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Bio-inspired Collision Avoidance in Swarm Systems
via Deep Reinforcement Learning

Seongin Na, Student Member, IEEE, Hanlin Niu, Member, IEEE, Barry Lennox, Senior Member, IEEE, and
Farshad Arvin, Senior Member, IEEE

Abstract—Autonomous vehicles have been highlighted as a
major growth area for future transportation systems and the
deployment of large numbers of these vehicles is expected when
safety and legal challenges are overcome. To meet the necessary
safety standards, effective collision avoidance technologies are
required to ensure that the number of accidents are kept to a
minimum. As large numbers of autonomous vehicles, operating
together on roads, can be regarded as a swarm system, we
propose a bio-inspired collision avoidance strategy using virtual
pheromones; an approach that has evolved effectively in nature
over many millions of years. Previous research using virtual
pheromones showed the potential of pheromone-based systems to
maneuver a swarm of robots; however, designing an individual
controller to maximise the performance of the entire swarm
is a major challenge. In this paper, we propose a novel deep
reinforcement learning (DRL) based approach that is able to
train a controller that introduces collision avoidance behaviour.
To accelerate training, we propose a novel sampling strategy
called Highlight Experience Replay and integrate it with a
Deep Deterministic Policy Gradient algorithm with noise added
to the weights and biases of the artificial neural network
to improve exploration. To evaluate the performance of the
proposed DRL-based controller, we applied it to navigation
and collision avoidance tasks in three different traffic scenarios.
The experimental results showed that the proposed DRL-based
controller outperformed the manually-tuned controller in terms
of stability, effectiveness, robustness and ease of tuning process.
Furthermore, the proposed Highlight Experience Replay method
outperformed than the popular Prioritized Experience Replay
sampling strategy by taking 27% of training time average over
three stages.

Index Terms—Collision Avoidance, Autonomous Vehicles,
Multi-agent systems, Deep Reinforcement Learning, Swarm
Robotics.

I. INTRODUCTION

W ITH the emergence of machine learning and other
new technologies, the development of autonomous

vehicles has been drawing greater attention as a possible
method of future transportation [1]. The wide deployment
of autonomous vehicles is expected to bring invaluable
benefits to society across diverse aspects including reduced
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traffic congestion, savings in fuel / battery usage and most
importantly, increased safety. However, if autonomous vehicles
are to receive widespread acceptance for use on roads then
robust collision avoidance mechanisms in general operating
environments are essential [2], [3].

Researchers in the field of autonomous vehicles have
proposed a wide range of collision avoidance mechanisms,
which have been based on numerous techniques including
control theory [4], potential fields [5], trajectory planning [6],
adaptive control [7], [8], velocity-based approaches [9]–[11]
and biologically-inspired method [12]. More recently, deep
learning based approaches have been proposed that utilise
the power of deep learning to derive optimal controllers
from large amounts of data that minimise collisions involving
autonomous vehicles [13], [14]. For example, in [15], DRL
was used by multi-agents to avoid collisions and improve
navigation tasks.

Large numbers of autonomous vehicles operating together
on a network of roads can be regarded as a swarm, where
a swarm is a system that consists of a large number of
agents, controlled in a decentralised manner using local
communication between individual agents or agents and
the environment, that work towards a common goal [16].
Swarms are frequently observed in nature where they perform
complex tasks using large numbers of agents, all with limited
capabilities, such as the colonies of ants, bees and termites.
Since autonomous vehicles can be controlled independently
and use local communication to achieve a common goal, e.g.
minimising collisions, whilst optimising other driving factors,
such as congestion and travel times, they can be regarded as
a swarm system.

One of the effective communication strategies that swarm
systems utilise in nature is pheromone-based communication
[17]. A pheromone is a chemical substance that is released
by an individual to trigger immediate behavioural or
developmental changes in other individuals who sense it
[18]. One of the great advantages of using pheromones to
communicate is that it allows scalable collective behaviours
without requiring direct communication between the agents.
For example, both a single ant and a large number of ants
operating in a collective can perform foraging using the same
pheromone trail without the need to increase communication
costs [19].

Furthermore, pheromone communication allows the opti-
misation of collective performance utilising feedback mech-
anisms that use combinations of pheromones that can each
introduce different behaviours [20]. These benefits mean that
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when compared to traditional methods of communication,
pheromone-based techniques can be more suitable when
scalability and adaptability are required with large numbers
of agents in a swarm. Pheromone-based communications
are therefore suitable in various real-world applications.
For example, in [21], the effectiveness of pheromone-
based communications was demonstrated in an urban waste
management application where the approach was shown
to outperform other more traditional waste management
techniques.

A wide range of domains including optimisation [22],
vehicle routing [23] and robotics [24]–[27] have recently
adopted pheromone-based communication systems to address
particular challenges. Despite the effectiveness of pheromone
based communications, significant challenges remain if this
technique is to be adopted more widely. One particular
challenge is the design of controllers for the individual
agents within a swarm, that are able to maximise the
performance of the entire swarm [28]. Traditional controller
design methods, so-called manually-designed controllers, use
heuristic approaches to specify the individual controllers.
However, the difficulty of doing this increases as the
complexity of the task and environment increases [29]. To
alleviate the design challenges, automated design methods
have been proposed to enable individual agents to learn
optimal control rules without external intervention [30]. To
date, these techniques have utilised traditional, local inter-
agent communication strategies, and whilst showing promising
results in realistic environments [31], they have not exploited
the potential benefits offered through the use of pheromone-
based techniques.

Motivated by the scalability and adaptability of pheromone-
based communication and its benefits for real-world appli-
cations, we propose a novel bio-inspired pheromone-based
collision avoidance scheme for swarm systems. Moreover,
to further enhance controller to be adaptive in complex and
dynamic environment, we propose a DRL-based controller for
the individual agents in a pheromone-based swarm system.
This paper makes three major contributions as follows:

• We propose a bio-inspired PhERS (Pheromone for Every
Robot Swarm) framework for a collision avoidance
scheme in swarm systems. The framework is validated
using three traffic scenarios in a realistic simulated envi-
ronment (Gazebo). Through experiments, the controllers
using this framework showed higher flexibility than the
traditional centralised control method.

• We propose a DRL-based controller for pheromone-
based swarm systems. The DRL-based controller is
designed to provide collision avoidance and navigation
in pheromone-based swarm systems. Comparisons show
that the proposed controller performs greater than the
traditional centralised controller, NH-ORCA [10], and the
manually-tuned controller.

• A novel bio-inspired sampling strategy for experience
replay buffer, Highlight Experience Replay (HLER), is
proposed and integrated with the Deep Deterministic
Policy Gradient algorithm (DDPG). The obtained results
from this work showed the proposed HLER sampling

Fig. 1. An overview of PhERS framework. Multiple pheromone grids
(1,2,...,N) are computed in the main PhERS controller and integrated with
the environment, which retrieves and updates pheromone intensity values
requested as a ROS message.

strategy outperformed the Prioritized Experience Replay
(PER) [32] sampling strategy in terms of training speed
reducing to average 27% of training time with PER
in three experimental stages. We further increased the
training speed of HLER by integrating the Gaussian noise
on parameters of a neural network (NN) to incentivise
exploration for finding a better policy rapidly [33].

We believe that this research encourages pheromone-based
swarm systems and use of DRL-based controller design
methods to be used in a broader range of tasks and in more
diverse and complex environments, such as those found in
agriculture and terrestrial exploration as well as autonomous
vehicles.

II. ARTIFICIAL PHEROMONE FRAMEWORK

We propose the PhERS (Pheromone for Every Robot
Swarm) framework, which provides an augmented environ-
ment where virtual pheromones can be utilised in real and
simulated environments for diverse applications including
collision avoidance systems in autonomous vehicles. Figure 1
illustrates the general overview of the proposed framework.
Within the framework, virtual pheromones are managed inside
each of the virtual grids, which act as fields of pheromones
having different characteristics. The framework is able to
incorporate a varying number of virtual grids and hence
a variety of virtual pheromones can be defined, which
helps to simulate complex pheromone-based behaviours. For
example, if repellent and attractive pheromones are utilised
simultaneously, then the complex trail traffic management
systems of ants can be replicated.

Figure 2 illustrates the proposed architecture of the PhERS
framework. It consists of three parts: i) main PhERS controller,
ii) data storage and iii) communication network. The main
PhERS controller orchestrates all the pheromone grids (Phero-
Grid) in the system. When the main PhERS controller is
initialised, it creates the specified number of Phero-Grids,
containing the individual characteristics requested. After
initialisation, the controller updates the Phero-grids at each
time-step, based on the spatio-temporal development model
of each pheromone. The data storage is used to store the
data contained within the Phero-grids, which represents the
intensity of each of the pheromones, in the main PhERS
controller at the specific time-step. The stored Phero-grid data
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Fig. 2. Architecture of PhERS framework. The framework consists of (i)
data storage, (ii) main controller and (iii) communication network. Phero-
Grid represents an entity that stores parameter settings and pheromone data.

can be retrieved when requested. The communication network
is used to manage communication between the main PhERS
controller and the agents. When the agents read pheromone
values, the positional information of the agents is sent to the
main PhERS controller via the communication network using
Robotic Operating System (ROS) messages. The main PhERS
controller then retrieves the requested pheromone data from
the agent through the communication network. Likewise, the
communication network sends pheromone information from
the agents to the main PhERS controller so that the released
pheromone data is applied to the Phero-grids. A basic version
of PhERS was tested for a simple environment scenario
in [34].

In this work, the framework was implemented on a
PC and with virtual pheromones created using a popular
simulated environment (Gazebo). For future deployments
on autonomous vehicles, it is feasible that the framework
could be implemented on a cloud server. The virtual
pheromone grids that are applied to the environment could
be generated and updated in the cloud system using real-
time communication with the vehicles. Using future generation
communications, such as 5G, and high-performance cloud
servers, the application of virtual pheromones to a large
number of fast moving autonomous vehicles, with minimal
delays is feasible [35], [36]. Moreover, the virtual pheromones
can be generated and managed by the traffic infrastructure.
The development of sensing technology and vehicle-to-
infrastructure communication systems enabled to propose
smart roads [37]. With the smart road technologies, the virtual
pheromones can be implemented and managed by local smart
traffic infrastructures in a decentralised manner rather than
using a centralised server such as a cloud system.

There are several advantages for using PhERS for

collision avoidance compared with other more traditional
collision avoidance methods. For the traditional collision
avoidance using centralised control, our pheromone-based
communication method is more flexible to any increase in
environmental complexity. The PhERS framework provides
decentralised control and so can manage more effectively
when the number of agents is large and/or varying, i.e. it
has high scalability. Moreover, for the traditional collision
avoidance using decentralised control, and using different
sensory devices, e.g. LiDAR and camera, the PhERS-based
collision avoidance system has the benefit that it can represent
future collision hazards that cannot be detected using the
sensory devices used when applying the traditional methods.
For example, by marking the trail of a vehicle using a slow
volatile pheromone, the vehicle can ensure there is a safe
distance from other following vehicles.

Although the PhERS framework is able to replace the
traditional collision avoidance methods using individual
sensory devices such as cameras and LiDARs, it is more
beneficial to be used as a higher level system for the traditional
collision avoidance. The higher level system can be defined as
traffic level system while the traditional individual level system
can be named as vehicle level system. When used together
with traditional sensory devices, it can cover more immediate
collision avoidance behaviours that require minimal delay at a
vehicle level and the PhERS-based system can be used to cover
more complex situations at a traffic level. By synthesising the
two methods, the vehicles can prevent collisions when the
traditional sensory devices are damaged or malfunctioning.

The virtual pheromones in the PhERS framework share
the same spatio-temporal update model. The pheromone grid,
managed by the main PhERS controller, is composed of
a 2D matrix, represented as Φ, that stores the pheromone
concentration at any given position in the Cartesian coordinate
system. Each cell of the grid represents a corresponding
discrete cell in the real environment. Equation (1) describes
the spatio-temporal update rule of the virtual pheromones.

Φk+1(x, y) =− u · ∇Φk(x, y)− ln(2)

eΦ
Φk(x, y)

+ κ△Φk(x, y) + ι(x, y) ,

(1)

where Φk+1(x, y) is the pheromone concentration at the
discrete time k+ 1, Φk(x, y) is the pheromone concentration
at position (x, y) at discrete time k. This equation is derived
from the Navier-Stokes equation, describing fluid flow [38].
In Equation (1), each term on the right hand side represents
phenomena that influence the pheromone concentration in the
real world, which are: i) the effect of wind, ii) evaporation,
iii) diffusion and iv) injection. The following list defines the
parameters of each phenomena.

• Wind vector, u, characterises the direction and velocity
of the wind that acts on the released pheromone.

• Evaporation half-life, eΦ, determines the time taken for
the pheromone concentration to be halved.

• Diffusion constant, κ, defines the rate of diffusion in a
given time period.
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• Injection function, ι, defines the shape and intensity of the
injected pheromone at a specific time step, an example
of which is given in Equation (2).

The following equation describes the injection function used
in this work. We assume that the injected pheromone has a
circular shape emanating from the injection point of the agent.

ιi(x, y) =

{
sΦ, if

√
(x− xr)2 + (y − yr)2 ≤ rΦ

0, otherwise
(2)

where sΦ represents the injection rate of the pheromone at a
given time step, (xr, yr) is the Cartesian coordinates of the
robot or agent, and rΦ is the radius of injection.

III. DEEP REINFORCEMENT LEARNING BASED
CONTROLLER

DRL-based control can be applied to individual agents in
a swarm to automatically identify appropriate controller rules.
As it is difficult to manually design controllers in a complex
and dynamic scenario, DRL-based controller is proposed to
overcome the limitation of manually designed controllers. In
this section, we introduce the background of DRL and explain
the proposed DRL algorithm that was used in our experiments.

A. Background

Reinforcement learning (RL) is an automated approach for
finding the best solution to a task by maximising a numerical
reward signal [39]. In RL, a subject that performs a task is
defined as an agent. An agent interacts with the environment
and obtains transition samples. Based on the current state
information, an agent decides what action it should take and
in response the environment returns a numerical reward signal
and information regarding the next state. This process involves
the transfer of information relating to the transition from one
state to another, as well as action and reward data and hence is
referred to as a transition sample. Using the transition samples,
RL can be applied to find the best solution for an agent
to maximise total cumulative reward, i.e. an optimal policy,
where policy refers to the mapping between states and actions.

When the number of possible states and actions for an agent
in an environment is relatively small, an agent’s policy can be
represented as a table that maps states and actions exhaustively.
However, when states and actions have continuous values or
the numbers are very large, it is not feasible to represent this
information in such a table. In this case, deep neural networks
can be used as a function approximator. The approach of using
deep neural networks for reinforcement learning problem is
referred to as DRL [40].

Current DRL algorithms can be divided into three branches
depending on which functions are being approximated by the
neural networks, which are used to derive the optimal policy.
The first approach, referred to as policy-based method, uses the
neural network to approximate the policy function and then the
subsequent policy network is optimised [41], [42]. The second
approach referred to as value based method, trains a value
network to derive an optimal policy [40]. In this approach the
value network indicates how good it is for an agent to be at

a particular state. Using the value information, the policy can
be driven in a way that leads the agent to the states with the
highest values. The third branch is actor-critic method [43].
This method trains both policy and value networks and uses
them both to derive an optimal policy. The policy and value
networks are referred to as actor and critic networks as they
play the roles of actor (take actions) and critic (evaluate the
actions given states).

DDPG [44] is an actor-critic based DRL algorithm
that can be used for continuous state and action space
environments, shown to achieve high levels of performance
in continuous control tasks in both simulated and real-world
applications [13]. As an important characteristic, DDPG uses
an experience replay buffer to store and reuse transition
samples to improve sample efficiency. Furthermore, through
selecting transition samples randomly from the buffer, we can
ensure the training data are not correlated, through time, as
consecutive transition samples will be. Since correlated data
can lead to failure in the training of the neural network, the
use of an experience replay buffer is essential [40].

Several research works have proposed diverse sampling
strategies improving a basic uniform sampling for experience
replay buffer to improve learning performance, e.g. hindsight
experience replay [45], attentive experience replay [46] and
prioritised experience replay [32]. The sampling strategies
vary depending on the optimisation objectives. For example,
hindsight experience replay is specialised for multi-goal
learning scenarios. Prioritised Experience Replay (PER) [32]
is one of the most popular sampling strategy used widely to
improve performance and training time. This strategy measures
the importance of transitions using the magnitude of temporal
difference error (TD-error) to effective neural network model
update. The probability of sampling transition i is defined as:

P (i) =
pαi∑
k p

α
k

, (3)

where α is a probability constant. Higher priority leads to a
higher probability of that sample being used during training.
Higher sample efficiency and performance has been reported
using PER, compared to uniform sampling strategies. Due to
its sample efficiency, this sampling strategy is used with DDPG
in several continuous control domains including robotics [13],
[47].

B. Proposed Strategy

In this work, we propose a new sampling strategy using
the concept of prioritising the samples. In the proposed
method, transition samples that have higher absolute value of
rewards than most of the samples are prioritised. As these
transitions can be considered the “highlights” of the episode,
the proposed method is referred to as HighLight Experience
Replay (HLER). HLER is inspired from the fact that human
brains can recall highlight events more effectively than neutral
events [48]. For example, in a study using brain imaging, it
was found that images with negative emotions were retrieved
more effectively than images that produced neutral emotions
[49]. Similarly, increasing brain activity was observed during
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the retrieval of positive contextual information, compared with
neutral information [50]. The expectation with using HLER
was that it would aid the neural network to be trained more
effectively on samples associated with high absolute reward.
While PER focuses on selecting samples with high TD-
error for faster neural network optimisation, HLER focuses
on selecting samples with high absolute reward to learn
the highlight event faster. Our hypothesis is that, HLER is
more efficient sampling strategy for our scenario, collision
avoidance of autonomous vehicle, than the PER sampling
strategy as a collision can be regarded as a highlight.

The proposed HLER strategy assigns a priority to each
transition sample in a replay buffer, collected from K actors.
The priority of the ith sample, pi is assigned as follows:

pi =

{
kHL · pbase, |rt| ≥ rHL

pbase, otherwise
, (4)

where pbase is the default priority, kHL is a coefficient that is
applied to samples that are considered highlights, and rHL is
a reward value to determine whether the sample is considered
a highlight or not.

When pi is specified to be equal to kHL·pbase, the priority of
the previous l number of samples, pi−l+1:i, are also assigned
values of kHL · pbase. This defines the previous l samples
as the moments contributing to the highlight sample. The
sampling probability of the ith sample in HLER sampling
strategy follows (3) as PER.

Compared to PER, the HLER sampling strategy is
considered to be more effective at sampling the important
transition data that contains the type of behaviour that the
neural network needs to learn, e.g. collision avoidance. For
tasks where there is a clear distinction between important
and neutral behaviours, HLER can accelerate training speed
and lead to higher cumulative reward during an episode, i.e.
movement from an initial to a terminal state.

To further improve the exploration capability of the DRL
algorithm, noise was added to the neural network parameters,
as suggested using the “noisy network” approach [33]. The
concept of noisy networks is that by adding Gaussian noise
to the weight and bias values in each linear layer of NN,
stochastic features are incorporated. A linear layer of a neural
network with p input and q output can be represented as
follows:

y = wx+ b, (5)

where x ∈ Rp is the layer output, w ∈ Rp×q represents the
weight matrix and the bias is denoted by b ∈ Rq . However,
the linear layer of a noisy neural network can be characterised
as follows:

y := (µw + σw ⊙ ϵw)x+ µb + σb ⊙ ϵb, (6)

where µw ∈ Rq×p, µb ∈ Rq, σw ∈ Rq×p, σb ∈ Rq

are the learnable parameters, ϵw and ϵb are the adaptive
Gaussian noise values that are added to the weight and bias
of the layer and ⊙ is an element-wise multiplication operator.
A noisy linear layer was applied to the actor network, to
help improve the exploration ability of the agent. Unlike ϵ-
greedy [39], another popular exploration method, the noisy

Algorithm 1: DDPG algorithm with HLER sampling
strategy and noisy network.

1 Randomly initialise critic neural network with normal
linear layers, Q(s, a|θQ) and actor neural network
with noisy linear layers π(s|θπ) with weights θQ and
θπ

2 Initialise target network Q′ and π′ with weights θQ
′

← θQ, θπ
′ ← θπ

3 Initialise replay buffer R
4 for episode = 1, ..., M do
5 Initialise the states st = s1
6 for t = 1, ..., T do
7 Run K actors and collect transition samples Dt

= (st, at, rt, st+1) into a replay buffer
8 if |rt| ≥ rHL then
9 Assign priority kHL · pbase for Dt−l:t

10 else
11 Assign priority pbase for Dt

12 end
13 if t = 0 mod ttrain then
14 Sample N transitions (si, ai, ri, si+1) from

a replay buffer with the sampling
probability P (i)

15 Set yi = ri + γQ′(si, π
′(si+1|θπ

′
)|θQ′

)
16 Set weighted updates for networks:

ωi = ( 1
B ·

1
P (i) )

β

17 Update critic network by minimizing the
loss: LQ = 1

N ω
∑

i(yi −Q(si, ai|θQ))2
18 Update actor network using the sampled

policy gradient: ∇θπJ ≈
1
N ω

∑
i∇aQ(s, a|θQ)|s=si,a=π(si)

19 ·∇θππ(si|θπ)|s=si

20 end
21 if t = 0 mod ttarget then
22 Update the target networks:

θQ
′ ← θQ,θπ

′ ← θπ

23 end
24 end
25 end

network approach generates state-dependent noise, which
helps reduce undesirable exploration in the states that do not
require exploration (e.g. states where the next state causes
a large penalty). Moreover, the noisy network approach can
be used for different DRL problems as the parameter noise
are adapted over training, while the fixed Gaussian parameter
space noise approach [51] requires manual fine-tuning of
the noise parameters. For these reasons, we chose the noisy
network approach for exploration in our work to effectively
learn collision avoidance behaviour which requires adaptive
state-dependent exploration. For example, a high degree of
exploration in the early stage is required for effective collision
avoidance and low degree of exploration is needed after
discovery of the optimal policy on the states near collision
states.

The DDPG algorithm with the HLER sampling strategy
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Fig. 3. The photo of Turtlebot3 Waffle Pi mobile robot, (a), and an illustration
of the two virtual antennae are attached on Turtlebot3 Waffle Pi in the Gazebo
simulated environment, (b). la is the length of antennae, α is the tilt angle,
and Φl,Φr are the pheromone concentrations measured by the left and right
antenna respectively.

technique and noisy network is summarised in Algorithm 1.
When the algorithm is executed, it initialises the actor and
critic neural networks, the target network and the replay buffer.
The algorithm iterates for M training episodes and in each
episode, a total of T steps of transition samples are collected
from the K number of actors. Sample priorities are assigned
using the HLER sampling strategy. In every ttrain time step,
the N number of transition samples are selected based on Pi

and TD-target and yi is assigned. In line 16, ω determines the
degree of the weights of the neural network are updated, where
β is a constant value and B is the total batch size. In every
ttarget in every episode, the target actor and critic networks
are updated.

IV. EXPERIMENTS

In this section, we introduce the structure and concepts
of the experiments. The two goals of the experiments
are to compare pheromone-based collision avoidance ap-
proaches to the traditional multi-agent collision avoidance
method and to evaluate DRL-based controller compared
to manually-designed controller integrated with pheromone-
based communication. The following sections describe i)
the specific experimental scenario, ii) traditional multi-agent
collision avoidance method, iii) the conventional manually-
tuned controller, iv) set-up of the DRL-based controller,
and v) the metrics used to evaluate the performance of the
controllers. Through the experiments, the suitability of the
PhERS framework is also validated. Compared to our previous
work [34] that first validated the PhERS framework, the
experiments conducted in this study include more complex
environments, use of a more advanced DRL-based controllers
and an additional metric for more elaborate analysis so that the
benefits of the proposed framework and the improved version
of DRL-based controller could be further investigated.

A. Experimental Scenario

We have designed an experimental scenario with three
stages that realise simple collision avoidance scenarios for
autonomous vehicles in the real-world with different levels of
complexity. All the experimental stages were constructed using
the Gazebo simulator which offers a realistic physics engine.

Simulated differential driven mobile robots, Turtlebot3, which
are general-purpose wheeled robots developed for education,
research and product prototyping, were deployed as the
autonomous vehicles, shown in Fig. 3 (a). Fig. 4 illustrates the
experimental stages and each stage is explained as follows.

1) Stage 1– Single Robot in a Static Scenario: In this
scenario, we deployed one robot and four static cylindrical
obstacles. This stage is modeled from the situation when an
autonomous vehicle is surrounded by static obstacles in traffic.
In the initialisation phase, the robot is placed at the centre (0,0)
in the 2D Cartesian coordinates of the arena and four obstacles
are placed at positions [(2, 0), (−2, 0), (0, 2), (0,−2)] m
respectively. The goal for the navigation system is to move
the robot to a random position 4 m from the origin (0,0).
Fig. 4 (a) illustrates this stage.

2) Stage 2– Multi-robot in a Dynamic Scenario: In this
scenario, we deployed two robots. The robots avoid colliding
with each other while navigating to the initial position of
the other robot. This stage mimics the situation when two
autonomous vehicles are driving towards each other and a
collision must be avoided. In the initialisation phase, the robots
are placed at a distance of 5 m apart from each other. Fig. 4 (b)
depicts this stage.

3) Stage 3– Multi-robot in a Complex Dynamic Scenario:
In this scenario, we deployed four robots and one static
obstacle. This stage recreates the situation where there are four
autonomous vehicles at a roundabout and there are no fixed
traffic rules. As in Stage 2, the goal for the robots in this stage
is to navigate to the positions of the robot they are initially
facing, and avoid colliding with other robots and the static
obstacle. In the initialisation phase, the robots were placed
at the positions [(2.5, 0), (−2.5, 0), (0, 2.5), (0,−2.5)] m
respectively in the 2D Cartesian coordinates of the arena and
the static obstacle was placed at the centre (0,0) of the arena.
Fig. 4 (c) shows this stage.

To enable pheromone-based collision avoidance, we de-
signed two different types of artificial pheromone: i) a non-
volatile pheromone for static collision avoidance and ii) a
highly volatile pheromone for dynamic collision avoidance.
The concept of the two types of pheromone is inspired by
alarm pheromones that exist in nature and cause individuals,
e.g. ants, to become aggressive and fight or fearful and
run away [17], [52]. In each set of experiments, non-
volatile pheromones are released around static obstacles in
the initialisation phase. For the introduction of the two

Fig. 4. Three experimental stages. (a), (b) and (c) illustrate Stage 1, 2 and 3
respectively. The cyan coloured shaded circles around the robots and obstacles
illustrate the area where pheromones are injected and the red arrows show
the arbitrary trajectory of the robots on a mission.
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pheromones: the non-volatile pheromone is released with a
circular shape of radius 0.5 m without any evaporation and
diffusion, i.e. eΦ = 0 s and κ = 0, and the volatile pheromone
is released in a circular shape with a radius of 0.3 m, and a
very short evaporation half-life of eΦ = 0.5 s. The radius and
the evaporation rate were selected empirically so that each
type of pheromone worked effectively for collision avoidance.
The choice of eΦ for the volatile pheromone was inspired by
[53], where highly volatile repellent pheromone was used to
avoid collision with walls during navigation behaviours.

Experiments in each stage were repeated 100 times with
both DRL-based controller and the baseline manually-tuned
controller. For experiments with the DRL-based controller,
the fully trained controller was utilised, following training
in a separate training stage. In the training stage, the DRL-
based controller was trained for all three test stages using
the proposed DRL algorithm, as well as two baseline DRL
algorithms, so that the capabilities of the proposed DRL
algorithm could be determined.

B. Traditional Multi-agent Collision Avoidance

Non-Holonomic Optimal Reciprocal Collision Avoidnace
(NH-ORCA) [10], [11] is a centralised multi-robot collision
avoidance and navigation method. In this method, the position
and velocity of the agents are shared to generate the velocities
for the next sample time to ensure collision-free motion.
Compared to the initial approach, ORCA [9], NH-ORCA
applies non-holonomic feature of mobile robots to generate the
optimal velocity to avoid collisions. As Turtlebot3, the robotic
platform simulated in this work, is a non-holonomic wheeled-
mobile robot, NH-ORCA offers effective collision avoidance
performance for our experimental setup. Furthermore, since it
guarantees successful collision avoidance when the position
and velocities of the agents in a swarm is given, we chose
this traditional algorithm as a baseline algorithm to compare
our proposed pheromone-based collision avoidance strategy.
Further details of the NH-ORCA algorithm are available in
[11].

C. Manually-tuned Controller

The manually-tuned controller was proposed as the baseline
to compare the performance of DRL-based controller and
was designed to perform navigational tasks whilst avoiding
collisions. A flowchart for the manually-tuned controller is
provided in Fig. 5. When the robot begins operation, it
measures pheromone concentration from the tip positions of its
virtual antennae. Figure 3 illustrates how the virtual antennae
were attached to the robot to sense the virtual pheromones.
Both left and right antennae have lengths of 0.45 m, i.e. la =
0.45 m, and each antenna was tilted by θa, −θa respectively
from the heading vector of the robot. With real vehicles,
the same type of virtual antennae could be implemented in
the cyber-physical space in each vehicle or in the cloud
system, which manages all the virtual pheromone information.
If the pheromone was implemented with physical materials,
the physical antenna could be attached to the front side of the
vehicles.

Fig. 5. A flowchart of the manually-tuned controller.

The pheromone concentrations read from the left and right
antennae are defined as Φl,Φr respectively. If the sum of
the pheromone concentration from the two antennae,

∑
Φ,

is higher than the pheromone concentration threshold, Φthr,
the robot sets the speed of its motors to ensure it avoids
a collision. Otherwise, the robot sets the speed of motors
to perform navigation to the target regardless of pheromone
concentration. This process is repeated until the robot arrives
at the goal.

The design of the pheromone-based collision avoidance
technique was inspired from [53], [54]. In those works,
pheromone-based foraging and aggregation capability was
applied to a mobile robot swarm using two artificial
pheromone inputs. By modifying the controller used in those
works, the pheromone-based collision avoidance model used
in this work was defined to be:

β = βconst −
Φl +Φr

2
wl = β + α(Φl − Φr), wr = β + α(Φr − Φl) ,

(7)

where β is a bias velocity, βconst is a bias velocity constant,
Φl,Φr are the pheromone intensity measurements from the
left and right antenna respectively, α is a sensitivity gain
applied to the difference between pheromone concentrations
measured by the left and right antennae, and wl, wr are the
left and right wheel velocities for the mobile robot respectively.
To find the optimal values of βconst and α, that provide
the best performance, we conducted preliminary experiments
with a wide range of different parameters before the main
experiments. During the preliminary experiments, different
values of the parameters were assigned within the range
(0.6 ≤ βconst ≤ 1.4, 0.6 ≤ α ≤ 1.4) with a step size
of 0.1. Then, the controller was tested over 20 repeats for
each experimental stage and the parameter set with the best
performance was chosen for the main evaluation experiment.
The results from the preliminary experiments are presented
in Appendix A. The parameter sets for each stage that
resulted in the highest performance metrics, described further
in Section D, were chosen as the best parameter set for that
stage. In the preliminary experiments, the range of parameters
was chosen empirically as a range that the controller yields
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successful collision avoidance behaviours. With parameters
outside of this range, the vehicle showed unrealistic backward
movement or was unsuccessful in avoiding collisions.

The navigation behaviour of the robot is defined in
Equation (8). When the value of the pheromone measured by
the two antennae was below a pheromone threshold value,
Φthr, it performed navigational tasks.

ϕ = atan2

(
ytarg − y
xtarg − x

)
, ψ = ϕ− θ,

v = vconst,

ω = min (1,max (−1, ωcoef atan2

(
sin(ψ)

cos(ψ)

)
)) ,

(8)

where (xtarg, ytarg) represents the 2D Cartesian coordinates of
the target, θ is an angular distance between the local coordinate
frame of the robot and the global coordinate frame, vconst is
a constant linear velocity, and ωcoef is an angular velocity
coefficient. Using this equation, the robot determines (v, ω),
linear and angular velocities. In the experiments, vconst =
0.5 m/s, and ωcoef= 10, which were empirically chosen to
generate minimum fluctuations. Table I lists the parameters
and corresponding values used for the experiments.

D. DRL-based Controller Setup

Here we provide the implementation details of the DRL-
based controller that was used in the experiments. The
four important design specifications are introduced as: i)
observation space, ii) action space, iii) reward design and iv)
actor and critic neural network structure. Using the describe
design specifications, we trained the DRL-based controller
using three different algorithms: 1) PER sampling strategy,
2) HLER sampling strategy and 3) HLER sampling strategy
with a noisy network (HLER+noisy).

1) Observation Space: During the experiments observa-
tions were made of the pheromone intensity and gradient at
the tips of the virtual antennae (total of 4 measurements).
The current values of the pheromone concentrations, Φl,Φr,
and the difference in pheromone concentrations between the
current and previous time step, ∆Φl,∆Φr, were measured
at the tip of the virtual antennae. Taking the difference of
pheromone concentration as observation inputs was inspired
by how insects respond to pheromone gradients in nature,
through chemotactic behaviour [55].

The absolute value of pheromone concentration was
normalised in the range between [0− 1] as normalisation tends
to lead to more effective training in DRL. For navigation, four
different inputs were taken as observation inputs. The first
two were the distance between the robot and the navigation
goal in polar coordinate system, (d, θ) and the other two were
the linear and angular velocities of the robot at the previous
time step. By giving the previous linear and angular velocities
as the inputs, the robot can learn the relationship between
the velocities in two continuous time steps. In total, the DRL
controller takes 8 observational inputs, each with a continuous
range, i.e. ot ∈ (8× 1).

2) Action Space: We designed the DRL-based controller to
output two values: i) translational velocity, v, and ii) rotational
velocity, w, i.e. a = [v, w]. The range of velocities were
limited to v ∈ (0, 1) m/s and w ∈ (−π

2 ,
π
2 ) rad/s to reflect

the motion constraints of the robot.
3) Reward Design: One of the most important aspects

to consider when designing the DRL-based controller was
the reward functions. Appropriate values for the reward
function will be more likely to produce desirable behaviours
from the DRL-based controller. In the experiments, the
reward function was designed in such a way that the DRL-
based controller learned collision avoidance and navigation
behaviour effectively.

There were five types of reward functions that were applied
in the experiments. The reward functions were designed to
enable the learning of i) pheromone-based collision avoidance,
ii) navigation and iii) smoother trajectory. Equation (9)
describes the reward functions used in the experiments.

r = rc + rg + rp + rv + rw

rg =

{
Rg, if arrived goal
0, otherwise

, rc =

{
Rc, if collision
0, otherwise

rd =

{
ad, d > 0
−ad, otherwise

, rv =

{
Rv, if v < vmin

0, otherwise
,

rw =

{
Rw, if |w| > wmax

0, otherwise
.

(9)
The total reward, r, was the sum of a series of rewards /
penalties associated with reaching the goal, rg , being involved
in a collision, rc, progress towards the goal position, rd
(specified to be equal to a step length, d, multiplied by
a tunable factor, a, which was set empirically to 4.0), a
velocity penalty, rv and an angular velocity penalty, rw. The
parameter values used in the experiments are provided in
Table I. However, these values can be changed for different
experimental setups and tasks.

TABLE I
PARAMETERS AND VALUES

Parameters Values Parameters Values

vconst 0.5 a 4.0
ωcoef 10 vmin 0.2 m/s
βconst 0.6 - 1.4 ωmax 0.8 rad/s

α 0.6 - 1.4 Rv -1
Rg 100 Rω -1
Rc -100 pbase 0.5
kHL 2.0 rHL 20
tout 60 (s)

4) Neural Network Architecture: The architecture of the
neural network used for the experiments is shown in Fig.
6. The actor network, consisted of input and output layers,
which are observations and actions, and 3 fully connected
layers with 512, 512, 512 neurons followed by a rectified
linear activation function (ReLU) nonlinearities between the
input and output layers. Linear and angular velocities were
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Fig. 6. Neural network architecture for the DRL-based controller. (a) and
(b) represent the network architectures for the actor and critic networks
respectively.

connected to sigmoid and tanh activation functions to limit
the range to (0 ≤ vt ≤ 1 and −1 ≤ ωt ≤ 1).

The critic network, consisted of input and output layers,
which were observations and state-action values, and 3 fully
connected layers with the same number of parameters as the
actor network. Unlike the actor network, after the first layer,
actions were concatenated and fed into the second layer.

E. Metrics

Three metrics were applied to evaluate the performance
of the controllers for the experiments: i) success rate, ii)
completion time, and iii) trajectory efficiency.

• Success rate, ρs, is the percentage of the successful runs,
i.e. those runs where no collisions occurred and the
completion time was below the threshold, tout.

• Completion time, tcomp, represents the time taken for all
the robots to reach the targets without collision and within
tout.

• Trajectory efficiency, ηt, denotes the average of the ratio
of the Euclidean distance between the start and end points
of the robots to the actual distance the robots traveled
during each successful run.

V. RESULTS & DISCUSSION

In this section, we first show the obtained results using the
traditional centralised NH-ORCA controller. We then show the
performance of manually-tuned controllers. The experimental
results with the DRL-based controller are then introduced and
the results using the three different sampling strategies are
analysed and compared with each other. Figure 7 illustrates
the experimental results for all stages. We then compare the
traditional centralised NH-ORCA controller and the manually-
tuned and DRL-based controller using the virtual pheromone.
After that, further discussion of the results follow. The clip of
experiments are provided in the supplementary video.

A. Traditional Centralised Controller

In Fig. 7, the experimental results using the NH-ORCA
controller in the three stages are shown, together with the
three metrics. The numerical values of the metrics are listed
in Table II. According to the results, the success rate of the
experiments with NH-ORCA in all three stages was 100 %,
which shows the high stability of the centralised controller
when the position and velocity information are provided to the
centralised controller. In contrast to the stable high success rate
across all the experimental stages, the completion time was
greatly increased and the trajectory efficiency considerably
declined in Stage 3. This phenomenon demonstrates that the
traditional centralised controller in a complex environment is
not effective for finding an optimal strategy while it ensures
the stability. In other words, the centralised controller exhibits
low flexibility for the increasing complexity.

B. Manually-tuned controller

From the preliminary experiments, the best parameter sets
were chosen for each stage. Further details on the choice
of parameter sets are illustrated in Appendix A. Figure 7
shows the experimental results for each of the three stages,
with numerical values for these results presented in Table II.
The result showed that the manually-tuned controller is not
effective for the complex environment. In Stage 1 and 2, the
success rate of the manually-tuned controller was 99% and
100%. In contrast, in Stage 3, the success rate was 84%. The
drop in success rate implies that the performance of manually-
tuned controller decreases as the complexity of the task and
environment increases.

C. DRL-based controller

Here, the experimental results of DRL-based controller with
three different DRL algorithms (PER, HLER, HLER+noisy)
are presented. First, we compare the training performance of
three DRL algorithms in three stages to show the advantage
of our proposed DRL algorithm over the baselines. Second,
we compare the experimental results of the three algorithms
in each stage.

Figure 8 illustrates the average reward per episode over the
training phase in each stage and Table II and Fig. 7 show
the results that were obtained with the proposed DRL-based
algorithm and other two baselines.
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Fig. 7. The bar plots show the experimental results with the traditional controller with NH-ORCA, the manually-tuned controller (HT), and DRL-based
controller with three different training strategies, PER, HLER and HLER with noisy network in three experimental stages. (a), (b), and (c) illustrates the
success rate, completion time and trajectory efficiency in Stage 1, 2 and 3 respectively. The error bars represent standard deviation of each metric.

Fig. 8. Average reward per episode during training with PER, HLER and HLER with noisy network. (a), (b) and (c) illustrate the change in average reward
over training in Stage 1, 2 and 3 respectively. The bold line and shading represents the mean and standard deviation of the reward over 3 different runs with
different random seeds respectively.

TABLE II
EXPERIMENTAL RESULTS OF THE CONTROLLERS IN THE THREE STAGES.

Stage Controller ρs tcomp ηt

Stage 1

NH-ORCA 100% 8.25 ± 0.95 0.9666 ± 0.0738
Manual 99% 11.16 ± 0.75 0.8036 ± 0.1527

PER 95% 8.04 ± 0.36 0.8765 ± 0.0196
HLER 97% 8.06 ± 0.30 0.8762 ± 0.0186

HLER+noisy 100% 7.68 ± 0.17 0.9068 ± 0.0220

Stage 2

NH-ORCA 100% 8.39 ± 2.20 0.9367 ± 0.0381
Manual 100% 16.74 ± 1.68 0.7486 ± 0.1485

PER 100% 8.34 ± 0.15 0.9762 ± 0.0030
HLER 100% 7.96 ± 0.11 0.9234 ± 0.0097

HLER+noisy 100% 7.54 ± 0.06 0.9837 ± 0.0021

Stage 3

NH-ORCA 100% 26.81 ± 4.54 0.7187 ± 0.0477
Manual 84% 14.95 ± 1.16 0.8394 ± 0.0387

PER 93% 7.81 ± 0.08 0.9672 ± 0.0065
HLER 100% 8.01 ± 0.07 0.9440 ± 0.0048

HLER+noisy 100% 7.63 ± 0.06 0.9850 ± 0.0032

1) Training Efficiency: Training with each sampling
strategy in each stage was repeated 3 times using different
random seeds to vary the initialisation conditions. In all
experiments, it was observed that the HLER sampling
strategy accelerated the training speed compared to PER
sampling strategy. The noisy network was also found to
improve the training speed. To compare the training time
quantitatively, the HLER with noisy network required 25%,
27% and 30% of training time of PER sampling strategy
until reaching the converged value in Stage 1, Stage 2 and

Stage 3 respectively, which average is 27% over the stages.
These results are expected as we designed HLER for faster
training by prioritising the highlighted transition samples and
implemented the noisy network for better exploration, leading
to faster searching of optimal policies in all experimental
stages.

2) Performance Evaluation: In Stage 1, the DRL-based
controller with PER and HLER sampling strategy exhibited
similar performance with regards to the three metrics.
However, when used with a noisy network, the DRL-based
controller with HLER resulted in higher performance in all
three metrics.

In Stage 2, similar to Stage 1, there was no significant
difference in performance of the controllers using PER and
HLER. Whilst trajectory efficiency was higher with PER
than HLER, the completion time was faster with HLER than
PER. This is because using the DRL-based controller trained
with HLER generated slightly longer trajectory than PER to
further ensure the collision does not happen. However, the
controllers that utilised the noisy networks outperformed the
other controllers for all metrics.

In Stage 3, the controller with the PER sampling strategy
outperformed the controller with HLER in terms of completion
time and trajectory efficiency, while the success rate was lower.
This is because the controller with PER found the policy that
minimised the completion time, but unfortunately also lowered
the success rate. However, when HLER was used, the success
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rate was maximised to 100% because the HLER sampling
strategy incentivises the controller to learn to avoid collisions
at the highest priority. Furthermore, the controllers that used
the noisy network approach yielded greater performance than
those with normal layers. This result aligns with the results
from Stage 1 and 2, which support the noisy network improved
exploration of the agent to find the best policy, which ensures
both safety and performance.

D. Comparison between the traditional centralised controller
and decentralised pheromone-based controllers

Here we compare the traditional centralised NH-ORCA
controller with the manually-tuned and DRL-based controllers
with pheromone-based collision avoidance strategy, manually-
tuned and DRL-based controllers. These comparisons demon-
strate the difference between the centralised approach and the
pheromone-based decentralised approach.

Comparing the manually-tuned controller with the
pheromone-based communication to the NH-ORCA controller,
it demonstrated lower success rate in Stage 3. In terms of
the completion time and trajectory efficiency, the NH-ORCA
controller showed higher performance than the manually-
tuned controller with pheromoned-based communication in
Stages 1 and 2. However, the completion time and trajectory
efficiency of the manually-tuned controller outperformed
the NH-ORCA controller in Stage 3. This result suggests
that the manually-tuned controller with the decentralised
pheromone-based communication approach leads to more
effective behaviours than the centralised NH-ORCA controller
in a complex environment, despite lower success rate due to
the limitation of the manually-tuned approach.

Comparing the DRL-based controller with the pheromone-
based communication to the NH-ORCA controller, it showed
equally high success rates over all the three experimental
stages. Furthermore, the DRL-based controller greatly outper-
formed the NH-ORCA controller in terms of the completion
time and trajectory efficiency in all three stages, especially
in Stage 3. This suggest that the DRL-based controller with
pheromone-based communication has a similar degree of
stability with the centralised controller, but greater flexibility
and effectiveness in the complex environment.

Overall, the centralised controller can ensure the stability
of collision avoidance and navigation behaviour in diverse
environments; however, the performance greatly decreases
when the complexity of environments and tasks increase.
On the other hand, the pheromone-based collision avoidance
ensures high flexibility with varying complexity of the
environments and tasks, although the stability and the
effectiveness of collision avoidance and navigation behaviour
depends on the type of the controller. The detailed comparison
between the manually-tuned and DRL-based controllers that
used the pheromone-based approach is presented in the next
section.

E. Comparison between the manually-tuned and DRL-based
controllers

Here we compare the manually-tuned controller and DRL-
based controller used with the pheromone-based approach. For

DRL-based controller, the controller trained with our proposed
DRL algorithm (HLER+noisy) was used as it exhibited the
greatest performance among the DRL algorithms used for the
experiments.

In terms of the success rate, the manually-tuned controller
scored 99% and 100% in Stage 1 and 2, but only scored
84% in Stage 3. This result shows that the capabilities of the
manually-tuned controller are reduced when the complexity
of the environment increases. On the other hand, the DRL-
based controller showed consistent performance regardless of
the complexity of the environments, scoring 100% for all the
three stages.

With regards to the completion time, the DRL-based
controller considerably outperformed the manually-tuned
controller in all three stages. For autonomous vehicle
application, the faster completion time with the DRL-based
controller is important as it means that the DRL-based
controller can reduce travel time, greatly increasing the
satisfaction of users.

Similar to the comparison of the completion time, the DRL-
based controller outperformed the manually-tuned controller
in terms of the trajectory efficiency in all three stages, which
resulted from the ability of the DRL-based controller to
optimise its performance. Trajectory efficiency is particularly
important in real-world applications as with a larger number
of vehicles in a real-world situation, the lower trajectory
efficiency is likely to cause greater congestion and inefficient
movement of vehicles, which may also increase the chance of
collisions.

Furthermore, the DRL-based controller showed it had
greater robustness than the manually-tuned controller, with
lower standard deviations for both completion time and
trajectory efficiency for all three stages. This result shows that
performance of the manually-tuned controller with the best
parameter set can notably change if the initial condition change
even slightly, suggesting that the manually-tuned controller
can be undesirable in real-world environments, while the
DRL-based controller should be more effective in real-world
environments.

Finally, the use of the DRL-based controller is beneficial
in practice as it automates the optimisation process whilst
a relatively laborious tuning process is required for the
manually-tuned controller. This is of considerable importance
in swarm systems as it can be extremely difficult to tune the
controller manually with the real-world complexity [30].

Overall, the DRL-based controller used for the pheromone-
based collision avoidance outperformed the manually-tuned
controller in all aspects including stability, flexibility,
robustness and the ease of tuning process. Summing up
with the comparison with the centralised controller, the
DRL-based controller with the pheromone-based approach
ensure high flexibility from the advantage of the pheromone-
based approach and high stability and performance due to
optimisation capability of DRL.

F. Discussion
1) Trajectory Analysis: To further investigate the results

of the pheromone-based collision avoidance strategy, the
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Fig. 9. Trajectories of the robots in the three experimental stages. (a), (b), (c) are the trajectories of the robots with the manually-tuned controller in Stage
1, 2, 3 respectively, and (d), (e), (f) are the trajectories of the robots with the DRL-based controller (DDPG + HLER + noisy network) in Stage 1, 2, 3
respectively. The triangles represent the final position and orientation of the robots. The closer to yellow the colour on the map is, the higher the concentration
of pheromone is at that location.

trajectory data of the robots with the two controllers
(manually-tuned controller & DRL-based controller with
DDPG + HLER + noisy network) for each stage was
analysed. Figure 9 illustrates the trajectory of the robots using
two different pheromone-based controllers in each setting in
all three stages. In general, the manually-tuned controller
exhibited very sensitive repulsive behaviour. When the robots
approached an obstacle, the controller rapidly altered its
trajectory causing it to move away from the obstacle rapidly.
This pattern in trajectory is shown in every stage. In contrast,
the trajectory of the robots that used the DRL-based controller
had a much smoother response. Without any rapid changes
in direction, the robots using the DRL-based control were
able to achieve high levels of navigation performance, whilst
actively avoiding collisions. This observation highlights that
the DRL-based controller is able to balance the two different
requirements for it in a way that maximises its performance
relative to the goal defined in the design phase. In a real-
world application, a smoother response is highly desirable as
it will help minimise collisions and improve driver/passenger
satisfaction.

Moreover, in our experiments we found that the trajectory
of the robots when using the DRL-based controller in Stage
3, shown in Fig. 9 (f) shows similar trajectories as robots

used in other studies that performed collision avoidance and
navigation using laser proximity sensors [56]. The similarity
suggests that the use of virtual pheromones results in similar
behaviour to that obtained when using more traditional
approaches, such as proximity sensors.

2) Pheromone Characteristics: Although the experimental
results demonstrated that the DRL-based controller outper-
formed the traditional manually-tuned controller, it is still
unclear if the DRL-based controller is optimal. In [21],
the importance of choosing appropriate parameters for the
artificial pheromones, and the effect that these parameters
have on the performance of the swarm robotic system were
demonstrated. In this work, we did not conduct exhaustive tests
on identifying optimal parameters for the virtual pheromone,
such as the evaporation half-life, diffusion rate, shape and
the gradient of the injected pheromone. This is a limitation
of the study reported in this work and further analysis of
the technique, particularly in regard to the optimal parameter
selection in more complex environments, is the subject of the
future works.

VI. CONCLUSION

This paper has demonstrated that pheromone-based com-
munication systems can be used as an alternative approach
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for ensuring that autonomous vehicles avoid collisions while
operating in traffic. In this work, we validated pheromone-
based collision avoidance for autonomous vehicles in a
simulated environment with a newly proposed artificial
pheromone framework, which we refer to as PhERS.
Furthermore, we have demonstrated that deep reinforcement
learning can improve the performance of the pheromone-based
system, both in terms of collision avoidance and the speed by
which the robots are able to move to target locations within an
environment. Through comparisons we were able to show that
the pheromone-based communication system has able to cope
much better with complex environments than the traditional
centralised controller. Also, the performance of the proposed
DRL-based controller exceeded that of the manually-tuned
controller, with respect to stability, effectiveness, robustness
and ease of tuning process. Furthermore, our proposed DRL
algorithm was able to outperform baseline DRL algorithm
by accelerating training speed and improving performance.
Notably, the training time of the HLER sampling strategy
accompanied with noisy network required average 27% of the
PER over three experimental stages. The results suggest that
our proposed DRL-based controller has a role to play in the
development of pheromone-based swarm systems in the real-
world, as their features, which include adaptability in scenarios
with different complexities and a reduction in the time
taken to tune the controller, make them an attractive method
compared with alternative approaches, particularly when trying
to generate the required behaviour in a swarm of autonomous
vehicles. Our future work will include the development of
pheromone-based communication systems for large numbers
(>100) of real autonomous vehicles and performing tasks
with greater complexity (e.g. collective navigation) in dynamic
and complex environments. We believe this research showed
the potential of pheromone-based communication as an
alternative communication approach for autonomous vehicles
and DRL-based approach to design effective controllers with
pheromone-based swarm systems.
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APPENDIX

A. Preliminary experiments for parameter choice of manually-
tuned controller

As mentioned in Section IV, we conducted preliminary
experiments to find a suitable parameter values for each
experimental stage. Each parameter set of βconst and α in the
range of (0.6 ≤ βconst ≤ 1.4, 0.6 ≤ α ≤ 1.4) with the step
size of 0.1 was tested 20 times for each experimental stage.
The results with three performance metrics in each stage are
illustrated in Fig. 10, 11 and 12.

In Stage 1, it is found that with the low βconst (βconst ≤
0.9) led successful collision avoidance. However, with the
higher βconst and lower α, the drop in the success rate is
observed. Since higher βconst increases the speed of forward
movement, the chance of collision rises when the robot faces
the obstacle. With regards to the average completion time,
the higher βconst resulted in a lower completion time. It
is interesting to see that the higher α led the increased
completion time when βconst is high (βconst ≥ 1.0) while it
led a lower completion time when βconst is low (βconst < 1.0).
When βconst is high, the high α led adverse turning with
the longer travel; therefore, it leads greater completion time.
Conversely, when βconst is low, high α helps the robot escape
from the collision avoidance situation with the adverse turning.

For trajectory efficiency, the lower βconst and lower α leads
higher trajectory efficiency in general. It is because higher
βconst leads a lower forward movement; therefore, if the robot
is out of the right trajectory, the deviation increases. Also, the
higher α leads more adverse turning behaviour during collision
avoidance, thereby lower trajectory efficiency. However, there
is also a trade-off between βconst and α, that leads the result
deviates from the general trend.

When we chose the best parameter set, we first consider the
success rate and then average completion time and trajectory
efficiency. By considering all three performance metrics, the
parameter set of βconst = 0.9, α = 0.7 is chosen.

In Stage 2, with regards to success rate, it is seen that when
βconst is greater than 0.9, there is almost no success regardless
of α. However, when βconst is less than or equal to 0.9, the
success rate is 100% or very close to 100% regardless of α.
This dramatic difference in success rate happened since when
βconst is greater than 0.9, the forward speed after detecting
pheromone was too fast and the robots were not able to escape
from collision.

In terms of completion time, it is seen that the lower α led
a lower completion time regardless of βconst. It is because the
higher α causes more adverse turning behaviour, it took more
time to recover their optimal navigation strategy after collision
avoidance behaviour. However, there are also outliers in the
results that do not follow the general trend. In some cases, after
the robots successfully complete first collision avoidance, the
robots encounter again. Hence the completion time increased.

With regards to trajectory efficiency, there is similar trend
with the completion time. In general, higher α led higher
trajectory efficiency. However, there are outliers that violate
the general trend. It is caused by re-encountering between
robots as discussed with completion time.

When we chose the best parameter set for Stage 2, we first
consider the success rate and then average completion time as
the second priority and trajectory efficiency. By considering
all three performance metrics, the parameter set of βconst =
0.7, α = 0.8 is chosen.

In Stage 3, in terms of success rate, it is difficult to derive
the general rule as in Stage 1 and 2. The parameter sets that
generated highest success rates are: i) βconst = 0.6, α = 1.1,
ii) βconst = 0.6, α = 1.3, and iii) βconst = 0.7, α = 1.3. Since
the complexity of the mission in Stage 3 increased from Stage
1 and 2, it is difficult to find the linear relationships between
the parameter sets and the success rates. This results support
the idea that the manually designed controller cannot be
effectively used for the tasks with the real-world complexity.

As seen in success rate, it is also difficult to find a clear
trend between the parameters and completion time, but some
general trend that the higher α led a lower completion time
when βconst ∈ (0.6, 0.7). Likewise, only a general trend that
higher α led higher trajectory efficiency is found.

By comparing the three parameter sets that resulted the
highest success rates, we chose the parameter set with
βconst = 0.7, α = 1.3 for the experiments as it resulted the
fastest completion time, which is the second priority.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 17

Fig. 10. Evaluation results of the hand-tuned controller with different parameter sets in Stage 1. (a), (b), (c) illustrates success rate, average completion time
and trajectory efficiency respectively.

Fig. 11. Evaluation results of the hand-tuned controller with different parameter sets in Stage 2. (a), (b), (c) illustrates success rate, average completion time
and trajectory efficiency respectively.

Fig. 12. Evaluation results of the hand-tuned controller with different parameter sets in Stage 3. (a), (b), (c) illustrates success rate, average completion time
and trajectory efficiency respectively.


