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Bio-Inspired Algorithms for the Design of Multiple
Optimal Power System Stabilizers: SPPSO and BFA

Tridib Kumar Das, Student Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE,
and Usman O. Aliyu

Abstract—Damping intra-area and interarea oscillations are
critical to optimal power flow and stability in a power system.
Power system stabilizers (PSSs) are effective damping devices, as
they provide auxiliary control signals to the excitation systems of
generators. The proper selection of PSS parameters to accom-
modate variations in the power system dynamics is important
and is a challenging task particularly when several PSSs are
involved. Two classical bio-inspired algorithms, which are small-
population-based particle swarm optimization (SPPSO) and bac-
terial foraging algorithm (BFA), are presented in this paper for
the simultaneous design of multiple optimal PSSs in two power
systems. A classical PSO with a small population of particles is
called SPPSO in this paper. The SPPSO uses the regeneration
concept, introduced in this paper, to attain the same performance
as a PSO algorithm with a large population. Both algorithms
use time domain information to obtain the objective function for
the determination of the optimal parameters of the PSSs. The
effectiveness of the two algorithms is evaluated and compared
for damping the system oscillations during small and large dis-
turbances, and their robustness is illustrated using the transient
energy analysis. In addition, the computational complexities of the
two algorithms are also presented.

Index Terms—Bacterial foraging, computational complexity,
multimachine power systems, Nigerian power system, particle
swarm optimization (PSO), power system stabilizers (PSSs),
regeneration stability, small population, transient energy (TE)
analysis.

I. INTRODUCTION

IN POWER systems, reliability and transfer capability are of-

ten limited by stability constraints like transient, oscillatory,

and voltage stabilities. Maintaining system stability presents

new challenges, as power systems are operating today under

more stressed conditions and uncertainty than in the past. If

stability problems are accurately identified and properly miti-

gated, significant economic gains can be realized. Power system
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stabilizers (PSSs) are used as supplementary control devices to

provide extra damping and improve the dynamic performance

of the power system. PSSs are very effective controllers in

enhancing the damping of low-frequency oscillations because

they can increase the damping torque for interarea modes by

introducing additional signals into the excitation controllers of

the generators. These oscillations come into existence when

generators fall out of step from each other. Depending on their

location in the system, some generators participate in a single

mode of oscillation, whereas others participate in more than

one mode.

Researchers have been putting lots of efforts in the de-

sign of optimal PSSs to satisfy different system requirements.

Several PSS design techniques have been reported [1]–[3].

These algorithms employ large number of particles or indi-

viduals in the optimization. The involvement of large number

of particles takes a significant amount of computation time.

This may pose a serious problem for systems which desire

faster convergence. To avoid burden on time and resources,

the need for developing small-population-based algorithms

like the microgenetic algorithm (µ-GA) [4] comes into mind.

µ-GA with its small population size and reinitialization process

is capable of improving the exploitation characteristics of the

GA without affecting its exploration characteristics. The in-

volvement of fewer numbers of particles can be considered as

the first step toward online optimization, where fast plugging of

updated parameters is desired. However, studies have revealed

that GA has a degraded performance if the function to be

optimized is epistatic (where parameters to be optimized are

highly co-related) [5]. The GA algorithm also has the demerit

of premature convergence. This paper therefore explores the

efficacies of two new small-population-based algorithms for the

tuning of PSS parameters.

Two bio-inspired algorithms, which are small-population-

based particle swarm optimization (SPPSO) and bacterial for-

aging algorithm (BFA), for the simultaneous design of multiple

optimal PSSs are presented. SPPSO is capable of exploration

and exploitation like PSO. The involvement of a number of

stages in BFA greatly reduces the possibility of getting trapped

in the local minima during the search process. This approach

is a sincere effort by the authors toward determining the ef-

ficacies of small-population-based algorithms as a first step

toward online optimization. These algorithms are selected in

an effort to overcome computational overburden. The objective

function formulated for the optimization takes into consider-

ation the time domain information from the PSCAD/EMTDC

models [6], making it suitable for future online optimization.

0093-9994/$25.00 © 2008 IEEE
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Fig. 1. Two-area multimachine power system.

The effectiveness of SPPSO and BFA as optimization algo-

rithms for simultaneous multiple optimal PSSs design is eval-

uated on a two-area benchmark system [7] and the Nigerian

power system [8]. The robustness of the optimally tuned PSSs

is further compared using the transient energy (TE) analysis.

The rest of this paper is organized as follows. Section II

presents the power systems considered in this paper. Section III

describes the bio-inspired algorithms used. Section IV explains

the design of an optimal PSS. Section V presents some simula-

tion results. Section VI presents some analysis and discussions

on SPPSO and BFA. Finally, the conclusions and future work

are given in Section VII.

II. TWO MULTIMACHINE POWER SYSTEMS

In this paper, two different power systems are considered.

The first one is a four-machine 11-bus system, and the second

one is a seven-machine 25-bus system.

A. Two-Area Multimachine Power System

The two-area power system used in this paper is simulated

in the PSCAD/EMTDC environment which allows the detailed

representation of the power system dynamics. The small two-

area power system, shown in Fig. 1, consists of two fully

symmetrical areas linked together by two transmission lines.

Each area is equipped with two identical synchronous genera-

tors rated 20 kV/900 MVA. All generators are equipped with

identical speed governors and turbines, exciters and automatic

voltage regulators (AVRs), and PSSs. The loads in the two areas

are such that Area 1 is exporting about 413 MW to Area 2.

This power network is specifically designed to study low-

frequency electromechanical oscillations in two interconnected

power systems [7].

The PSSs provide additional input signal (Vpss) to the

voltage regulators/excitation systems to damp out the power

oscillations. Some commonly used input signals are rotor speed

deviation (∆ωr), accelerating power, and frequency. A typical

PSS block diagram is shown in Fig. 2. It consists of an amplifier

block of gain constant K, a block having a washout time con-

stant Tw, and two lead-lag compensators with time constants T1

to T4. The gain and four lead-lag compensator time constants

are to be selected for optimal performance over a wide range of

operating conditions.

Fig. 2. Block diagram of a PSS.

B. Nigerian Power System

The Nigerian 330-kV 25-bus grid power system is shown

in Fig. 3. It consists of seven generating units in two distinct

areas (four thermal and three hydro units), seven generator

step-up transformers equipped with tap changers, and com-

pensation reactors of different discrete values located at eight

different nodes. This system has two interarea modes (hydro

and thermal) and several intra-area modes (hydro and thermal)

[8]. There is a damping of 3.8% for a 1.223-Hz oscillatory

mode experienced by the hydro generating units and a damping

of 3.4% for a 1.225-Hz oscillatory mode experienced by the

thermal generating units. This makes the system potentially

unstable when experiencing large disturbances, thus the need

for the design of optimal PSSs for the hydro and thermal

areas. Hence, two PSSs of the form in Fig. 2 are added to the

excitations of generators at Shiroro and Egbin power stations

(Fig. 3).

III. BIO-INSPIRED ALGORITHMS WITH

SMALL POPULATION

The beauty of PSO lies in its ability to explore and exploit

the search space by varying its parameters (inertia weight

and acceleration constants). BFA due to its unique operators

(elimination–dispersal events) can find favorable regions during

search. These unique features of the algorithms overcome the

premature convergence problem and enhance the search capa-

bility. Hence, they are suitable algorithms for simultaneous de-

sign of multiple optimal PSSs. Improvements over the classical

PSO and BFA algorithms have been reported in the literature

[9]–[12]. The improvements to the classical PSO are reported

by modifying the PSO parameters, using adaptive critics [9],

or by introducing a mutation operator [10]. Similarly, the im-

provements to the classical BFA are reported by varying the run

step length, using fuzzy [11] or adaptive [12] techniques. The

authors in this paper, however, compare the classical BFA [13]

and PSO [14] with algorithms employing a small population.
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Fig. 3. Nigerian 330-kV 25-bus grid power system.

The comparison is made in terms of their computational com-

plexities and speed for the design of multiple optimal PSSs.

The two classical bio-inspired algorithms used in this paper are

described hereafter.

A. SPPSO Algorithm

The SPPSO algorithm is derived from the PSO algorithm.

PSO is a form of evolutionary computation technique (a search

method based on natural systems) developed by Kennedy and

Eberhart [9], [10]. The PSO, like GA, is a population (swarm)-

based optimization tool. However, unlike in GA, individuals

are not eliminated from the population from one generation

to the next. One major difference between particle swarm

and traditional evolutionary computation methods is that the

velocities of the particles are adjusted, whereas the positions

of evolutionary individuals are acted upon; it is as if the “fate”

is altered rather than the “state” of the particle swarm indi-

viduals [11].

Each potential solution, called particle, is given a random

velocity and is flown through the problem space. The particles

have memory, and each particle keeps track of previous best

position and corresponding fitness. The previous best value is

called the pbest of the particle and represented as pid. Thus,

pid is related only to a particular particle i. The best value of

all the particles’ pbest in the swarm is called the gbest and is

represented as pgd. The basic concept of PSO technique lies in

accelerating each particle toward its pid and the pgd locations at

each time step. The amount of acceleration with respect to both

pid and pgd locations is given random weighting.

Fig. 4 shows briefly the concept of PSO, where xi is the

current position, xi+1 is the modified position, νini is the

initial velocity, νmod is modified velocity, νpid is the velocity

Fig. 4. Movement of a PSO particle in two dimensions from one instant k to
another instant k + 1.

considering pid, and νpgd is the velocity considering pgd. The

following steps explain the procedure in the classical PSO

algorithm.

1) Initialize a population of particles with random positions

and velocities in d dimensions of the problem space.

2) For each particle, evaluate the desired optimization fitness

function.

3) Compare every particle’s fitness evaluation with its pbest

value pid. If the current value is better than pid, then

set pid value to be equal to the current value and

the pid location to be equal to the current location in

d-dimensional space.

4) Compare the updated pbest values with the population’s

previous gbest value. If any of the pbest values are better

than pgd, then update pgd and its parameters.

5) Compute the new velocities and positions of the particles

according to (1). νid and xid represent the velocity and

position of ith particle in the dth dimension, respectively,
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and rand1 and rand2 are two uniform random functions in

a unit interval

xid(k+1) = xid(k)+w × νid(k)+c1× rand1(pid(k)−xid(k))

+c2 × rand2 × (pgd(k) − xid(k)). (1)

6) Repeat from step 2) until a specified termination con-

dition is met, usually a sufficiently good fitness or a

maximum number of iterations.

The PSO parameter w in (1) is called the inertia weight,

which controls the exploration and exploitation of the search

space. Local minima are avoided by small local neighborhood,

but faster convergence is obtained by larger global neighbor-

hood, and in general, global neighborhood is preferred.

The velocity is restricted to a certain dynamic range. νmax is

the maximum allowable velocity for the particles, i.e., in case

the velocity of the particle exceeds νmax, then it is reduced

to νmax. Thus, the resolution and fitness of search depend on

νmax. If νmax is too high, then the particles will move beyond

good solution, and if νmax is too low, then the particles will

be trapped in local minima. c1 and c2, termed as cognition and

social components, respectively, are the acceleration constants

which change the velocity of a particle toward pid and pgd

(generally, somewhere between pid and pgd).

The SPPSO is a classical PSO algorithm but with a small

population. The concept of regeneration is introduced by the

authors to give particles the ability to keep carrying out the

search despite a small population. The particles are regenerated

after every N iterations, retaining their previous gbest (pgd) and

pbest (pid) fitness values and positions. The selection of the

value N is crucial in realizing an efficient SPPSO algorithm.

If the value of N is low, the new particles may be regenerated

too quickly and, in turn, disturb the search process. Thus, the

particles will move erratically in the search space. On the

other hand, if the particles are regenerated at a higher value

of N , the search process will be delayed. Randomizing the

positions and velocities of the particles every N iterations aids

the particles in avoiding local minima and finding the global

minimum. The regeneration concept drastically reduces the

number of evaluations required to find the best solution, and

each evaluation is less computationally intensive compared to

the classical PSO algorithm.

B. BFA

Animals with poor foraging strategies (methods for locating,

handling, and ingesting food) are eliminated by the process of

natural selection. This process, in turn, favors the propagation

of genes of those animals that have been successful in their for-

aging strategies. Species who have better food searching ability

are capable of enjoying reproductive success, and the ones with

poor search ability are either eliminated or reshaped. The BFA

mimics the foraging behavior of the E. coli bacterium present

in our intestines. This algorithm has been successfully demon-

strated as an optimization tool in power system harmonic esti-

mation [11], [12]. The foraging process consists of four stages:

chemotaxis, swarming, reproduction, and elimination [13],

and these are briefly explained hereafter. More information on

the BFA is given in [13].

1) Chemotaxis: This stage mimics the bacteria’s ability to

climb to regions of nutrient concentration, avoiding noxious

substances and searching for a way out of neutral media. The

bacterium usually takes a tumble, followed by a tumble or a

swim to carry out this search. For Nc number of chemotactic

steps, the direction of movement after a tumble is given by

θi(j + 1, k, l) = θ(j, k, l) + C(i) × φ(j) (2)

where C(i) is the step size taken in the direction of the tumble

by the ith bacterium, j is the index for the chemotactic step

taken, k is the index for the number of reproduction step, l
is the index for the number of elimination–dispersal event,

and φ(j) is the unit length random direction taken at each

step. In other published applications [11], [12], the number

of bacteria is reported to be eight or more in the BFA. In

this paper, the authors experimented with the step size for a

small population of bacteria (five or less) and found that using

a linearly decreasing step size resulted in faster convergence

for the BFA. Thus, the populations of the BFA and SPPSO are

comparable.

If the cost at θi(j + 1, k, l) is better than the cost at θi(j, k, l),
then the bacterium takes another step of size C(i) in that direc-

tion (swimming). This process is continued until the number of

steps taken is not greater than Ns (counter for the number of

swim steps). This is done to prevent the bacteria to be trapped

in the local minima. There should be a tradeoff between the

values of Ns to be chosen. It could be half of the value of Nc.

2) Swarming: The bacteria in times of stresses release at-

tractants to signal other bacteria to swarm together. It however

also releases a repellant to signal others to be at a minimum

distance from it. Thus, all of them have a cell to cell attraction

via the attractant and cell to cell repulsion via the repellant.

The following equation represents the swarming behavior in the

bacteria foraging:

Jcc(θ, P (j, k, l))

=

S
∑

i=1

J i
cc(θ, θ

i(j, k, l))

=

S
∑

i=1

[

−dattract exp

(

−wattract

p
∑

m=1

(θm − θi
m)2

)]

+
S

∑

i=1

[

hrepellant exp

(

−wrepellant

p
∑

m=1

(θm − θi
m)2

)]

(3)

where

dattract depth of the attractant effect;

wattract measure of the width of the attractant;

hrepellant = dattract height of the repellant effect;

wrepellant measure of the width of the repellant;

p number of parameters to be

optimized;

s number of bacteria.
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The total cost function to be optimized by the BFA can be

represented by

J(i, j, k, l) + Jcc(θ, P ) (4)

where J(i, j, k, l) is the cost function for the optimal PSS

design described in Section IV and given in (5). The values

of dattract and hrepellant should be same so that, after certain

number of iterations after the bacteria converge, there should

not be any contribution from the swarming part (Jcc = 0). The

values of wattract and wrepellant should be such that, when the

bacteria move farther from each other, the penalty added to

the cost function by Jcc should be large.

3) Reproduction: After all the Nc chemotactic steps have

been covered, a reproduction step takes place. Sr (Sr = S/2)
bacteria having a lower survival value (less healthy) die, and the

remaining Sr’s are allowed to split into two, thus keeping the

maintaining a constant population size.

4) Elimination–Dispersal: Environment changes for the

bacteria all the time. Bacteria are either destroyed or moved

to different parts of the intestine, resulting in positive and

negative influences on their lives. This process is incorporated

in the BFA. For each elimination–dispersal event, each bac-

terium is eliminated with a probability of ped. A low value of

Ned (number of elimination–dispersal events) dictates that the

algorithm will not rely on random elimination–dispersal events

to try to find favorable regions. A high value increases com-

putational complexity but allows the bacteria to find favorable

regions. The ped should not be large either, or else, it should

lead to an exhaustive search. The number of reproduction and

elimination–dispersal events is problem specific. The values

used in this paper are decided by trial and error.

IV. OPTIMAL PSS DESIGN

This section describes how the bio-inspired algorithms are

used to determine the optimal parameters of the PSSs for

the power systems in Figs. 1 and 3. For each PSS, the opti-

mal parameters are determined by the SPPSO and BFA, i.e.,

20 parameters (four PSSs) in total for the small two-area

multimachine power system and ten parameters (two PSSs)

for Nigerian power system. Just like any other optimization

problem, a cost or an objective function needs to be formulated

for the optimal PSS design. The objective in the optimal PSS

design is to maximize damping; in other words, minimize the

overshoots and settling time in system oscillations.

The integrated transient response area of the speed deviation

of the generators is used as the cost function to be minimized

by the bio-inspired algorithms. This, in turn, means improved

system damping. Because, in an interconnected power system,

there are several generators that experience the impact of a tran-

sient, a single objective function is formulated, which accounts

for the impact seen by all generators, and is given by

J t =

N
∑

n=1

m
∑

Gn

JGn (5)

TABLE I
PARAMETER LIMITS USED IN THE OPTIMIZATION

where

JGn
=

NP
∑

j=1

t2/∆t
∑

t=t0

(∆ωGn(t)) × (A × (t − t0) × ∆t) (6)

where NP is the number of operating points for which opti-

mization is carried out, N is the number of faults for which

the optimization is carried out, A is a weighing factor, m is

the number of generators in the system, ∆ωGn is the speed

deviation of the generator Gn, t0 is the time that the fault is

cleared, t0 and t2 are the start and end times of the simulation,

respectively, considered for the transient area calculation, ∆t
is the speed signal sampling period, and t is the simulation

time in seconds. Limits are placed on the PSS parameters to

keep the system within the stability margin during the online

optimization. The PSS parameter limits used for the two-area

multimachine power system (Fig. 1) and the Nigerian power

system (Fig. 3) are given in Table I.

The optimization is carried out by subjecting the power

systems to small and large disturbances. In this paper, first, a

temporary 200-ms-duration transmission line outage is placed

(on one of the tie lines), and when the system returns to steady

state, a three-phase short circuit of 200-ms duration is applied

at the middle of the tie lines. The value of J t is computed

using (5) for a given set of parameters for the PSSs, and the

bio-inspired algorithms are applied to compute the new set of

parameters.

V. SIMULATION RESULTS

The entire simulation is carried out with the power systems

simulated in the PSCAD/EMTDC environment and the bio-

inspired algorithms implemented in FORTRAN. The challeng-

ing task of using the bio-inspired algorithms to tune multiple

PSSs in PSCAD from the time domain information is reported

for the first time to the knowledge of the authors. The number

of particles used in SPPSO is five, and the number of bac-

teria in BFA is four. The values of parameters used in this

study are as follows: Nc = 4, Nre = 15, Ned = 10, Ns = 4,

datt = 0.01, hrep = 0.01, watt = 0.4, wrep = 0.42, w = 0.8,

c1 = 2.0, and c2 = 2.0. The fitness evaluations of the particles

and the bacteria are carried out online. The performances of the

PSSs optimized by the PSO, SPPSO, and BFA algorithms are

evaluated on Kundur’s two-area and Nigerian power systems

for small and large disturbances.



1450 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 44, NO. 5, SEPTEMBER/OCTOBER 2008

TABLE II
TWO-AREA POWER SYSTEM OPTIMIZED PSS PARAMETERS

A. Two-Area Multimachine Power System

Three tests are carried out, and the responses are studied for

the five cases mentioned hereafter. The respective optimized

PSS parameters for these cases are given in Table II.

1) No PSS: In this case, the power system is without

any PSSs.

2) Conventional PSS (CPSS): The PSS parameters in this

case are those obtained from [17]. These parameters are

the same for all four generators and are as follows: K =
20.00, T1 = 0.05 s, T2 = 0.02 s, T3 = 3.00 s, and T4 =
5.40 s, respectively.

3) PSO optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the PSO

algorithm.

4) SPPSO optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the SPPSO

algorithm.

5) BFA optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the BFA

algorithm.

1) Single Fault—Temporary Transmission Line Outage: A

200-ms transmission line outage is applied between buses 8 and

9 in Fig. 1. This is a small type of disturbance for a power

system where a transmission line between buses 8 and 9 is

removed for 200 ms. The speed responses of generators G2 and

G3 for the aforementioned cases are shown in Figs. 5 and 6,

respectively. Similar responses are observed for generators G1

and G4 and are not shown to limit the length of this paper.

The addition of PSSs improved the damping in the system

oscillations. The response of G2 clearly shows that the re-

sponses of PSO and SPPSO are comparable. PSO and SPPSO

optimized PSSs exhibit better damping than BFA optimized

PSSs, which, in turn, exhibit better damping than CPSS. For

generator G3, the performances of SPPSO and PSO optimized

PSSs are comparable and better than those with BFA optimized

PSSs and CPSS.

Fig. 5. Speed response of generator G2 for a 200-ms line outage between
buses 8 and 9.

Fig. 6. Speed response of generator G3 for a 200-ms line outage between
buses 8 and 9.

2) Single Fault—Three-Phase Short Circuit: A three-phase

short circuit of 200-ms duration is applied at bus 8 in Fig. 1.

This is a severe fault compared to the transmission line outage

of 200 ms. The speed responses of generators G1 and G4 for the

aforementioned cases are shown in Figs. 7 and 8, respectively.

Similar responses are observed for generators G2 and G3. It is

clear from these figures, once again, that the PSSs improve the

damping in the system; a system having CPSS/BFA optimized

PSSs/SPPSO/PSO optimized PSSs shows better damping than

the system without PSSs. Damping is best with systems having

PSO and SPPSO optimized PSS followed by BFA optimized

PSSs and CPSSs. The speed responses for PSO and SPPSO

optimized PSS have a settling time of about a second faster than

the BFA optimized PSSs.

3) Combined Fault—Short Circuit Followed by a Transmis-

sion Line Outage: A double cascaded fault is now applied to

test the robustness of the different optimized PSS parameters.

A 100-ms three-phase short circuit at bus 8 is applied, followed

immediately by a 100-ms line outage between buses 8 and 9 im-

mediately in Fig. 1. The speed responses of generators G1 and
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Fig. 7. Speed response of generator G1 for a three-phase 200-ms short circuit
applied at bus 8.

Fig. 8. Speed response of generator G4 for a three-phase 200-ms short circuit
applied at bus 8.

G3 for the aforementioned cases are shown in Figs. 9 and 10,

respectively. Similar responses are observed for generators G2

and G4. The damping of the system improves from a system

having no PSS to SPPSO optimized PSSs. The system without

any PSS has minimum or no damping; hence, the oscillations

are sustained. The system with SPPSO and PSO optimized

PSSs is the best. The performance of the system with the

SPPSO optimized PSSs is much better than the system having

BFA optimized PSSs to provide damping during multiple faults.

B. Nigerian Power System

The following three tests are carried out; the responses

are studied for the three cases mentioned hereafter, and the

respective optimized PSS parameters for these cases are given

in Table III.

1) No PSS: In this case, the power system is without

any PSSs.

Fig. 9. Speed response of G1 for a three-phase 100-ms short circuit applied at
bus 8, followed by immediate 100-ms line outage between buses 8 and 9.

Fig. 10. Speed response of G3 for a three-phase 100-ms short circuit applied
at bus 8, followed by immediate 100-ms line outage between buses 8 and 9.

TABLE III
NIGERIAN POWER SYSTEM OPTIMIZED PSS PARAMETERS

2) PSO optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the PSO

algorithm.

3) SPPSO optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the SPPSO

algorithm.

4) BFA optimized PSS: The PSS parameters in this case

are the optimized parameters obtained using the BFA

algorithm.
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Fig. 11. Speed response of (hydro area) Shiroro generator for a 200-ms line
outage between buses 9 and 11.

Fig. 12. Speed response of (thermal area) Egbin generator for a 200-ms line
outage between buses 9 and 11.

1) Single Fault—Temporary Transmission Line Outage: A

temporary 200-ms-duration transmission line outage is placed

on the tie lines connecting the hydro and thermal areas between

buses 9 and 11. The speed responses of the generators in both

hydro and thermal areas for the aforementioned cases are shown

in Figs. 11 and 12, respectively. The Nigerian power system

without PSS for a short-duration transmission line outage ex-

hibits minimum damping and maximum overshoot with many

oscillatory modes. The overshoot and the settling time are

minimized with the SPPSO optimized PSSs. Here, it is clear

that, even for disturbances not as severe as a three-phase short

circuit, the SPPSO outperforms the BFA. This is because the

PSO and SPPSO optimized PSS gains are greater than the BFA

optimized PSS gains.

2) Single Fault—Three-Phase Short Circuit: A three-phase

short circuit of 200-ms duration is applied at the middle of the

tie line (bus 25) connecting the thermal area to the hydro area

in Fig. 3. The speed responses of two generators, one in the

thermal area (Delta) and the other in the hydro area (Shiroro),

Fig. 13. Speed response of (hydro area) Shiroro for a three-phase 200-ms
short circuit applied at the tie line between the thermal and hydro power
stations.

Fig. 14. Speed response of (thermal area) Delta for a three-phase 200-ms short
circuit applied at the tie line between the thermal and hydro power stations.

are shown in Figs. 13 and 14, respectively. The PSSs with

SPPSO optimized parameters exhibit the best performance,

followed by PSO optimized parameters and further followed

by BFA optimized parameters. The settling time is minimized,

and the system gets damped quickly within 3 to 4 s of the

disturbance for the PSO and SPPSO optimized PSS parameters.

3) Combined Fault—Short Circuit and Transmission Line

Outage: A double cascaded fault is now applied to test

the robustness of the different optimized PSS parameters. A

100-ms short circuit is applied at the middle of the tie lines

connecting the thermal area to the hydro area (bus 25), im-

mediately followed by a 100-ms line outage of the tie lines

between buses 9 and 11. The speed responses of the generators

in hydro and thermal areas for the aforementioned cases are

shown in Figs. 15 and 16, respectively. The performance of the

system with PSO and SPPSO optimized parameters is the best.

The oscillations in the system settle down faster and overshoot

minimized for PSS parameters obtained using PSO and SPPSO.
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Fig. 15. Speed response of (hydro area) Shiroro for a three-phase 100-ms
short circuit applied at bus 25, followed by immediate 100-ms line outage of
the tie lines between buses 9 and 11 (Fig. 3).

Fig. 16. Speed response of (thermal area) Egbin for a three-phase 100-ms
short circuit applied at bus 25, followed by immediate 100-ms line outage of
the tie lines between buses 9 and 11 (Fig. 3).

VI. DISCUSSIONS OF SPPSO AND BFA PSS DESIGNS

This section compares the two bio-inspired algorithms for the

design of multiple optimal PSS in terms of their computational

complexities and performances of the optimized PSSs using the

TE analysis.

A. Computational Complexities

The number of fitness evaluations involved in BFA is more

than those involved in SPPSO for a single iteration. In BFA,

for each bacterium, the fitness is evaluated a number of times.

The number of stages involved makes the algorithm computa-

tionally intensive. In addition, the number of factors involved

in BFA is twice as much as in PSO/SPPSO, as shown in

Table IV, and this makes BFA more complex. These factors

need to be properly chosen for the algorithm to perform opti-

mally. The dependence of the algorithm on so many parameters

TABLE IV
FACTORS AFFECTING THE PERFORMANCE OF

SPPSO AND BFA ALGORITHMS

Fig. 17. Average fitness of the best particle in SPPSO and the best bacterium
in BFA for the study on the two-area multimachine power system.

makes it handicapped in finding out the global optimum. The

performance of the BFA can be improved by choosing the

parameters effectively [12]. Similarly, PSO performance can

also be improved [9]. However, this paper mainly focuses in

comparing the classical BFA with the classical PSO. In BFA,

for every reproduction and elimination–dispersal stage, a fitness

evaluation is carried out after all the chemotactic steps are

covered; hence, S × Nc evaluations are performed. This is

equivalent to one PSO iteration. In the case of SPPSO/PSO,

m/n fitness evaluations are carried out for m/n particles,

respectively.

The average fitness over ten trials of the best bacterium

(BFA) and best particle (PSO and SPPSO) versus the number of

iterations during the optimization process is shown in Figs. 17

and 18 for the two multimachine power systems, respectively.

It can be seen in Figs. 17 and 18 that the fitness of the best

particle in SPPSO and PSO converges faster as compared to the

fitness of the best bacterium in BFA for the same number of

iterations (150) in both power systems under study. PSO and

SPPSO are faster in finding lower fitness values than BFA. For

the two-area power system, PSO converges to a lower average

fitness than SPPSO. The fitness, however, is close to the fitness
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Fig. 18. Average fitness of the best particle in SPPSO and the best bacterium
in BFA for the study on the Nigerian power system.

TABLE V
COMPARISON OF THE GENERAL COMPUTATIONAL

COMPLEXITY OF PSO, SPPSO, AND BFA

at which SPPSO converges. The x-coordinate is the number of

iterations, which, if interpreted in terms of fitness evaluations,

would be high for PSO. If fitness closer to what PSO achieves

in 150 iterations can be achieved in fewer computations and

less time, then the algorithm could be a considered as a poten-

tial online optimization tool. Computational burden is reduced

drastically in SPPSO as explained hereafter.

Table V gives a general comparative analysis on the compu-

tational complexities of the PSO, SPPSO, and BFA algorithms.

Table VI shows specifically the computational complexities

of the algorithms in the optimal PSS design for the two-

area multimachine power system in Fig. 1. The number of

fitness evaluations in PSO is higher than the number of fitness

evaluations in BFA and SPPSO; the number of additions and

multiplications in SPPSO is lower in comparison to that of the

PSO and BFA. For example, from Fig. 17 for the two-area

multimachine power system, to attain a fitness of 15.57, PSO

takes five iterations; both SPPSO and BFA take 19 iterations.

This translates to PSO carrying out 100 fitness evaluations,

TABLE VI
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF PSO, SPPSO,

AND BFA FOR PSS DESIGN FOR THE TWO-AREA POWER SYSTEM

(Nc = 4, Nre = 15, AND Ned = 10)

TABLE VII
COMPUTATION TIME FOR PSO, SPPSO, AND BFA FOR THE

TWO-AREA POWER SYSTEM

10 000 additions, and 10 000 multiplications; SPPSO carrying

out 95 fitness evaluations, 9500 additions, and 9500 multipli-

cations; and BFA carrying out 304 fitness evaluations, 24 016

additions, and 13 376 multiplications, respectively. Likewise,

from Fig. 18 for the Nigerian power system, it can be seen

that, to attain a fitness value of 43.97, PSO, SPPSO, and BFA

take 9, 4, and 63 iterations, respectively. This translates to the

PSO carrying out 180 fitness evaluations, 18 000 additions,

and 18 000 multiplications; SPPSO carrying out 20 fitness

evaluations, 2000 additions, and 2000 multiplications; and BFA

carrying out 1008 fitness evaluations, 39 312 additions, and

24 192 multiplications. This clearly shows that the SPPSO is

much less computational intensive, at least twice as fast on a

small power system (Fig. 1), and at least an order faster in the

Nigerian power system (Fig. 3) as compared to BFA.

The SPPSO, along with PSO and BFA, is allowed to run

on an Intel (R) 4 2.79-GHz processor, and the time required

to finish 150 iterations in PSCAD platform are tabulated in

Table VII. Table VII also includes the computation time in-

volved in optimizing the PSS parameters on Power System

Toolbox (PST) platform [18]. It can be clearly seen that

the SPPSO takes least amount of time in its row to finish

150 iterations in PSCAD and to reach zero fitness in PST.

For the Nigerian power system, the times required to finish

150 iterations on the PSCAD platform are 766 325, 37 908.35,

and 481 539.23 s for PSO, SPPSO, and BFA, respectively. Thus,

systems employing SPPSO can save considerable amount of

time and therefore are feasible for online optimization with high

speed processors.

B. TE Analysis of the Damping Performance

A brief comparison of the two algorithms based on the TE

calculations is shown in Tables VIII and IX. The TE of each
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TABLE VIII
NORMALIZED PI FOR THE TWO-AREA MULTIMACHINE POWER SYSTEM

TABLE IX
NORMALIZED PI FOR THE NIGERIAN POWER SYSTEM

generator for the first 5 s of the fault has been calculated using

(7), and the total TE of all the generators in a given area is given

by (8)

TEGeni
=

1

2
HGeni

tflt+5
∫

tflt

∆ω2
i dt (7)

where i is the generator number, tflt is the time at which the

fault is triggered, and HGeni
is the moment of inertia of the

generator i

TE =
N

∑

i=1

TEGeni
(8)

where N is the number of generators present in a given area of a

system. The performance index (PI), given in (9), is a measure

of how the system has performed under the given conditions

with the different sets of PSS parameters. The higher the PI, the

better the controller damping performance

Performance Index (PI) = 1/TE. (9)

TABLE X
EIGENVALUES, FREQUENCIES, AND DAMPING RATIOS OF THE

GENERATING UNITS IN AREA 1 IN THE TWO-AREA POWER SYSTEM

Table VIII presents the normalized PIs of Areas 1 and 2 for

the different disturbances for the two-area multimachine power

system. The normalized PI is obtained by dividing the PIs by

the PI obtained with no PSS in the system. The results show

that the PIs are best when the PSSs use the SPPSO optimized

parameters. The overall performance row indicates that the

bio-inspired optimization techniques improve the damping and

minimize the overshoot in the oscillations for small and large

disturbances. There are 19.17%, 24.65%, and 16.43% overall

improvements in damping in Area 1 with the PSO, SPPSO, and

BFA optimized PSS parameters, respectively, compared to the

PSS parameters in [17]. Similarly, the overall improvements

in the damping provided in Area 2 are 20.6%, 28.75%, and

33.47% with the PSO, SPPSO, and BFA optimized PSS param-

eters compared to the PSS parameters in [17].

Table IX shows the PIs of the hydro and thermal areas under

different operating conditions for the Nigerian power system.

PI is best with SPPSO optimized parameters, followed by PSO,

and then the BFA optimized parameters. This corroborates the

superiority of the SPPSO algorithm over the BFA for the same

operating conditions. There are overall improvements of 48%,

90%, and 99% in damping in hydro area with the BFA, PSO,

and SPPSO optimized PSS parameters, respectively, compared

to the case without any PSS in the system. Similarly, overall im-

provements in the damping provided in thermal area are 87%,

248%, and 245% with the BFA, PSO, and SPPSO optimized

PSS parameters, respectively, compared to the case without any

PSS in the system.

The PSO in each of the TE calculations is comparable with

SPPSO. However, the PSO after certain number of iterations

can be trapped in local optima, as the velocity of the particle

becomes zero when the same particle is both the pbest and the

gbest. When the velocity of the particle is zero, the position

of the particle cannot be updated, and thus, the search will be

trapped in a local optimum. SPPSO, owing to its regeneration,

can generate new particles after every N iteration, thus elimi-

nating the drawback of zero velocity.

C. Eigenvalue Analysis

Prony analysis [19], [20] is used to determine the eigenvalues

of the systems under study. Tables X–XIII list the complex
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TABLE XI
EIGENVALUES, FREQUENCIES, AND DAMPING RATIOS OF THE

GENERATING UNITS IN AREA 2 IN THE TWO-AREA POWER SYSTEM

TABLE XII
EIGENVALUES, FREQUENCIES, AND DAMPING RATIOS OF THE HYDRO

GENERATING UNITS IN THE NIGERIAN POWER SYSTEM

TABLE XIII
EIGENVALUES, FREQUENCIES, AND DAMPING RATIOS OF THE THERMAL

GENERATING UNITS IN THE NIGERIAN POWER SYSTEM

eigenvalues of all the generators in the two areas and the

Nigerian power system. The best eigenvalue of each of the

generator for each mode is highlighted in all the tables. In

summary, the eigenvalues generated by a system having bio-

inspired optimized PSSs have the highest negative real part in

that row and thus improve system stability. SPPSO and BFA

optimized PSSs exhibit best results for the interarea and local

modes in different areas, for the two-area power system, as

shown in Tables X and I. The SPPSO optimized PSSs exhibit

the best damping for most of the modes in the different areas in

the Nigerian power system, as shown in Tables XII and III.

VII. CONCLUSION

The successful implementation of the two bio-inspired algo-

rithms for the simultaneous design of the multiple optimal PSSs

has been presented in this paper. The SPPSO and BFA algo-

rithms give robust damping performance for various operating

conditions and disturbances. The SPPSO with the regeneration

concept is seen to have faster convergence with less number of

fitness evaluations and algebraic operations. BFA, owing to its

unique processes, can find good optimal solutions. The SPPSO,

however, is found to be superior to the BFA and PSO in terms

of computational complexity, TE analysis, convergence speed,

and damping performances.

This paper has presented the SPPSO and the BFA as op-

timization tools in the PSCAD/EMTDC environment. This is

a first step toward online optimization, and future work can

involve in developing these algorithms further for real-time

optimization in power systems.
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