVB content [37]. It has also been observed
that replacement of COR with conjugated corn oil (CCO) resulted in improved properties [37].
Similar cationic thermosetting resins have also been prepared from conjugated soybean oil (CSO) and
conjugated low-saturation soybean oil (CLS) [38]. When reinforcing these resins with ligno-cellulosic
materials, a switch from cationic to free radical cure was necessary to avoid quenching of the cationic
initiator by the polar reinforcement. When these composites are compression molded, the presence
of the natural filler helps to minimize shrinkage and prevent extended cracking of the piece [39].
It was also observed that substitution of n-butyl methacrylate (BMA) and DVB with dicyclopentadiene
(DCPD) results in lower mechanical properties and micro phase separation [39].

Recent improvements in the mechanical properties of free radical bio-based composites have been
achieved upon use of maleic anhydride as a compatibilizer [40,41]. Evaluation of the resin composition
revealed that conjugated linseed oil (CLO)-based resins exhibit better properties than CSO-based resins
due to their higher number of unsaturations [40]. Similar results have been obtained with cationic
resins [42]. With a different approach, the thermoset obtained from the ROMP of DCPD and Dilulin®

was reinforced with glass fibers [43]. Polyurethane coatings have also been prepared from vegetable
oils [44]. As a matter of fact, bio-based polyols can react with diisocyanates to result in polyurethane
dispersions (PUDs) [45]. Castor oil and ricinoleic acid have been used as starting materials for the
preparation of PUDs [46,47]. Sunflower, canola, soybean, corn, and linseed oils-based polyols have
been used for the synthesis of polyurethanes [18]. Methoxylated soybean oil polyols (MSOLs) [48],
and castor oil-, MSOL-, and AESO-based polyols have been employed in the synthesis of anionic
PUDs [26]. Protonation of amine groups in anionic PUDs results in cationic PUDs with high adhesion
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to leather and glass [26]. These materials are also antimicrobial, being intentionally designed to be less
susceptible to microbial activity [49].

Improvement of anionic PUDs’ mechanical properties has been obtained through
copolymerization with acrylates, resulting in bio-based hybrid latexes [50,51]. Surfactant-free,
core-shell hybrid latexes were prepared from soybean oil [52]. Other vegetable oil-based systems
include polyesters [53] and polyamides [54,55]. The reaction of Nahar seed oil monoglyceride with
anhydrides resulted in polyesters for use in composite applications [17]. In more recent developments,
fatty amide diols and castor oil amide-based α,ω-dienes, were utilized in the preparation of polyamides
by esterification and ADMET polymerization, respectively [54,55].

2.2. Cashew Nut Shell Liquid

The liquid extracted from cashew nut shells (CNSL) is a mixture of phenols [56], with the most
important constituents being anacardic acid, cardanol, and cardol [57]. High temperature processing of
CNSL converts anacardic acid into cardanol [58]. CNSL finds use in flame-retardant applications due
to its chemical structure, which includes an aromatic ring [59]. Other applications include synthetic
polymers [57,60,61], resole and novolac resins [62], free radical and ionic thermosets [63,64], and novel
CNSL-formaldehyde resins [65]. Overall, CNSL-formaldehyde resins prepared by various ways have
shown inferior mechanical properties [66]. It has been shown that an optimum performance is obtained
for resins with a composition of 40 wt % cardanol [62]. Blends of CNSL-based and conventional resins
have also been studied. Novalac resins from cardanol have been used in epoxy resin formulations
with higher tensile strength, toughness, and water resistance [67]. Currently, there is no evidence that
CNSL-based materials are biodegradable. Their aromatic content and crosslink density are features
that may compromise their biodegradability potential.

One of the applications of CNSL outside of the realm of strictly biodegradable materials is
the synthesis of cardanol-based polybenzoxazines [68,69] with good thermal and flame retardancy
properties [70,71], which can also compromise the biodegradability of these materials. Due to
their versatile molecular design, different alternatives have been developed for the preparation of
CNSL-based polybenzoxazines, including blending with bisphenol A-based polybenzoxazines [72].
Other studies have reported the use of furfural-modified cardanol [73,74], or cardanol-modified
bisphenol A-based benzoxazines [75,76] in order to enhance the performance of these resins.
Alternatively, different amines, such as aniline [72], and ammonia [68] can be used in the
polybenzoxazine formulation. Bisbenzoxazines have also been prepared through the reaction of
mono-phenols and diamines with formaldehyde [77].

2.3. Cellulose and Chitosan

Cellulose and chitin are the most important polysaccharides [6]. Bacterial xanthan gum has been
utilized as a bio-based resin [78]. However, not all common polysaccharides are useful as biorenewable
polymers. Various approaches have been investigated for the preparation of composites consisting of
cellulose particles embedded in a cellulose matrix [79]. Invariably, successful composites depend on the
solubility of matrix and reinforcement [80], which can be tuned through pretreatment processing [81,82].
Cellulosic matrices have also been reinforced with metal particles for antimicrobial and magnetic
applications [83]. Indeed, Fe2O3 nanoparticles embedded in a sodium carboxymethyl cellulose matrix
successfully responded to a magnetic field [84]. These materials may be excellent candidates for
biomedical applications due to the reduced risks of bacteria-born infections. The development of these
antimicrobial materials may also represent a new direction in the synthesis of bio-based structures
with improved biological resistance for increased durability in a specific environment.

There exists a great variety of applications for chitosan [85,86], including self-healing composite
anti-corrosion coatings [87], absorbent biopolymer membranes [88,89], and several biomedical uses due
to their physical properties, chemical stability, biocompatibility, biodegradability, and ability to undergo
chemical modification [90–93]. More specifically, chitosan has been reinforced with calcium phosphate
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nanocrystals for tissue engineering with strong adherence to natural bone [94]. Also, chitosan nano-
and micro-particles have been used for drug delivery [95–97]. Chitosan has also been reinforced with
cellulose nanocrystals [98], and nanofibers [99], leading to materials with satisfactory mechanical and
water vapor barrier properties for food packaging [99]. The addition of glycerol as a plasticizer to
such systems has also been investigated [100,101]. Other reinforcement materials for chitosan-based
matrices are multi-walled carbon nanotubes [102], and gold nanoparticles [103].

2.4. Polyhydroxyalkanoates (PHAs)

Monomer length in polyhydroxyalkanoates (PHAs) depends on the producing bacteria and
molecular weights vary with growth medium conditions. For instance, high molecular weight
polyhydroxyoctanoate can be produced in diethylene glycol-rich medium [104]. In tissue engineering,
PHA composites have been prepared with hydroxyapatite, bioactive glass, and glass-ceramic
fillers [105]. It has been recently shown that the biodegradability of polyhydroxybutyrate (P3HB)
and P3HB/valerate copolymers depends greatly on molecular weight, processing conditions, and
crystallinity [106].

2.5. Proteins

The addition of keratin to synthetic elastomers results in materials with good thermal, mechanical,
flame resistant, and thermo-oxidative properties [107]. Similarly, addition of soy protein to
petroleum-based latexes results in a material with properties comparable to carbon black-filled
elastomers [108]. Investigation of the interaction of vegetable oils and proteins in peanut oil emulsions
revealed that protein-coated droplets are stabilized via disulfide crosslinking [109].

3. Poly(lactic acid) (PLA) and Related Polymers

Among the biodegradable polymers, poly(lactic acid) (PLA) is the one of the most important.
PLA has been extensively studied for a wide range of applications covering disposable household items,
food packaging, agricultural films, drug delivery systems, and implantable biomedical devices [110].
There has been an abundance of literature in recent years related to the production of lactic acid
and PLA. There have been recent reviews on lactic acid related to production of lactic acid from
lignocellulose [111] production by fermentation processes [112], and lactic acid as a platform chemical
for chemical synthesis [113]. For PLA, there have been many reviews of processing technologies [114],
with some focused specifically on PLA foaming [115], PLA crystallization [116], and PLA-based
nanocomposites [117]. Lactic acid (2-hydroxypropanoic acid) has two optically active configurations
lactic acid (L-(+)-lactic acid and D-(´)-lactic acid), as shown in Figure 1 [118]. Both L- and D-enantiomers
are produced naturally [119].
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PLA is a linear, aliphatic polyester thermoplastic that is produced commercially by ring opening
polymerization of lactide [120]. The ratios of L- and D-isomers influence the properties of PLA [116].
High molecular weight polymers are now possible due to advances in processing techniques greatly
expanding the range of applications where PLA can be used [121].
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3.1. Biodegradation of PLA

Biodegradation of plastics is a complex process involving multiple steps and pathways [122].
The initial degradation step is for PLA to be broken down into monomers or low molecular weight
oligomers, where the ester bonds are cleaved hydrolytically [123]. Reduction in molecular weight
into smaller water soluble fragments is required to facilitate uptake into microorganisms [124].
PLA becomes water soluble when the molecular weight (Mn) is below 20,000 g/mol [124]. The initial
degradation into smaller fragments is a rate limiting step in biodegradation processes [125].
After uptake into the microorganisms, subsequent metabolic activity breaks the polymers down
into metabolic end products such as carbon dioxide and water, while a portion of the carbon is
converted into biomass [126].

As Nampoothiri et al. pointed out, environmental degradation might be an equally appropriate
name for the overall mechanism of PLA biodegradation because abiotic and biotic processes occur
simultaneously [119]. Environmental composting of PLA proceeds efficiently under adequate
conditions due to the combined effects of hydrolysis and microbial activity [127]. Furthermore, elevated
temperatures encountered during composting accelerate the hydrolysis process of PLA, especially
when temperatures exceed 50 ˝C [128]. Extracellular enzymes released by specific microorganisms
can cause cleavage of PLA chains, which may contribute to the degradation process. However, some
studies have shown that extracellular enzymes do not significantly accelerate depolymerization [125].

The reaction mechanism for the hydrolysis of polyesters is bimolecular nucleophilic substitution
reaction (SN2), which may be catalyzed with either acids or bases [129]. A schematic of acid-catalyzed
hydrolytic cleavage of PLA chains is shown in Figure 2 [124]. Furthermore, the reaction rates for
hydrolytic degradation are dependent on a number of factors including: temperature [130], size and
shape of samples [131], molecular weight [129], crystallinity [132], and relative humidity [133].
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Figure 2. Acid-catalyzed hydrolysis of poly(lactic acid) (PLA).

Degradation of PLA and other aliphatic polyesters biomedical devices inside animal or human
tissue is also controlled by hydrolytic mechanisms [134]. Biodegradable devices degrade slowly over
time and eventually become absorbed by the body [135]. Many factors affecting hydrolytic degradation
of polyesters in the environment (e.g., morphology, crystallinity, sample size, molecular weight) also
affect hydrolytic degradation inside of body tissues. However, other factors, like sterilization and site
of implantation, can play a role in degradation of biomedical devices [136].
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3.2. Influence of UV Irradiation on Biodegradation

In recent years, the agricultural industry has been using biodegradable polyesters, including PLA,
to make films for mulching applications [137,138]. These mulching films help retain moisture in the
soil and modulate the surface temperature [139,140]. It is well known that irradiation of polymers
can lead to changes in the polymer structure via different mechanisms including chain scission (e.g.,
Norrish I or Norrish II) or crosslinking (by recombination of two free radicals) [141]. The impacts of
solar radiation on the mechanical properties of PLA have been investigated because mulching films
have extended exposure to sunlight. The impacts of irradiation on polymer biodegradability are also
a concern, and as a result, there have been studies on polymers to examine the biodegradability after
UV irradiation [141].

Polymers that crosslink during irradiation tend to have reduced biodegradation because the
higher molecular weight decreases the ability for uptake by microorganisms [142]. Mulching films
must be sufficiently biodegradable that they can be tilled into the soil or collected with crop residue
for composting without causing ecotoxicity to the soil [143,144]. A recent study observed that
PLA degraded by UV irradiation for extended periods of time reduces the rates of biodegradation
by microorganisms suggesting the PLA was transformed into poorly assimilated solids [145].
However, a study by Stloukal et al found irradiation of PLA leads to chain scissions rather than
crosslinking [138]. Furthermore, this study found, at least for PLA biodegradation, that the specific
surface area was a more important factor than the extent of photooxidation [138].

3.3. Degradation of PLA Composites and PLA Blends

Pure PLA is difficult to use in most applications due to its brittleness (high modulus of elasticity
coupled with low strains at break) [146]. A common strategy for overcoming the brittleness of PLA is
blending with other polymers that will improve the overall mechanical properties. Another technique
is to add nanofillers derived from clays, carbon, cellulose, or other sources to form PLA-based
nanocomposites [117,147]. In certain applications, chemical additives or modified polymers are
deliberately added to biodegradable polymers in order to limit the degradation rate of polymers when
durability or extended shelf life is needed [148,149]. Since the presence of other polymers and/or
nanofillers can impact biodegradation, there have been investigations on biodegradation of PLA
nanocomposites and PLA blends.

Polymer blends may have different morphologies based on blending ratios, which will impact
biodegradation processes. Furthermore, various biodegradable polymers degrade at different
rates [150,151]. PLA/poly(hydroxybutyrate) (PHB) blends, which are promising food packaging
materials, have been shown to be compostable under normal compositing conditions [152].
Certain PLA/thermoplastic polyester polyurethane (TPU) blends have also demonstrated
biodegradability. The degradation profiles of the PLA/TPU blends were correlated to the different
polymer morphologies based on the blend ratios [153]. Poly(butylene-adipate-co-terephtalate) (PBAT),
an aliphatic-aromatic copolyester that is also biodegradable, has been blended with PLA to increase
the toughness of PLA [154,155]. Two recent studies on the biodegradability of a PLA/PBAT blends
shows that the blends biodegrade at a slower rate than either PLA or PBAT [151,156].

Biodegradation studies have found that PLA nanocomposite films, containing either native or
organo-modified montmorillonites (MMT) nanoclay fillers, show faster biodegradation onset than
pure PLA films [123,157]. Another group, Fukushima et al., also found that organically modified
fluoro-hectorite increased the degradation rate compared to pure PLA [158,159]. This indicates that
PLA composites containing nanoclay fillers may be treated at composting facilities alongside pure PLA.

3.4. PLA-Degrading Microorganisms

Many microorganisms have been identified that will biodegrade aliphatic polyesters,
such as poly(β-hydroxyalkanoate), poly(ε-caprolactone), poly(hexamethylene carbonate), and
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poly(tetramethylene succinate) [160]. However, isolating microorganisms that biodegrade PLA has
been more difficult. In 1997, Pranamuda et al reported the first PLA degrader, Amycolatopsis strain
HT-32, which was isolated from soil [161]. According to an earlier review by Tokiwa and Calabia,
most PLA-degrading microorganisms are bacteria, belonging to related genera within the taxonomic
family of Pseudonocardiaceae, including Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and
Saccharothrix [162]. In 2001, Tritirachium album was the first isolated fungal strain reported to degrade
PLA [163].

Ongoing research continues to isolate previously unknown PLA degraders belonging to other
families and genera. A new strain of mesophilic bacterium, Stenotrophomonas maltophilia LB 2–3,
was isolated from compost on a pear-tree farm in South Korea [145]. Previously unreported strains
of Rhizobium sp. and Alpha proteobacterium found in agricultural soils from Vietnam were able to
biodegrade PLA/ethylene vinyl acetate (EVA) [146]. Recently, a study reported the isolation of
a PLA-degrading bacteria (Thermopolyspora flexuosa, or FTPLA) [125].

3.5. Methods of Monitoring Biodegradation

In recent years, there have been many efforts to standardize methods of measuring polymer
biodegradation, which has resulted in the publication of various standards and protocols by the
International Organization for Standardization (ISO), American Society for Testing and Materials
(ASTM International), governmental agencies, and other professional organizations [164,165].
Lucas et al. wrote a comprehensive review of the mechanisms and estimation techniques of polymer
biodegradation [166]. Kale et al. provided an excellent summary of the standards related to composting
of plastics [167]. Specific standards are used to measure biodegradability under different environmental
conditions like composting, anaerobic digestion, or waste water treatment [20]. The European standard
for compostability of packaging and packaging waste material, European Norm EN13432:2000, has the
strictest requirements for evaluating biodegradability and compostability [168]. Two other important
standards on compostablity are ASTM D 6400 and BNQ (Bureau de normalisation du Québec) 9011-911
which are used in the USA and in Canada, respectively. Laboratory techniques for monitoring
biodegradation include measurement of evolved CO2, weight loss, changes in molecular weight,
changes in mechanical properties, and radiolabeling [151,169].

4. Other Bio-Based Polymers with Potential for Biodegradability

Over the past decades there has been an increased social and economic demand for alternative
energy, materials, and resources to replace current nonrenewable, fossil fuel-based products [170].
With the constant fluctuation in petroleum prices, it is imperative to find alternative resources in
order to leverage the uncertainty of the oil market. Bio-based polymers derived from renewable
feedstocks are a strategic area of sustainable development [171]. One key element of bio-based polymer
research is biodegradability [172], although not all bio-based polymers are inherently biodegradable.
As explained previously, biodegradation takes place through a reaction of enzymatic and/or chemical
deterioration associated with living organisms [19]. Therefore, some petroleum-based products can
be biodegradable, such as poly(caprolactone) (PCL) [19]. In this section, only polymers that are
concomitantly biodegradable and bio-based will be discussed.

Several factors make bio-based polymers and composites attractive for environmentally
friendly research, including their potential for biodegradability, conservation of petroleum demands,
accessibility, low toxicity, economic efficiency, and low carbon footprint [173]. Bio-based polymers are
macromolecules derived from plants, trees, bacteria, algae, or other bio-renewable resources. They are
often degradable through microbial processes such as composting. Some of the most common natural
biopolymers include cellulose, proteins, starches, and polyesters. Their widespread use is limited due
to an intrinsic difficulty in ensuring reproducibility of the main properties [174]. For example, although
several distinct microorganisms are able to produce polyhydroxyalkanoates (PHAs), their polymer
composition differs depending on the microorganism’s nourishment intake.
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In order to obtain better control over polymer property reproducibility, bio-based monomers
or resins have been isolated, modified, and/or synthesized. Polyurethanes, polyester amides,
polyolefins [175], and alkyd resins [176] are some of the bio-based resins currently available at
a commercial scale. In the past, in order to improve their mechanical properties, these polymers have
been reinforced with inorganic and organic materials [175], while improvement of their processability
has been accomplished, in some cases, by the use of volatile organic solvents [176]. For the sake of text
conciseness, this section will be limited to bio-based and biodegradable polymers currently used in the
areas of medical applications, plastics, elastomers, adhesives, bio-based compatibilizers and additives.

4.1. Medical Applications

Polymers have been a valuable material in medicine, and over the past half-century, biodegradable,
biocompatible polymers have gained increasing popularity in drug delivery. Indeed, bio-based
polymers that are capable of dissolving in the body after the drug is delivered to its target are highly
desirable [177]. It is possible to design polymers for specific applications by manipulation and
control of the polymer composition, thermal behavior, hydrophobicity/hydrophilicity, mechanical
properties, ability to retain the encapsulated or entrapped drug, and the interactions of the polymer
in a biological environment [178]. Other applications outside the realm of drug delivery include
surgical devices, implants, tissue engineering, gene therapy, regenerative medicine, coatings on
implant biosensors, components of diagnostic assays, bio-adhesives, ocular devices, and materials for
orthopedic applications [178,179].

The applications of a specific bio-based polymer are greatly dependent on its composition.
Unsaturated oils have become an attractive source for polymers due to their carbon-carbon
double bonds within the fatty acid chains. These double bonds serve as ideal reactive sites for
polymerization [180]. Hydrophobicity and flexibility of vegetable oil-based polymers can be tuned
by monomer composition and by the selection of the specific oil to be used as a monomer. It has
been shown that oil-based polymers do not form uniform blends due to the variable fatty acid
composition within each oil, which can result in a micro-phase separation of the matrix, compromising
the mechanical properties of the final polymeric material [178,181]. In order to limit this effect,
monomeric triglyceride units have been added to a filler or a template backbone polymer, such as
polyanhydrides, co-polyesters, or polyamides. In anticancer treatments, fatty acid dimer (FAD) systems
were originally created to control the release of water soluble and unstable chemotherapeutics [182].
Drugs impregnated with FAD were shown to allow for prolonged and controlled drug release [182].
FADs have also been shown to have local anesthetic and antibiotic properties. Most fatty acids
undergo condensation to form polyanhydrides that can easily be hydrolytically degraded. Though
polyanhydrides can degrade by surface erosion, there are many factors that influence the mechanism
and rate of degradation [178].

Tissue engineering is a popular field in medicine and the current market is estimated to be
approximately $23 million dollars, with a projected continuous growth in the coming years [183].
Polyesters are one of the most competitive polymers for regenerative implantation surgeries,
therapeutic cell culturing, and tissue repair. Of all the current commercial products, polyesters
act as biologically passive supporting materials such as sutures, surgical mesh or netting, or
drug-releasing vehicles. To address more advanced medical and regenerative applications, polyesters
are modified to overcome issues such as low cell adhesion, hydrophobicity, and inflammatory
side effects. Some of the most commonly used bio-based polyesters are poly(lactic acid) (PLA),
poly(lactic-co-glycolic acid) (PLGA), poly-3-hydroxybutyrate (or poly-hydroxybutyric acid, PHB),
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) (Figure 3) [19,184,185]. PLA is most commonly
used in sutures due to its high tensile strength and elongation at break [186].



Polymers 2016, 8, 262 10 of 22

 

Figure 3. Chemical structures of (a) poly(lactic acid) (PLA); (b) poly(lactic-co-glycolic acid)
(PLGA); (c) poly-3-hydroxybutyrate (or poly-hydroxybutyric acid, PHB); (d) poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) (PHBV).

4.2. Plastics

Plastics play an important role in our society. They are used in food packaging, clothing,
construction, communication, transportation, and health care equipment and supplies [185].
Among the currently available bioplastics, PLA, starch, and PHAs are the most attractive to study
because they can be processed with conventional methods, have comparable physical properties,
and can be produced in an economically efficient fashion, in large scale quantities [187]. In the realm
of plastics, PLA, a derivative of starch, is very popular due to its virtually neutral carbon footprint.
Indeed, atmospheric carbon dioxide is consumed by plants during photosynthesis, compensating for
CO2 discharge during combustion or biodegradation [188].

Starch is one of the most abundant natural polymers extracted from agricultural sources, such
as corn, wheat, potato, and cassava. It is composed of repeating glucose monomers, and is found
in its linear form as amylose, and in a branched form as amylopectin (Figure 4) [187,189]. The main
applications of starch include use as a thickener-stabilizer and gelling agent in foods. Gelatinized starch
and processed starch are utilized in the textile industry and papermaking industry. Starch can only be
used as a plastic, without the need of a second film-forming substance, upon addition of plasticizers.
Starch can only be dissolved in ionic liquids and some organic solvents, and undergoes gelatinization
when mixed with hot water. The human body naturally contains enzymes that break it down. Starch is
capable of melt-forming when mixed with glycerol. It is therefore used as a capsule material in
applications such as food trays. Despite the low compatibility of starch with some biodegradable
polymers [190], blends of starch and biodegradable plastics have been developed and are marketed as
film, foamed plastic, and coatings [188].
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Figure 4. Chemical structure of (a) amylose; and (b) amylopectin.

Similar to PLA, PHA is associated to a carbon-neutral footprint, meaning that degradation of the
polymer does not correspond to an overall increase of atmospheric CO2 levels. PHA is produced by
microorganisms, and is therefore bio-based. PHA is also biodegradable through enzymatic activity
and is known for its ultraviolet radiation protection capabilities in the organisms that produce it [191].
PHA can be extracted from its producing bacteria and processed through extrusion for production
of rigid and flexible plastics for various biomedical applications. PHA can also be considered
for applications including packaging, paper coatings, non-woven fabrics, adhesives, films, and
performance additives. PHAs are gaining attention due to their promising biodegradable properties in
different environments other than composting plants [192].

4.3. Adhesives and Elastomers

Pressure sensitive adhesives (PSA) are commercially known as adhesive tape. They are
permanently tacky at room temperature and should adhere to various surfaces with light pressure.
Common PSAs are adhesive tape, postage stamps, labels, and duct tape. PSAs need to have good
flexibility, tack, and peel strength. Most are composed of petroleum-based acrylate polymers, and
are formulated with two components, an elastomer and a tackifier. Rosin derivatives can be used as
a bio-based tackifier and natural rubber may be used as the elastomer component. Although finding
a completely bio-based and biodegradable adhesive that is cohesive may be difficult, studies have
shown that epoxidized soybean oil, polyethylene glycol, and PHA satisfy the Dahlquist criterion for
elastomer use. PSAs are generally considered for single-use only, and end up creating a significant
amount of waste. Creating a PSA system that is bio-based and biodegradable could help alleviate the
waste production and should be further investigated [193].

4.4. Compatibilizers, Biocomposites and Biofibers

Despite their great positive environmental impact, most bio-based and biodegradable polymers’
mechanical properties are inferior to their petroleum-based counterparts. Compatibilizers and/or
reinforcing agents, such as inorganic fillers and fibers [176], are often added to bio-based polymers
in order to improve their mechanical properties and make them suitable for structural applications.
For instance, the non-renewable, biodegradable polymer, poly(butylene adipate-co-terephthalate)
(PBAT) [194], has been blended with PLA in order to confer flexibility and a higher elongation
at break in comparison to other biodegradable polymers. The blend, however, exhibits poor
thermal and mechanical properties. Compatibilizers that are of considerable toughness, such as
poly(butylene succinate) (PBS), PHBV and the non-renewable, biodegradable polymer poly(butylene
succinate-co-adipate) (PBSA) [194] were added to a PLA/PBAT blend, resulting in a slight decrease of
thermal properties and an increase in melt flow with PBS, while no change was observed with PBSA
or PHBV [195]. The chemical structures of PBAT, PBS, and PBSA are provided in Figure 5.
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Figure 5. Chemical structure of (a) poly(butylene-adipate-co-terephtalate) (PBAT); (b) poly(butylene
succinate) (PBS); and (c) poly(butylene succinate-co-adipate) (PBSA).

Triglycerides and epoxidized oils have been investigated as compatibilizers with PLA because
of their ester or epoxy groups, which can be degraded by microorganisms. Some oils also contain
fatty acids with carbon–carbon double bonds that can act as reactive sites for crosslinking, creating
a stronger polymer network. Recent studies have tested the mixture of deodorization oil condensates
with PLA and report an increase in ductility in comparison to pure PLA. Deodorization oil condensates
are mixtures of different molecules found in vegetable oils [196]. These molecules are recovered via
a vacuum steam distillation process, in which steam is passed through the vegetable oil at a very low
pressure and high temperature [196].

Bio-fibers or reinforcements have also become increasingly popular as low cost and renewable
reinforcing agents. Two common bio-based reinforcing agents are lignin and cellulose. Lignin is more
sensitive to light degradation than cellulose. Cellulose is more sensitive to heat degradation than lignin.
These factors can affect the choice of bio-based reinforcement [197]. Generally, these biopolymers are
highly hydrophilic, but they are typically added to hydrophobic polymer matrices, compromising
reinforcement and matrix adhesion. In order to improve reinforcement-matrix adhesion, cellulose
treatment that decreases hydrophilicity has been proposed. Grafting techniques have also become
popular and can be categorized into three groups, namely grafting of fiber with a single monomer,
grafting with a mixture of two or more monomers, and grafting with the polymer directly. Along these
lines, bio-based and biodegradable PHBV oligomers have been prepared by transesterification, and
PHBV-graft-ethyl cellulose copolymers have been synthesized using 1,6-hexamethylene diisocyanate
(HDI) as a grafting agent. In comparison with neat PHBV, the crystallinity of the grafted copolymer
decreased and the moisture resistance was improved [198].

4.5. Chemical Structure Influence on Biodegradation

There are several studies in the literature suggesting relationships between the chemical structure
of substrates and their degradation rates. In one such study, it was shown that the bulkiness of
the alkyl chain in nonylphenols has a negative impact on the degradation rate [199]. Indeed, the
following order of decreasing degradation rate was observed based on the α-substituents found in
nonylphenols: α-dimethyl > α-ethyl-α-methyl > α-methyl-α-npropyl > α-iso-propyl-α-methyl [199].
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When evaluating the properties and biodegradability of polymers, a series of copolymers of
poly(propylene 1,4-cyclohexanedicarboxylate) and neo-pentyl glycol (NPG) was prepared and
a correlation between mol % of NPG and mechanical properties was established [200]. Likewise, it was
shown that the polymers exhibiting the lowest mechanical properties were the ones with the highest
degradation rates [200]. Along the same lines, a series of copolymers of ethylene and propylene oxides
were evaluated for their biodegradability and the results indicated that high biodegradability rates
depend primarily on (1) the presence of terminal hydroxyl or acyl functional groups to allow for
metabolic processes; (2) lower molecular weights; and (3) higher contents of ethylene oxide units [201].
Such findings suggest that in many cases biodegradability may be directed by physico-chemical
phenomena, such as the mobility of substrate, its availability, mixing, mechanical properties impacting
breaking down of the macrostructure, and/or hydrophilicity of chemical species.

5. Conclusions

In conclusion, the importance of the search for more sustainable methods, including
biodegradability studies of bio-based polymeric materials has been highlighted. The recent literature
on the most significant bio-based polymer systems has been briefly covered with a special emphasis
on vegetable oil-based resins and PLA due to their current widespread industrial use and relevance.
It has been pointed out, and examples have been presented showing, that bio-based or bio-renewable
monomers can lead to materials that may not necessarily be fully or significantly biodegradable, hence
the relevance of the current review. It has also been mentioned that the biodegradability of a large
number of novel bio-based systems has not been investigated yet. The discussion revolved around
the idea that biodegradability consists in the breakdown of matter as the result of the activity of
microorganisms that secrete enzymes, which cleave specific chemical bonds or perform very specific
chemical reactions. Changes in the functional groups of bio-based monomers, crosslink density, and
co-polymerization with non-biodegradable co-monomers can lead to materials that exhibit various
degrees of biodegradability, with varying environmental impact.

As rule of thumb, in order for polymers to be biodegradable, they must have a carbon backbone.
The degradation process may occur through hydrolytic or enzymatic processes into oligomer units and
eventually into monomer units. Fungi, bacteria, and algae are some of the most important organisms
in the degradation process. For natural polymers such as polysaccharides or proteins, the polymer is
degraded in a biological system by enzymatic processes. The rate of degradation is highly dependent
on the chemical structure. Medical applications can significantly benefit from bio-based, biodegradable
polymers’ biocompatibility and biodegradability without toxic effects. Other fields where bio-based
and biodegradable polymers are becoming increasingly popular are plastics, adhesives, and elastomers.
Despite all the recent progress made on bio-based and biodegradable polymers, further advancements
are needed before petroleum-based products can be completely replaced.
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