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Abstract

This paper proposes a closed-loop decentralised framework for swarm distribution guidance,

which disperses homogeneous agents over bins to achieve a desired density distribution by

using feedback gains from the current swarm status. The key difference from existing works

is that the proposed framework utilises only local information, not global information, to

generate the feedback gains for stochastic policies. Dependency on local information entails

various advantages including reduced inter-agent communication, a shorter timescale for

obtaining new information, asynchronous implementation, and deployability without a priori

mission knowledge. Our theoretical analysis shows that, even utilising only local information,

the proposed framework guarantees convergence of the agents to the desired status, while

maintaining the advantages of existing closed-loop approaches. Also, the analysis explicitly

provides the design requirements to achieve all the advantages of the proposed framework.

We provide implementation examples and report the results of empirical tests. The test

results confirm the effectiveness of the proposed framework and also validate the robustness

enhancement in a scenario of partial disconnection of the communication network.

Keywords Swarm robotics · Multi-agent systems · Decentralised decision-making ·
Self-organisation · Probabilistic swarm guidance · Markov-chain-based

1 Introduction

This paper addresses a swarm distribution guidance problem (Acikmese and Bayard 2012,

2014, 2015), which concerns how to distribute a swarm of agents into given bins in order

to achieve the desired population fraction (or swarm density) for each bin, as illustrated in

Fig. 1. In this study, we propose a closed-loop framework that relies on the Local Information
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Fig. 1 Swarm distribution guidance problem: how to distribute homogeneous agents into bins, satisfying a

desired population fraction for each bin

Consistency Assumption (LICA), i.e. only local information needs to be consistently known

by the local agent groups. The idea behind this framework was inspired by fish swarm

behaviours, where each fish adjusts its individual behaviour based on the behaviours of its

neighbours (Couzin et al. 2002, 2005; Gautrais et al. 2008; Hoare et al. 2004). Likewise,

each agent in the proposed framework uses its local information1 to generate its individual

stochastic policies.

Dependency on local information enables various advantages. The first obvious benefit is

reduction in inter-agent communication required for decentralised decision-making, as can be

seen from the experimental results in Fig. 6d. The proposed approach consequently “provides

a much shorter timescale for using new information because agents are not required to ensure

that this information has propagated to the entire team before using it” (Johnson et al. 2016).

Exploiting LICA also enables an asynchronous implementation of the framework (as shown

in Sect. 5) and provides robustness against dynamical changes in bins as well as in agents.

Furthermore, the agents do not need to acquire global mission knowledge such as a desired

distribution a priori (i.e. before a mission starts) as long as they can sense all the neighbour

bins’ desired swarm densities in an impromptu manner.

In this study, the stability and performance of the proposed framework are extensively

investigated via theoretical analysis and empirical tests. In the theoretical analysis, we prove

that the agents asymptotically converge towards the desired swarm distribution even using

local information-based feedback. This paper also provides the design requirements for the

time-inhomogeneous Markov chain to achieve all the benefits aforementioned. Empirical tests

demonstrate the performance of the proposed framework in three implementation examples:

(1) travelling cost minimisation; (2) convergence rate maximisation under flux upper limits;

and (3) quorum-based policies generation [similar to Halasz et al. (2007), Hsieh et al. (2008)].

Moreover, we show an asynchronous version of the proposed framework and demonstrate

that it is more robust against sporadic network disconnection of partial agents, compared

with the recent work in Bandyopadhyay et al. (2017).

1 This paper will use the term “local information” to refer to the knowledge available to all agents in the

same bin and the information obtainable via communication with other agents in all neighbour bins (defined

in Definition 7).

123



Swarm Intelligence (2018) 12:327–359 329

1.1 Related work

For swarm distribution guidance problems, there have been two widely studied approaches:

probabilistic approaches based on Markov chains (Chattopadhyay and Ray 2009; Acikmese

and Bayard 2012, 2014, 2015; Demir and Acikmese 2015; Luo et al. 2014; Demir et al. 2015;

Morgan et al. 2014; Bandyopadhyay et al. 2017) or differential equations (Halasz et al. 2007;

Hsieh et al. 2008; Berman et al. 2008, 2009; Mather and Hsieh 2011; Prorok et al. 2017).

These approaches generally focus not on individual agents, but on their ensemble dynamics.

This is the reason why they are often called Eulerian (Bandyopadhyay et al. 2017; Morgan

et al. 2014) or macroscopic frameworks (Lerman et al. 2005; Mather and Hsieh 2011). In

these approaches, swarm densities over given bins are represented as system states. A state-

transition matrix for the states describes stochastic (decision) policies, i.e. the probabilities

that agents in a bin switch to another within a time unit. Accordingly, individual agents make

decisions in a random, independent, and memoryless manner.

These approaches can be classified into two framework groups: open-loop (Berman et al.

2008, 2009; Mather and Hsieh 2011; Chattopadhyay and Ray 2009; Acikmese and Bayard

2012, 2014, 2015) and closed-loop frameworks (Halasz et al. 2007; Hsieh et al. 2008; Luo

et al. 2014; Demir et al. 2015; Morgan et al. 2014; Bandyopadhyay et al. 2017; Prorok et al.

2017). Agents under open-loop frameworks are controlled by time-invariant stochastic poli-

cies. The policies, which make a swarm converge to a desired distribution, are predetermined

by a central controller and broadcasted to each agent before the mission begins. Commu-

nication between agents is hardly required during the mission, and thus the communication

complexity is minimised. However, the agents only have to follow the predetermined policies

without incorporating any feedback, and thus there still remain some agents who unneces-

sarily and continuously move around bins even after the swarm reaches the desired status.

Therefore, the trade-off between convergence rate and long-term system efficiency becomes

critical in these frameworks (Berman et al. 2009).

Closed-loop frameworks allow agents to adaptively construct their own stochastic policies

at the expense of communicating with other agents to perceive the concurrent swarm status.

Based on such information, the agents can synthesise a time-inhomogeneous transition matrix

to achieve certain objectives and requirements: for example, maximising convergence rates

(Demir et al. 2015), minimising travelling costs (Bandyopadhyay et al. 2017), and temporarily

adjusting the policies when bins are overpopulated or underpopulated (Halasz et al. 2007;

Hsieh et al. 2008). In particular, Bandyopadhyay et al. (2017) recently proposed a closed-loop

algorithm that exhibits faster convergence as well as less undesirable transition behaviours,

compared with an open-loop algorithm. This algorithm can mitigate the issue with trade-off

that is critical in open-loop frameworks.

To the best of our knowledge, most of the existing closed-loop algorithms are based on the

Global Information Consistency Assumption (GICA) (Johnson et al. 2016). GICA implies

that the information necessary to generate time-varying stochastic policies is about the global

swarm status (i.e. global information), and it also needs to be consistently known by the entire

swarm. Achieving GICA requires each agent to somehow interact with all the others in a

multi-hop fashion and it “happens on a global communication timescale” (Johnson et al.

2016).

The main focus of this work is to relax GICA and to formally show that relying on LICA is

sufficient to solve the swarm distribution guidance problem. In fact, the existing closed-loop

methods in Bandyopadhyay et al. (2017) and Prorok et al. (2017) do not necessarily require

every agent to perceive global knowledge exactly, while providing a graceful performance

degradation even when local estimates of the global information are used. However, the key
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Table 1 Nomenclature
Symbol Description

B j The j th bin amongst a set of nb bins (Definition 1)

A A set of na agents (Definition 1)

Ak Physical motion constraint matrix (Definition 2)

xk The current (global) swarm distribution (Definition 4)

Mk Stochastic policy of the agents (Definition 5)

Θ The desired swarm distribution (Definition 6)

Nk ( j) A set of neighbour bins of the j th bin (Definition 7)

ANk ( j) A set of agents in Nk ( j)

nk [ j] The number of agents in B j at time instant k [Eq. (4)]

x̄k [ j] The current local swarm density at the j th bin [Eq. (4)]

Θ̄[ j] The locally desired swarm density at the j th bin [Eq. (5)]

Pk Primary guidance matrix [Eq. (10)]

Sk Secondary guidance matrix [Eq. (10)]

ξ̄k [ j] Primary local-feedback gain [e.g. Eq. (6)]

Gk [ j] Secondary local-feedback gain [Eq. (9)]

difference from the previous works is that the proposed LICA-based framework utilises local

information as its feedback gains. Consequently, the proposed framework exploits the various

advantages from LICA, which could not be straightforwardly achievable in a GICA-based

framework.

1.2 Outline of this paper

The rest of the paper is organised as follows. Section 2 introduces essential definitions and

notations of a Markov-chain-based approach. In Sect. 3, we describe the desired features for

swarm distribution guidance, propose a closed-loop framework with its design requirements,

and perform a theoretical analysis. We provide examples of how to exploit the framework

for specific problems in Sect. 4 and asynchronous implementation in Sect. 5. Numerical

experimental results are provided in Sect. 6, followed by concluding remarks in Sect. 7.

2 Preliminaries

This section provides the basic concept of a Markov-chain-based approach and presents

definitions and assumptions necessary for our proposed framework, which will be shown

in Sect. 3. Note that most of them are embraced from the existing literature (Demir et al.

2015; Bandyopadhyay et al. 2017). In this paper, ∅, 0, I , and 1 denote the empty set, the

zero matrix of appropriate sizes, the identity matrix of appropriate sizes, and a row vector

with all elements are equal to one, respectively. v ∈ P
n is a 1 × n row-stochastic vector such

that v ≥ 0 and v · 1⊤ = 1. v[i] indicates the i th element of vector v. Note that some of the

symbols and the definitions primarily used in this paper are shown in Table 1.

Definition 1 (Agents and Bins) A set of na homogeneous agents A = {a1, a2, . . . , ana } are

supposed to be distributed over a prescribed region in a state space B. The entire space
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is partitioned into nb disjoint bins (subspaces) such that B = ∪nb

j=1B j and B j ∩ Bl = ∅,

∀l 	= j . We also regard B = {B1, . . . , Bnb
} as the set of all the bins. Each bin B j represents

a predefined range of an agent’s state, e.g. position, task assigned, behaviour, etc. Note that

binning of the state space should be done problem-specifically in a way that accommodates

all the following assumptions and definitions in this section. For example, the bin sizes are

not necessarily required to be uniform, but can vary depending on physical constraints of the

space or communication radii of given agents.

Definition 2 (Agent motion constraint) The agent motion constraints over the given bins B

are represented by Ak ∈ {0, 1}nb×nb , where Ak[ j, l] is one if any agent in B j at time instant

k is able to transition to Bl by the next time instant, and zero otherwise. Ak is symmetric

and irreducible (defined in “Appendix”); Ak[ j, j] = 1, ∀ j . Equivalently, it can be also said

that the topology of the bins is modelled as a bidirectional and strongly connected graph,

Gk = (Ak, B), where Ak is edges (i.e. adjacent matrix) and B is nodes (i.e. bins).

Definition 3 (Agent’s state) Let si
k ∈ {0, 1}nb be the state indicator vector of agent ai ∈ A at

time instant k. If the agent’s state belongs to bin B j , then si
k[ j] = 1, otherwise 0. Note that

the definition of the time instant will be described later in Definition 8.

Definition 4 (Current swarm distribution) The current (global) swarm distribution xk ∈ P
nb

is a row-stochastic vector such that each element xk[ j] is the population fraction (or swarm

density) of A in bin B j at time instant k:

xk :=
1

|A|
∑

∀ai ∈A

si
k . (1)

Definition 5 (Stochastic policy) The probability that agent ai in bin B j at time instant k will

transition to bin Bl before the next time instant is called its stochastic policy, denoted as:

M i
k[ j, l] := Prob(si

k+1[l] = 1|si
k[ j] = 1). (2)

Note that M i
k ∈ P

nb×nb is a row-stochastic matrix such that M i
k ≥ 0 and M i

k · 1⊤ = 1⊤, and

will be referred as Markov matrix.

Assuming that all agents in bin B j at time instant k are independently governed by an iden-

tical row-stochastic vector (denoted by Mk[ j, l], ∀l), the dynamics of the swarm distribution

is modelled by

xk+1 = xk Mk, (3)

as na increases towards infinity. We will examine in Sect. 6.4 the performance degradation of

possible differences between individual M i
k on the proposed framework. Please keep in mind

that, for each agent in B j , it is not necessary to know the other bins’ stochastic policies (i.e.

Mk[ j ′, l],∀ j ′ 	= j,∀l), and that this paper only introduces such a matrix form, e.g. Eq. (3),

for the sake of theoretical analysis of the ensemble.

Every agent in each bin B j executes Algorithm 1 at every time instant k. The detail

regarding how to generate its stochastic policies (i.e. Line 2) will be presented in Sect. 3.

Definition 6 (Desired swarm distribution) The desired swarm distribution Θ ∈ P
nb is a row-

stochastic vector such that each element Θ[ j] indicates the desired swarm density for bin

B j .
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Algorithm 1 Probabilistic Swarm Distribution Guidance

// For each agent at time instant k:

1: Identify the current bin B j

2: Compute Mk [ j, l], ∀l

3: Draw a random number z from the uniform distribution on [0, 1]
4: Select bin Bq such that

∑q−1
l=1 Mk [ j, l] ≤ z <

∑q
l=1 Mk [ j, l]

5: Move to the selected bin

Assumption 1 For ease of description for this paper, we assume that Θ[ j] > 0, ∀ j ∈
{1, . . . , nb}. In practice, there may exist some bins whose desired swarm densities are zero.

These bins can be accommodated by adopting any subroutine ensuring that all agents even-

tually move to and remain in any of the positive-desired-density bins (for an example, refer

to Sect. 6.6). In this case, it should be assumed that the agent motion constraints over every

bin B j such that Θ[ j] > 0 are at least (bidirectionally) strongly connected (i.e. (Θ⊤Θ)⊙Ak

is irreducible, where ⊙ denotes the Hadamard product).

Assumption 2 (Communicational connectivity over bins) The physical motion constraint of

a robotic agent is, in general, more stringent than its communicational constraint. From this,

it can be assumed that if the transition of agents between bin B j and Bl is allowed within a

unit time interval (i.e. Ak[ j, l] = 1), then one bin is within the communication range of the

agents in the other bin, and vice versa.

Definition 7 (Neighbour bins, neighbour agents, and local information) For each bin B j , we

define the set of its neighbour bins as Nk( j) = {∀Bl ∈ B | Ak[ j, l] = 1}. From Assumption 2,

each agent in B j can communicate with other agents in Nk( j). The set of these agents is

called neighbour agents, denoted by ANk ( j) = {∀ai ∈ A | si
k[l] = 1, ∀l : Bl ∈ Nk( j)}.

This paper refers to the local knowledge available from ANk ( j) as the local information of

the agents in bin B j .

Assumption 3 (Known information) Each agent has reasonable sensing capabilities such

that agents in bin B j can perceive neighbour bins’ information such as Θ[l] and Ak[ j, l] in

real time under Assumption 2. Note that the global information regarding Θ and Ak is not

required to be known by the agents a priori, as will be described in Remark 3 later. Other

predetermined values such as variables regarding objective functions and design parameters

(which will be introduced later) are known to all the agents.

Assumption 4 (Agent’s capability) Each agent can determine the bin to which it belongs,

and know the locations of neighbour bins so that it can navigate towards any of the bins. The

agent is capable of avoiding collisions with other agents.

Assumption 5 (The number of agents) The number of agents na is large enough such that

the time evolution of the swarm distribution is governed by the Markov process in Eq. (3).

Although the finite cardinality of the agents may cause a residual convergence error (i.e.

a sense of the difference between Θ and x∞), a lower bound on na that probabilistically

guarantees a certain level of convergence error is analysed in Bandyopadhyay et al. (2017,

Theorem 6). Note that this theorem is generally applicable and thus is also valid for our work.

Definition 8 (Time instant) We define time instant k to be the time when all the agents

complete not only transitioning towards the bins selected at time instant k −1, but also obtain
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the local information necessary to construct Mk . Hence, a temporal interval (in the real-time

scale) between any two sequential time instants may not always be consistent in practice.

This might be because of the required inter-agent communication and/or physical congestion,

which are varied at every time instant. In the worst case, due to some bins whose agents

are somehow not ready in terms of transitioning or obtaining local knowledge, the temporal

interval may be arbitrarily elongated. However, the proposed method can accommodate those

bins by incorporating the asynchronous implementation in Sect. 5. It is worth mentioning that

since our proposed approach demands relatively less communication burden on the agents,

the temporal intervals would be shorter than those in GICA-based approaches.

3 The proposed closed-loop framework under LICA

The objective of the swarm distribution guidance problem considered in this paper is to

distribute a set of agents A over a set of bins B by the Markov matrix Mk so as to offer the

following desired features:

Desired Feature 1 The swarm distribution xk asymptotically converges to the desired swarm

distribution Θ as time instant k goes to infinity.

Desired Feature 2 The transition of the agents between the bins is encoded to enforce the

property that Mk becomes close to I as xk converges to Θ . This implies that the agents

are settling down as being close to Θ , and thus unnecessary transitions, which would have

occurred in an open-loop framework, can be reduced. Moreover, the agents identify and

compensate any partial loss or failure of the swarm distribution.

Desired Feature 3 For each agent in bin B j , the information required for generating time-

varying stochastic policies is not global information about the entire agents A but only

local information available from local agent group ANk ( j). Thereby, the resultant time-

inhomogeneous Markov process is based on LICA and has benefits such as reduced

inter-agent communication, a shorter timescale for obtaining new information (than GICA),

and the possibility to be implemented asynchronously.

This section proposes a LICA-based framework for the swarm distribution guidance prob-

lem. The framework is different from the recent closed-loop algorithms in Bandyopadhyay

et al. (2017) and Demir et al. (2015) in the sense that they utilise global information [e.g. the

current swarm distribution in Eq. (1)] to construct a time-inhomogeneous Markov matrix,

whereas ours uses the local information in Eq. (7), which will be shown later. We study how,

in spite of using such relatively insufficient information, the desired features aforementioned

can be achieved in the proposed framework. Before that, we introduce biological findings

that concern decision-making mechanisms of a fish school, which motivate our framework,

and particularly Desired Feature 3.

3.1 Motivation

For a fish school, it has commonly been assumed that crowdedness limits an individual’s

perception range over other individuals, and that the school cardinality restricts the ability to

recognise other individuals (Couzin et al. 2005). How fish end up with collective behaviours

is different from the ways of other social species such as bees and ants, which are known
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to use recruitment signals for the guidance of the entire swarm (Seeley 1995; Keller et al.

2000). Thus, in the biology domain, a question naturally has arisen about the decision-

making mechanism of fish in an environment where only local information is available and

information transfer between members does not explicitly happen (Partridge 1982; Couzin

et al. 2005; Becco et al. 2006; Couzin et al. 2002; Gautrais et al. 2008; Hoare et al. 2004).

It has been experimentally shown that fish’s swimming activities vary depending on their

perceivable neighbours. According to Partridge (1982), fish have the tendency to maintain

their statuses (e.g. position, speed, and heading angle) relative to those of other nearby

fish, which results in their organised formation structures. In addition, Becco et al. (2006)

shows that spatial density of fish has influences on both the minimum distances between

them and the primary orientation of the fish school. Based on this knowledge, the works in

(Couzin et al. 2002, 2005; Gautrais et al. 2008; Hoare et al. 2004) suggest individual-based

models to further understand the collective behavioural mechanisms of fish: for example, their

repelling, attracting, and orientating behaviours (Couzin et al. 2002; Gautrais et al. 2008);

how the density of informed fish affects the elongation of the formation structure (Couzin

et al. 2005); and group-size choices (Hoare et al. 2004). The common and fundamental

characteristic of these models is that every agent maintains or adjusts its personal status with

consideration of those of other individuals within its limited perception range.

As inspired by the understanding of fish, we believe that there must be an enhanced swarm

distribution guidance approach in which each agent only needs to keep its relative status by

relying on local information available from its nearby neighbours. In our approach, the agents

are not required to possess global knowledge, and thereby the corresponding requirement of

extensive information sharing over all the agents can be alleviated.

3.2 The local information required in the proposed approach

We will show that global information is not required to generate feedback gains to operate

closed-loop frameworks for robotic swarms. Instead, the main underlying idea is to use the

deviation of current and desired swarm density at each local bin as local-feedback gain.

Specifically, in most of GICA-based frameworks, the feedback gains are generated from the

difference between xk and Θ , which requires global information. In contrast, in the proposed

LICA-based framework, agents in bin B j use the difference between the current local swarm

density x̄k[ j] and the locally desired swarm density Θ̄[ j], which are, respectively, defined

as follows:

x̄k[ j] :=
nk[ j]

∑

∀Bl∈Nk ( j) nk[l]
, (4)

where nk[ j] is the number of agents in B j at time instant k (see Fig. 2 for an example); and

Θ̄[ j] :=
Θ[ j]

∑

∀Bl∈Nk ( j) Θ[l]
. (5)

The two quantities are both locally available information within ANk ( j). The difference

between x̄k[ j] and Θ̄[ j] is utilised for a local feedback gain, denoted by ξ̄k[ j], which is a

scalar in (0, 1] that monotonically decreases as x̄k[ j] converges to Θ̄[ j]. For instance, this

paper uses

ξ̄k[ j] :=
(

∣

∣Θ̄[ j] − x̄k[ j]
∣

∣

Θ̄[ j]

)α

, (6)
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Fig. 2 An example showing how

to calculate x̄k [ j]: for bin B23,

x̄k [23] = nk [23]/(nk [13] +
nk [22] + nk [23] + nk [24] +
nk [33]). In the proposed

framework, agents in the bin only

need to obtain the local

information from other agents in

its neighbour bins (shaded). Note

that each square indicates each

bin, and the red arrow between

two bins B j and Bl means that

Ak [ j, l] = 1

being saturated to [ǫξ , 1] if the value lies outside this range. This is called primary local-

feedback gain, controling the primary guidance matrix Pk (shown in the next subsection).

Here, α > 0 is the sensitivity parameter affecting ξ̄k[ j] with regard to the difference between

x̄k[ j] and Θ̄[ j] (as shown in Fig. 5a); ǫξ > 0 is a reasonably small positive value ensuring

that ξ̄k[ j] > 0 in order to mathematically guarantee (R4), which will be described in the next

subsection. How to use ξ̄k[ j] explicitly may be different depending on different applications,

and hence it will be given along with some implementation examples in Sect. 4.

Remark 1 Equation (4) is equivalent to the j th element of the following vector:

x̄
j
k :=

1

|ANk ( j)|
∑

∀ai ∈ANk ( j)

si
k . (7)

Here, we intentionally introduce Eq. (7) for ease of comparison with the information required

in the existing literature [i.e. Eq. (1)]. Equation (7) implies that, in order for each agent in

bin B j to estimate x̄
j
k [ j] (i.e. the current local swarm density x̄k[ j]), the set of other agents

whose information is necessary is just ANk ( j). That is, each agent needs to have neither a

large perception radius nor an extensive information consensus process over the entire agents.

Remark 2 In the rest of this paper, it is assumed that the current local swarm density x̄k[ j]
in Eq. (4) is accurately accessible by each agent in bin B j , for the ease of description. This

can actually happen via a simple multi-hop communication over all the agents in ANk ( j).

In order to reduce the required communication burden, we could utilise distributed density

estimation methods in Bandyopadhyay and Chung (2014) and Demir et al. (2015) at the

expense of a certain level of estimation error. Hence, we will numerically examine the effect

of the uncertainty on the proposed framework, as will be shown in Sect. 6.4.

Remark 3 It is worth repeating that, in the proposed approach, each agent in bin B j only

relies on its local information about its neighbour bins Nk( j). This also applies to mission

information such as the desired distribution Θ . That is, the agent does not necessarily need to

know the entire desired distribution a priori (which is the case in most of the existing works),

but can obtain Θ̄[ j] in a real-time manner during a mission as long as Assumption 2 holds.

This is also the case for the motion constraint Ak as long as motion constraints regarding

neighbour bins are perceivable under Assumption 2 along with reasonably capable sensors.
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3.3 The LICA-basedMarkovmatrix

We present our methodology to generate a time-inhomogeneous Markov matrix Mk that

achieves Desired Features 1–3 by using the local information feedback. The basic form of

the stochastic policy for every agent in bin B j is such that

Mk[ j, l] := (1 − ωk[ j])Pk[ j, l] + ωk[ j]Sk[ j, l], ∀Bl ∈ B. (8)

Here, ωk[ j] ∈ [0, 1) is the weighing factor to have different weights on the primary policy

Pk[ j, l] ∈ P and the secondary policy Sk[ j, l] ∈ P. The weighing factor is defined as

ωk[ j] := exp(−λk) · Gk[ j] (9)

where λ > 0 is a design parameter that controls decay of ωk[ j]; and Gk[ j] ∈ [0, 1] is the

secondary local-feedback gain, which activates Sk[ j, l] depending on the difference between

x̄k[ j] and Θ̄[ j].
We introduced two policies Pk and Sk in order to help prospective users to have more

design flexibility when implementing the framework into their own specific problems. As

you will see, the asymptotic stability of agents towards Θ is in fact guaranteed by Pk under

the condition that the following Requirements 1–4 are satisfied. Since ωk[ j] is diminishing as

time instant k goes to infinity, users may adopt any temporary policies as Sk in addition to Pk ,

if necessary. For instance, when it is desired to disperse agents in B j into its neighbour bins

more quickly if the bin is too overpopulated, it can happen by setting Sk[ j, l] = 1/|Nk( j)|,
∀Bl ∈ Nk( j) and designing Gk[ j] to be close to one when x̄k[ j] ≫ Θ̄[ j], zero otherwise.

Note that, in Sect. 4, we will provide explicit descriptions of Pk , Sk , and Gk , which are varied

depending on specific implementations.

Equation (8) can be represented in matrix form as

Mk = (I − Wk)Pk + Wk Sk, (10)

where Pk ∈ P
nb×nb and Sk ∈ P

nb×nb are row-stochastic matrices, called primary guidance

matrix and secondary guidance matrix, respectively. Wk ∈ R
nb×nb is a diagonal matrix such

that Wk = diag(ωk[1], . . . , ωk[nb]).
We claim that, in order for the Markov system to achieve all the desired Features, Pk must

satisfy the following requirements.

Requirement 1 Pk is a matrix with row sums equal to one, i.e.

nb
∑

l=1

Pk[ j, l] = 1, ∀ j . (R1)

In fact, Pk needs to be row stochastic, for which it should further hold that Pk[ j, l] ≥ 0,

∀ j, l. Note that this constraint is implied by (R4), which will be introduced later.

Requirement 2 All diagonal elements are positive, i.e.

Pk[ j, j] > 0, ∀ j . (R2)

Requirement 3 The stationary distribution (i.e. equilibrium) of Pk is the desired swarm

distribution Θ , i.e. Θ Pk = Θ (or
∑nb

j=1 Θ[ j]Pk[ j, l] = Θ[l],∀l). Along with (R1), this can

be fulfilled by setting

Θ[ j]Pk[ j, l] = Θ[l]Pk[l, j], ∀ j,∀l. (R3)

A Markov process satisfying this property is said to be reversible.
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Requirement 4 Pk is irreducible such that

Pk[ j, l] > 0 if Ak[ j, l] = 1,

Pk[ j, l] = 0 otherwise.
(R4)

Note that Ak is also irreducible from Definition 2.

Requirement 5 Pk becomes close to I as x̄k converges to Θ̄ , i.e.

Pk[ j, j] → 1 as x̄k[ j] → Θ̄[ j] (or ξ̄k[ j] → 0), ∀ j . (R5)

Every agent in each bin B j executes the following subroutine to generate its stochastic

policies at every time instant. Depending on missions, ξ̄k[ j], Pk , Sk , and Gk[ j] can be

designed differently under given specific constraints. (The detail regarding Lines 4–6 will

be presented in Sect. 4, which shows examples of how to implement this framework.) As

long as Pk holds (R1)–(R5) for every time instant k, the aforementioned desired features are

achieved. Note that (R1)–(R4) are associated with Desired Feature 1, whereas (R5) is with

Desired Features 2 and 3. The detailed analysis will be described in the next subsection.

Algorithm 2 Generation of Mk[ j, l],∀l (Line 2 in Algorithm 1)

// Obtain the local information

1: Compute Θ̄[ j] using (5);

2: Obtain x̄k [ j];
// Generate stochastic policies

3: Compute ξ̄k [ j] [using (6)];

4: Compute Pk [ j, l], ∀l;

5: Compute Sk [ j, l], ∀l;

6: Compute Gk [ j];
7: Compute ωk [ j] using (9);

8: Compute Mk [ j, l] using (8), ∀l;

In a nutshell, our design guidelines are as follows:

(i) Design ξ̄k[ j] as a scalar function in (0, 1] that monotonically decreases as x̄k[ j] con-

verges to Θ̄[ j], e.g. Eq. (6). Note that the shape of ξ̄k[ j] is important so that it may

cause high residual convergence error, as will be shown in Sect. 6.1.

(ii) Design Pk[ j, l] that satisfies (R1)–(R5) along with additional criteria from a given

specific application.

(iii) Design Sk[ j, l] with consideration of the robotic swarm’s auxiliary but temporary

behaviours that help the ultimate problem objective (if necessary).

(iv) Design Gk[ j] as a scalar function in [0, 1] in terms of x̄k[ j] and Θ̄[ j] [e.g. Eqs. (18) or

(28)], with consideration of when Sk is desired to be activated (if Sk is implemented).

(v) Use Mk[ j, l] and ωk[ j] as shown in Eqs. (8) and (9), respectively.

We will apply the same guidelines when implementing the proposed framework into the

specific examples in Sect. 4.

3.4 Analysis

We first show that the Markov process using Eq. (10) satisfies Desired Feature 1 under

the assumption that Pk satisfies requirements (R1)–(R4) for every time instant. The swarm
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(a) (b)

Fig. 3 Examples of simple bin topologies to help Lemmas 1 and 2: a tree-type; b arbitrarily connected. The

red line in (b) indicates a newly added route between bin B1 and B4 based on the topology in (a) (Color figure

online)

distribution at time instant k ≥ k0, governed by the Markov process from an arbitrary initial

state xk0 , can be written as:

xk = xk0Uk0,k := xk0 Mk0 Mk0+1 . . . Mk−1. (11)

Theorem 1 Provided that the requirements (R1)–(R4) are satisfied for all time instants k ≥
k0, it holds that limk→∞ xk = Θ pointwise for all agents, irrespective of the initial condition.

Proof Please refer to “Appendix A”. ⊓⊔

Theorem 1 implies that the ensemble of the agents eventually converges to the desired

swarm distribution, regardless of Sk , Gk[ j], and (R5). However, the system may induce

unnecessary transitions of agents even after being close enough to Θ , meaning that Desired

Feature 2 does not hold yet.

Next, we argue that Desired Features 2 and 3 can also be obtained if requirement (R5)

is additionally satisfied. Suppose that, for every bin B j , x̄k[ j] converges to and eventually

reaches Θ̄[ j] at some time instant k. From Eqs. (4)–(5) and the supposition of x̄k[ j] = Θ̄[ j],
∀ j , it follows that 1/Θ̄[ j] ·nk[ j] =

∑

∀Bl∈Nk ( j) nk[l], ∀ j . This can be represented in matrix

form as:

nk · B := nk · (Ak − X) = 0 (12)

where X ∈ R
nb×nb is a diagonal matrix such that X = diag(1/Θ̄[1], . . . , 1/Θ̄[nb]).

Lemma 1 Let the term tree-type (bidirectional) topology refer to as a graph such that any

two vertices are connected by exactly one bidirectional path with no cycles (e.g. Fig. 3a).

Given nb bins connected as a tree-type topology, the rank of its corresponding matrix B in

Eq. (12) is nb − 1.

Proof The matrix B ∈ R
nb×nb can be linearly decomposed into ne of the same-sized matrices

B(i, j), where ne is the number of edges in the underlying graph of Ak . Here, B(i, j) ∈ R
nb×nb is

a matrix such that B(i, j)[i, i] = −Θ[ j]/Θ[i] and B(i, j)[ j, j] = −Θ[i]/Θ[ j]; B(i, j)[i, j] =
B(i, j)[ j, i] = 1; and all the other entries are zero. For example, consider that four bins are

given and connected as shown in Fig. 3a. Clearly, B = B(1,2) + B(2,3) + B(2,4), where

B =

⎛

⎜

⎜

⎜

⎝

−Θ[2]
Θ[1] 1 0 0

1 −Θ[1]+Θ[3]+Θ[4]
Θ[2] 1 1

0 1 −Θ[2]
Θ[3] 0

0 1 0 −Θ[2]
Θ[4]

⎞

⎟

⎟

⎟

⎠

,
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B(1,2) =

⎛

⎜

⎜

⎝

−Θ[2]
Θ[1] 1 0 0

1 −Θ[1]
Θ[2] 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

,

B(2,3) =

⎛

⎜

⎜

⎝

0 0 0 0

0 −Θ[3]
Θ[2] 1 0

0 1 −Θ[2]
Θ[3] 0

0 0 0 0

⎞

⎟

⎟

⎠

,

B(2,4) =

⎛

⎜

⎜

⎝

0 0 0 0

0 −Θ[4]
Θ[2] 0 1

0 0 0 0

0 1 0 −Θ[2]
Θ[4]

⎞

⎟

⎟

⎠

.

It turns out that the rank of every B(i, j) is one, and the matrix has only one linearly

independent column vector, denoted by v(i, j). Without loss of generality, we consider v(i, j) ∈
R

nb as a column vector such that the i th entry is − 1
Θ[i] , the j th entry is 1

Θ[ j] , and the others

are zero: for an instance, v(1,2) = [− 1
Θ[1] ,

1
Θ[2] , 0, 0]⊤.

It follows that v(i, j) and v(k,l) are linearly independent when the bin pairs {i, j} and {k, l}
are different. This implies that the number of linearly independent column vectors of B is

the same as that of edges in the topology. Hence, for a tree-type topology of nb bins, since

there exist nb − 1 edges, the rank of the corresponding matrix B is nb − 1. ⊓⊔

Lemma 2 Given a bidirectional and strongly connected topology of bins, the rank of its

corresponding matrix B is not affected by adding a new bidirectional edge that connects any

two existing bins.

Proof We will show that this claim is valid even when a tree-type topology is given, as

it is a sufficient condition for being bidirectional and strongly connected. Given the tree-

type topology in Fig. 3a, suppose that bins B1 and B4 are newly connected. Then, the new

topology becomes as shown in Fig. 3b, and it has a new corresponding matrix Bnew, where

Bnew = B + B(1,4). As explained in the proof of Lemma 1, the rank of B(1,4) is one and

it has only a linearly independent vector v(1,4). However, this vector can be produced as a

linear combination of the existing v vectors of B (i.e. v(1,4) = v(1,2) + v(2,4)). Thus, the

rank of Bnew retains that of B. Without loss of generality, this implies that the rank of B of

a given bidirectional and strongly connected topology is not affected by adding a new edge

that directly connects any two existing bins. ⊓⊔

Thanks to Lemmas 1 and 2, we end up with the following corollary and lemma:

Corollary 1 Given nb bins that are at least bidirectional and strongly connected, the rank of

its corresponding matrix B is nb − 1.

Lemma 3 Given nb bins that are at least bidirectional and strongly connected, convergence

of x̄∞ to Θ̄ is equivalent to convergence of x∞ to Θ .

Proof Assuming that limk→∞ x̄k = Θ̄ , it can be said that limk→∞ nk · B = 0, as similar to

the derivation of Eq. (12). From Eq. (5), it turns out that

Θ · B = 0. (13)
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Since the nullity of B is one due to Corollary 1, there exists only one linearly independent

row vector a ∈ R
nb such that a · B = 0. Hence, it follows that limk→∞ nk = ǫΘ , where ǫ

is an arbitrary scalar value. This also implies that limk→∞ xk = limk→∞ nk/na = Θ .

On the other hand, suppose that limk→∞ xk = Θ , which can be rewritten as limk→∞ nk =
naΘ . By right multiplying B for both sides (i.e. limk→∞ nk · B = na(Θ · B)), it follows

from Eq. (13) that limk→∞ nk · B = 0. By the definition of B, it can be rearranged as

limk→∞ x̄k = Θ̄ .

Therefore, convergence of x̄∞ to Θ̄ is equivalent to convergence of x∞ to Θ . ⊓⊔

From this lemma and (R5), Desired Feature 2 finally holds as follows.

Theorem 2 If Pk satisfies (R1)–(R5) for all time instants k ≥ k0, the Markov process using

Mk in Eq. (10) satisfies Desired Feature 2 as well as Desired Feature 1.

Proof It was shown from Theorem 1 that requirements (R1)–(R4) guarantee the convergence

of x∞ to Θ (i.e. Desired Feature 1). From this and Lemma 3, x̄∞ also converges to Θ̄ . If Pk

additionally complies with (R5), then Pk becomes close to I as k → ∞. This is also the case

for the Markov process Mk , which satisfies Desired Feature 2. ⊓⊔

Corollary 2 In order for every agent in bin B j to generate Mk[ j, l],∀l in Eq. (8), the agent

only needs local information within ANk ( j). Therefore, Desired Feature 3 is also achieved.

Remark 4 (Robustness against dynamic changes of agents or bins) The proposed framework

is robust against dynamic changes in the number of agents or bins. As each agent behaves

based on its current bin location and local information in a memoryless manner, Desired

Features 1–3 in the proposed framework will not be affected by inclusion or exclusion of

agents in a swarm.

Besides, as long as changes on bins are perceived by nearby agents in the corresponding

neighbour bins, robustness against those changes also holds in the proposed framework. This

is because agents in bin B j utilise only local information such as Θ̄[ j] and x̄k[ j], and are not

required to know information from other far-away bins. Moreover, the proposed framework

does not need to recalculate Θ (which has to be normalised in a GICA-based framework

such that
∑

∀ j Θ[ j] = 1 after reflecting such changes) because computing Θ̄[ j] in Eq. (5)

already includes a sense of normalisation based on local information.

4 Implementation examples

4.1 Example I: minimising travelling expenses

This section provides implementation examples of the proposed framework. In particular,

this subsection addresses a problem of minimising travelling expenses of agents during

convergence to a desired swarm distribution, as shown in Bandyopadhyay et al. (2017). The

problem can be defined as follows:

Problem 1 Given a cost matrix Ek ∈ R
nb×nb in which each element Ek[ j, l] represents the

travelling expense of an agent from bin B j to Bl , find Pk such that

min

nb
∑

j=1

nb
∑

l=1

Ek[ j, l]Pk[ j, l], (P1)
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subject to (R1)–(R5) and

Θ[l] fξ (ξ̄k[ j], ξ̄k[l]) fE (Ek[ j, l]) ≤ Pk[ j, l] if Ak[ j, l] = 1, ∀ j 	= l, (14)

where Θ[l] enables agents in bin B j to be distributed over its neighbour bins in proportion

to the desired swarm distribution; fξ (ξ̄k[ j], ξ̄k[l]) ∈ (0, 1] and fE (Ek[ j, l]) ∈ (0, 1] control

the lower bound of Pk[ j, l] in Eq. (14), depending on the primary local-feedback gains and

travelling expenses, respectively. Specifically, it is set that

fξ (ξ̄k[ j], ξ̄k[l]) = max(ξ̄k[ j], ξ̄k[l]) (15)

so that the value monotonically increases with regard to increase of either ξ̄k[ j] or ξ̄k[l] and

diminishes as ξ̄k[ j] and ξ̄k[l] simultaneously reduce, meaning that it allows a larger number

of transitioning agents between the two bins B j and Bl when any one of them needs to be

regulated. fE (Ek[ j, l]) ∈ (0, 1] monotonically decreases as Ek[ j, l] increases [see Eq. (30)

for an example of its explicit definition], preventing agents in bin B j from spending higher

transition expenses. We assume that Ek is symmetric; Ek[ j, l] > 0 if Ak[ j, l] = 1; and its

diagonal entries are zero.

Corollary 3 The optimal matrix Pk of problem (P1) is given by: ∀ j, l ∈ {1, . . . , nb} and

l 	= j ,

Pk[ j, l] =
{

Θ[l] fξ (ξ̄k[ j], ξ̄k[l]) fE (Ek[ j, l]) if Ak[ j, l] = 1

0 otherwise
(16)

and ∀ j ,

Pk[ j, j] = 1 −
∑

∀l 	= j

Pk[ j, l]. (17)

Proof Please refer to “Appendix B”. ⊓⊔

To reduce unnecessary transitions of agents during this process, it is desirable that agents

in bin B j such that x̄k[ j] ≤ Θ̄[ j] (i.e. underpopulated) do not deviate. To this end, we set

Sk = I and Gk[ j] as follows:

Gk[ j] :=
exp(β(Θ̄[ j] − x̄k[ j]))
exp(β|Θ̄[ j] − x̄k[ j]|)

. (18)

The gain value is depicted in Fig. 4a with regard to the sensitivity parameter β, which controls

the steepness of Gk[ j] at around when x̄k[ j]−Θ̄[ j] is close to zero but positive. For example,

at a lower β, a relatively higher number of agents tend to follow the secondary guidance matrix

Sk (i.e. not to deviate) rather than Pk even when x̄k[ j]− Θ̄[ j] > 0 is not much close to zero.

Remark 5 (Increase of Convergence Rate) Due to the fact that
∑

∀l 	= j Pk[ j, l] ≤
∑

∀Bl∈Nk ( j)\{B j } Θ[l] from Eq. (16), the total outflux of agents from bin B j becomes smaller

as the bin has fewer connections with other bins. This eventually makes the convergence rate

of the Markov process slower.

Adding an additional variable into Pk[ j, l] in (16) does not affect the obtainment of Desired

Features 1–3 as long as Pk satisfies (R1)–(R5). Thus, in order to enhance the convergence

rate under the requirements, one can add

ǫΘ := min

{

1
∑

∀s:Bs∈Nk ( j)\{B j } Θ[s]
,

1
∑

∀s:Bs∈Nk (l)\{Bl } Θ[s]

}

(19)
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Algorithm 3 Minimising Travelling Expenses (Lines 4–6 of Algorithm 2 for P1)

1: Compute Pk [ j, l] ∀l using (16) [or (20)] and (17)

2: Set Sk [ j, j] = 1; Sk [ j, l] = 0, ∀l 	= j

3: Compute Gk [ j] using (18)

into Pk[ j, l], as follows:

Pk[ j, l] =
{

ǫΘΘ[l] fξ (ξ̄k[ j], ξ̄k[l]) fE (Ek[ j, l]) if Ak[ j, l] = 1

0 otherwise
(20)

which can be substituted for Eq. (16).

4.2 Example II: maximising convergence rate within flux upper limits

This subsection presents an example in which the specific objective is to maximise the

convergence rate under upper bounds regarding transition of agents between bins, referred to

as flux upper limits. The bounds can be interpreted as safety constraints in terms of collision

avoidance and congestion: higher congestions may induce higher collisions amongst agents,

which may bring unfavourable effects on system performance. A similar problem is addressed

by an open-loop algorithm in Berman et al. (2009), where transitions of agents are limited

only after a desired swarm distribution is achieved. This restriction is not for considering the

aforementioned safety constraints, but rather for mitigating the trade-off between convergence

rate and long-term system efficiency.

For the sake of imposing flux upper limits during the entire process, we consider the

following one-way flux constraint: for every time instant k,

nk[ j]Pk[ j, l] ≤ c( j,l), ∀ j, ∀l 	= j . (21)

This means that the number of agents moving from bin B j to Bl is upper-bounded by c( j,l).

The bound value is assumed to be very small with consideration of mission environments

such as the number of agents, the number of bins, and their topology. Otherwise, all the agents

can be distributed over the bins very soon so that the flux upper limits become meaningless

and the corresponding problem can be trivial. Please note that the flux limits in this example

should be considered as expected constraints. In the case where hard constraints are to be

accommodated in practice, it is necessary to set a tighter value with consideration of a margin

from the actual value. The level of the margin would be affected by the number of agents

involved in the framework, as will be shown in Fig. 9c later.

Regarding the convergence rate of a Markov chain, there are respective analytical

methods depending on whether it is time-homogeneous or time-inhomogeneous. For a time-

homogeneous Markov chain, if the matrix is irreducible, the second largest eigenvalue of the

matrix is used as an index indicating its asymptotic convergence rate (Bestaoui Sebbane 2014,

p. 389). On the contrary, for a time-inhomogeneous Markov chain, coefficients of ergodicity

can be utilised as a substitute for the second largest eigenvalue, which is not useful for this

case (Ipsen and Selee 2011). Particularly, this paper uses the following proper coefficient of

ergodicity, amongst others:

Definition 9 [Coefficient of Ergodicity (Seneta 1981, pp. 136–137)] Given a stochastic matrix

M ∈ P
n×n , a (proper) coefficient of ergodicity 0 ≤ τ(M) ≤ 1 can be defined as:

τ(M) := max
∀s

max
∀ j,∀l

|M[ j, s] − M[l, s]| . (22)
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(a) (b)

Fig. 4 The secondary feedback gains Gk [ j] depending on the associated design parameters: a for P1 [i.e.

Eq. (18)]; b for the quorum model [i.e. Eq. (28)]

A coefficient of ergodicity is said to be proper if τ(M) = 0 is necessary and sufficient for

M = 1⊤ · v, where v ∈ P
n is a row-stochastic vector.

The convergence rate of a time-inhomogeneous Markov chain Mk ∈ P
n×n , ∀k ≥ 1 can

be maximised by minimising τ(Mk) at each time instant k, thanks to Seneta (1981, Theorem

4.8, p. 137): τ(M1M2 . . . Mr ) ≤
∏r

k=1 τ(Mk). Hence, the objective of the specific problem

considered in this subsection can be defined as: find Pk such that

min τ(Pk) (23)

subject to (R1)–(R5) and (21).

Remark 6 [Advantages of the coefficient of ergodicity in (22)] Other proper coefficients in

Seneta (1981, p. 137) such as

τ1(M) = 1 − min
∀ j,∀l

∑

∀s

min{M[ j, s], M[l, s]}

or

τ2(M) = 1 −
∑

∀s

min
∀ j

{M[ j, s]}

may have the trivial case such that τ1(Pk) = 1 (or τ2(Pk) = 1) for some time instant k,

when they are applied to this problem. For example, given a topology of bins Ak , there may

exist a pair of bins B j and Bl such that Pk[ j, s] = 0 or Pk[l, s] = 0, ∀s. To avoid this trivial

case, Bandyopadhyay et al. (2017) instead utilises τ1((Pk)
dAk ) as the proper coefficient of

ergodicity, where dAk
denotes the diameter of the underlying graph of Ak . However, this

implies that agents in bin B j are required to additionally access the information from other

bins beside Nk( j), causing additional communicational costs. The coefficient of ergodicity

in (22) does not suffer from this issue. Note that τ(M) ≤ τ1(M) ≤ τ2(M) (Seneta 1981, p.

137).

Finding the optimal solution for problem (23) is another challenging issue, called fastest

mixing Markov chain problem. Since the purpose of this section is to show an example of

how to implement our proposed framework, we heuristically address this problem at this

moment.
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Suppose that a matrix Pk satisfying (R1)–(R5) is given and that the topology of bins is

at least connected without any bin being connected to all the others. Since the matrix is

non-negative and there exists at least one zero-value entry in each column, the coefficient of

ergodicity can be said as τ(Pk) = max∀s,∀ j (Pk[ j, s]). Assuming that max∀l 	= j Pk[ j, l] ≤
1/|Nk( j)|, which is generally true due to the small values of c( j,l), it turns out that each

diagonal element of Pk is the largest value in each row. Thus, we can say that τ(Pk) =
max∀ j Pk[ j, j]. Eventually, the objective function in Eq. (23) can be rewritten as

maxmin∀ j

∑

∀l 	= j

Pk[ j, l]

because minimising the maximum diagonal element of a stochastic matrix is equivalent to

maximising the minimum row sum of its off-diagonal elements.

We turn now to constraints (R1)–(R5) and (21). In order to comply with (R3), we initially

set Pk[ j, l] = Θ[l]Qk[ j, l], where Qk is a symmetric matrix that we will design now.

Constraint (21), (R4), and the symmetricity of Qk are necessary conditions for the following

constraint: ∀ j , ∀l 	= j ,

min

(

c( j,l)

nk[ j]Θ[l]
,

c(l, j)

nk[l]Θ[ j]

)

≥ Qk[ j, l] > 0 if Ak[ j, l] = 1

Qk[ j, l] = 0 otherwise.

(24)

For (R2) and (R5), we set the diagonal entries of Pk as

Pk[ j, j] ≥ 1 − ξ̄k[ j], ∀ j . (25)

Note that the non-strict inequality is not troublesome to (R2) because ξ̄k[ j] = 1 only when

x̄k[ j] = 0, in which there exists no agent in bin B j , and thus effectively Pk[ j, j] = 1.

Equation (25) can be rewritten, with consideration of (R1) (i.e.
∑nb

l=1 Θ[l]Qk[ j, l] = 1,∀ j),

as
∑

∀l 	= j

Θ[l]Qk[ j, l] ≤ ξ̄k[ j], ∀ j . (26)

In summary, Eq. (24) is a sufficient condition for (R3), (R4), and (21); and Eq. (26) is for

(R1), (R2), and (R5). Hence, the reduced problem can be defined as:

Problem 2 Find Qk such that

maxmin∀ j

∑

∀l 	= j

Θ[l]Qk[ j, l] (P2)

subject to (24) and (26).

The algorithm for problem (P2) is shown in Algorithm 4. If we neglect (26), an optimal

solution can be obtained by making Qk[ j, l] equal to its upper bound in (24) (Line 2).

However, this solution may not satisfy (26). Thus, we lower the entries of Qk to satisfy (26),

while keeping them symmetric and as high as possible (Lines 3–8). In detail, Line 3 (or

Line 6) ensures constraint (26) for each bin B j in a way that, if this is not the case, obtains

the necessary lowering factor ǭ′
Q[ j] (or ǭQ[ j]). In order to keep Qk as high as possible, we

temporarily take ǫ′
Q[ j, l] as the maximum value of {ǭ′

Q[ j], ǭ′
Q[l]} (Line 4). After curtailing

Qk[ j, l] by applying ǫ′
Q[ j, l], we obtain the corresponding lowering factor again (Lines 5–

6). For now, the minimum value is taken to maintain Qk’s symmetricity and satisfy (26)
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Algorithm 4 Max Convergence with Flux Limits (Line 4 of Algorithm 2 for P2)

// Initialise Pk

1: Pk [ j, l] = 0, ∀l ∈ {1, 2, . . . , nb};
// Compute Qk satisfying constraint (24) only

2: Qk [ j, l] = min
(

c( j,l)

nk [ j]Θ[l] ,
c(l, j)

nk [l]Θ[ j]

)

, ∀Bl ∈ Nk ( j)\{B j };
// Lower Qk to satisfy constraint (26) additionally

3: ǭ′
Q

[ j] = min

(

ξ̄k [ j]
∑

∀l 	= j Θ[l]Qk [ j,l] , 1

)

;

4: ǫ′
Q

[ j, l] = max
(

ǭ′
Q

[ j], ǭ′
Q

[l]
)

, ∀Bl ∈ Nk ( j)\{B j };
5: Qk [ j, l] := ǫ′

Q
[ j, l]Qk [ j, l], ∀Bl ∈ Nk ( j)\{B j };

6: ǭQ [ j] = min

(

ξ̄k [ j]
∑

∀l 	= j Θ[l]Qk [ j,l] , 1

)

;

7: ǫQ [ j, l] = min
(

ǭQ [ j], ǭQ [l]
)

, ∀Bl ∈ Nk ( j)\{B j };
8: Qk [ j, l] := ǫQ [ j, l]Qk [ j, l], ∀Bl ∈ Nk ( j)\{B j };

// Compute Pk

9: Pk [ j, l] = Θ[l]Qk [ j, l], ∀Bl ∈ Nk ( j)\{B j };
10: Pk [ j, j] = 1 −

∑

∀l 	= j Pk [ j, l];

simultaneously (Line 7). Then, the corresponding stochastic policy is generated based on the

resultant Qk (Lines 8–10).

Note that we set Gk[ j] = 0 for all time instants and all bins, so Mk = Pk .

4.3 Example III: local information-based quorummodel

This subsection shows that the proposed framework is able to incorporate a quorum model,

which is introduced in Halasz et al. (2007) and Hsieh et al. (2008). In this model, if a bin is

overpopulated above a certain level of predefined threshold called quorum, the probabilities

that agents in the bin move to neighbour bins are temporarily increased, rather than consis-

tently following given Pk . This feature eventually brings an advantage to the convergence

performance of the swarm.

To this end, we set the secondary guidance matrix Sk as follows: ∀ j, l ∈ {1, . . . , nb},

Sk[ j, l] :=
{

1/|Nk( j)| if Ak[ j, l] = 1

0 otherwise.
(27)

This matrix makes agents in a bin equally disseminated over its neighbour bins. In addition,

the secondary feedback gain Gk[ j] is defined as

Gk[ j] :=
(

1 + exp

(

γ (q j −
x̄k[ j]
Θ̄[ j]

)

))−1

, (28)

where γ > 0 is a design parameter, and q j > 1 is the quorum for bin B j . Figure 4b shows the

gain value varying depending on γ and q j . As x̄k[ j]/Θ̄[ j] becomes higher than the quorum,

Gk[ j] gets close to 1 (i.e. Sk[ j, l] becomes more dominant than Pk[ j, l]). The steepness of

Gk[ j] around the quorum value is regulated by γ .

The existing quorum models in Halasz et al. (2007) and Hsieh et al. (2008) require each

agent to know xk[ j], which implies that the total number of agents na should be tracked in

real time. It could be possible that some agents in a swarm unexpectedly become faulted

by internal or external effects during a mission, which hinders for other alive agents from

keeping track of na in a timely manner. On the contrary, this requirement is not the case for
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Algorithm 5 The Quorum Model (Lines 5–6 of Algorithm 2)

1: Compute Sk [ j, l] using (27), ∀l;

2: Compute Gk [ j] using (28);

the proposed quorum model, and it works by only using local information available from

ANk ( j).

5 Asynchronous implementation

A synchronous process induces extra time delays and inter-agent communication to make the

entire agents, each of which may have different timescales for obtaining new information,

remain in sync. Such unnecessary waiting time and communication may cause unfavourable

effects on mission performance or may not even be realisable in practice (Johnson et al.

2011).

In the previous sections, it was assumed that a swarm of agents act synchronously at every

time instant. Here, we show that the proposed framework can accommodate asynchronous

behaviours of the agents, assuming that the union of underlying graphs of the corresponding

Markov matrices across some time intervals is frequently and infinitely strongly connected.

Suppose that an algorithm to compute Pk that satisfies (R1)–(R5) in a synchronous envi-

ronment is given (e.g. Algorithm 3 or 4). We propose an asynchronous implementation as

shown in Algorithm 6, which substitutes Line 4 in Algorithm 2. We refer to a set of bins

where agents are ready to use their respective local information (e.g. nk[ j]) as R
+
k , and

a set of the other bins as R
−
k . For each bin B j , we denote N

+
k ( j) := Nk( j) ∩ R

+
k and

N
−
k ( j) := Nk( j) ∩ R

−
k . It is assumed that each agent in bin B j ∈ R

+
k knows the local

information of its neighbour bin Bl ∈ N
+
k ( j).

In the asynchronous algorithm, each agent in bin B j ∈ R
+
k follows the existing procedure

of generating Pk[ j, l] for each neighbour bin Bl whose local information is also available

(Line 2). Then, the probabilities to transition to all the other bins (except B j ) are set to be

zero (Line 3). In the meantime, each agent for whom local information is not ready does not

deviate but remains at the bin it belongs to. Equivalently, it can be said that Pk[ j, j] = 1 and

Pk[ j, l] = 0, ∀l 	= j (Line 6).

Hereafter, for the sake of differentiation from the original Pk generated in a synchronous

environment, let us refer to the matrix resultant from Algorithm 6 as asynchronous pri-

mary guidance matrix, denoted by P̃k . Accordingly, the asynchronous Markov matrix can be

defined as:

M̃k := (I − Wk)P̃k + Wk Sk .

Algorithm 6 Asynchronous Construction of Pk[ j, l] (Substitute for Line 4 of Algorithm 2)

1: if B j ∈ R
+
k

& isnonempty(N+
k

( j)\{B j }) then

2: Compute Pk [ j, l] as usual, ∀Bl ∈ N
+
k

( j)\{B j }
3: Pk [ j, l] = 0, ∀Bl ∈ B\N+

k
( j)

4: Pk [ j, j] = 1 −
∑

∀l 	= j Pk [ j, l]
5: else

6: Pk [ j, j] = 1; Pk [ j, l] = 0, ∀l 	= j

7: end if
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We show that this asynchronous Markov process also converges to the desired swarm distri-

bution.

Lemma 4 The matrix P̃k , for every time instant k, satisfies the following properties: (1) row

stochastic; (2) all diagonal elements are positive and all other elements are non-negative;

and (3)
∑nb

l=1 Θ[l]P̃k[l, j] = Θ[ j],∀ j .

Proof The matrix P̃k is row stochastic because of Lines 4 and 6 in Algorithm 6. Furthermore,

given that Pk satisfies (R2), property (2) is also valid for P̃k because P̃k[ j, j] ≥ Pk[ j, j] for

∀ j .

Let us now turn to the property (3), and firstly consider the case where ∀B j ∈ R
+
k . For

any two bins B j1 and B j2 ( j1 	= j2), Algorithm 6 yields that P̃k[ j1, j2] = Pk[ j1, j2] and

P̃k[ j2, j1] = Pk[ j2, j1] if B j1 , B j2 ∈ R
+
k and Ak[ j1, j2] = 1 simultaneously, otherwise

P̃k[ j1, j2] = P̃k[ j2, j1] = 0. For ∀B j ∈ R
+
k , this fact implies the following: (i) P̃k[l, j] =

Pk[l, j] for ∀Bl ∈ N
+
k ( j)\{B j }; (ii) P̃k[ j, l] = P̃k[l, j] = 0 for ∀Bl ∈ B\N

+
k ( j); and

(iii) P̃k[ j, j] = Pk[ j, j] +
∑

∀Bl∈N
−
k ( j) Pk[ j, l]. We apply the findings into the following

equation:

nb
∑

l=1

Θ[l]P̃k[l, j] =
∑

∀Bl∈B\N+
k ( j)

Θ[l]P̃k[l, j]

+
∑

∀Bl∈N
+
k ( j)\{B j }

Θ[l]P̃k[l, j] + Θ[ j]P̃k[ j, j].
(29)

The first term of the right hand side becomes zero because of (ii). Due to (i) and the

fact that Θ[l]Pk[l, j] = Θ[ j]Pk[ j, l] ∀l (from Requirement 3), the second term becomes

Θ[ j]
∑

∀Bl∈N
+
k ( j)\{B j } Pk[ j, l]. The last term becomes Θ[ j]Pk[ j, j] + Θ[ j]

∑

∀Bl∈N
−
k ( j)

Pk[ j, l] because of (iii). By putting all of them together and adding
∑

∀Bl∈B\Nk ( j) Pk[ j, l] =
0, the right hand side of Eq. (29) is equivalent to

Θ[ j]

⎛

⎜

⎝

∑

∀Bl∈N
+
k ( j)\{B j }

Pk[ j, l] + Pk[ j, j] +
∑

∀Bl∈N
−
k ( j)

Pk[ j, l] +
∑

∀Bl∈B\Nk ( j)

Pk[ j, l]

⎞

⎟

⎠

= Θ[ j]
nb
∑

l=1

Pk[ j, l] = Θ[ j].

On the other hand, for the case where ∀B j ∈ R
−
k , it follows from Algorithm 6 that

P̃k[l, j] = 0,∀l 	= j and P̃k[ j, j] = 1. Thus,
∑nb

l=1 Θ[l]P̃k[l, j] = Θ[ j]. ⊓⊔

Lemma 5 If the union of a set of underlying graphs of {P̃k1 , P̃k1+1, . . . , P̃k2−1} is strongly

connected, then the matrix product P̃k1,k2 := P̃k1 P̃k1+1 . . . P̃k2−1 is irreducible.

Proof Since the union of a set of underlying graphs of {P̃k1 , P̃k1+1, . . . , P̃k2−1} is strongly

connected, the underlying graph of
∑k2−1

k=k1
P̃k is also strongly connected. Noting that every

P̃k , ∀k ∈ {k1, k1 + 1, . . . , k2 − 1} is a non-negative nb × nb matrix and its diagonal elements

are positive (by Lemma 4), it follows from (Jadbabaie et al. 2003, Lemma 2) that P̃k1,k2 ≥
γ

∑k2−1
k=k1

P̃k , where γ > 0. This implies that the underlying graph of P̃k1,k2 is strongly

connected, and thus the matrix P̃k1,k2 is irreducible. ⊓⊔
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Theorem 3 Suppose that there exists an infinite sequence of non-overlapping time inter-

vals [ki , ki+1), i = 0, 1, 2, . . ., such that the union of underlying graphs of {P̃ki
, P̃ki +1,

. . . , P̃ki+1−1} in each interval is strongly connected. Let the swarm distribution at time

instant k ≥ k0, governed by the corresponding Markov process from an arbitrary state

xk0 , be xk = xk0Ūk0,k := xk0 M̃k0 M̃k0+1 . . . M̃k−1. Then, it holds that limk→∞ xk = Θ

pointwise for all agents, irrespective of the initial condition.

Proof Thanks to Lemma 4 and 5, the matrix product P̃ki ,ki+1
for each time interval [ki , ki+1)

satisfies (R1)–(R4). Therefore, one can prove this theorem by similarly following the proof

of Theorem 1. ⊓⊔

6 Numerical experiments

6.1 Effects of primary local-feedback gain �̄k[j]

This section first investigates the sensitivity of the primary feedback gain ξ̄k[ j] using Algo-

rithm 3 [with Eq. (20)]. We show that, depending on the shape of the gain, the performance of

the proposed framework changes with respect to convergence rate, fraction of transitioning

agents, and residual convergence error.

We consider the scenario having a set of 2000 agents and an arena consisting of 10 × 10

bins, as depicted in Fig. 2. There are vertical and horizontal paths between adjacent bins. The

agents are allowed to move at most 3 paths away within a unit time instant. All the agents start

from a bin, which reflects the fact that they are generally deployed from a base station at the

beginning of a mission. The desired swarm distribution Θ is uniform-randomly generated at

each scenario. The agents are assumed to estimate necessary local information correctly.

The performance of the proposed algorithm will be compared with that of the GICA-based

algorithm (Bandyopadhyay et al. 2017). To this end, fE (Ek[ j, l]) is set to be the same as the

corresponding coefficient in the existing work:

fE (Ek[ j, l]) := 1 −
Ek[ j, l]

Ek,max + ǫE

, (30)

where Ek,max is the maximum element of the travelling expense matrix Ek , and ǫE is a design

parameter. Ek[ j, l] is defined as a linear function based on the distance between bin B j and

Bl :

Ek[ j, l] := ǫE1 · �s( j,l) + ǫE0 , (31)

where �s( j,l) is the minimum required number of paths from B j to Bl ; ǫE1 and ǫE0 are

design parameters. The agents are assumed to follow any shortest route when they transition

between two bins. The design parameters are set as follows: ǫE1 = 1 and ǫE0 = 0.5 in (31);

ǫE = 0.1 in (30); ǫξ = 10−9 in (6); β = 1.8 × 105 in (18); and λ = 10−6 in (9).

As a performance index for the closeness between xk and Θ , we use Hellinger Distance,

i.e.

DH (Θ, xk) :=
1

√
2

√

√

√

√

nb
∑

j=1

(

√

Θ[ j] −
√

xk[ j]
)2

,

which is known as a “concept of measuring similarity between two distributions” (Chung

et al. 1989) and is utilised as a feedback gain in the existing work.

More importantly, to examine the effects of ξ̄k[ j], we set α in (6) as 0.2, 0.4, 0.6, 0.8, 1

and 1.2.
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(a) (b)

(c) (d)

Fig. 5 Sensitivity analysis depending on the primary local-feedback gain ξ̄k [ j] in Eq. (6) with different

setting of α: a the value of ξ̄k [ j]; b the fraction of transitioning agents; c the convergence performance; d the

convergence performance (zoomed-in for time instant between 3500 and 4000)

Figure 5 reveals that the convergence rate can be traded off against the fraction of transi-

tioning agents and the residual convergence error. As ξ̄k[ j] becomes more concave (i.e. the

value of α decreases), the summation of off-diagonal entries of Pk becomes higher, leading to

more transitioning agents but faster convergence rate. At the same time, such unnecessarily

higher off-diagonal entries of Pk even at a low value of |Θ̄[ j] − x̄k[ j]| prevent the swarm

from properly converging to the desired swarm distribution, resulting in higher residual con-

vergence error.

6.2 Comparison with the GICA-basedmethod

Let us now compare the LICA-based method for (P1) with the GICA-based method. The

scenario considered is the same as the one in the previous subsection except for α = 0.6.

Note that ǫΘ in Remark 5 improves convergence rate, but is not discussed in the existing

work. For the fair comparison, ǫΘ is applied to both methods. We conduct 100 runs of Monte

Carlo experiments. Figure 6 presents the results of one representative scenario, and Fig. 7

shows the statistical results of the Monte Carlo experiments.

According to Fig. 6a, the convergence rate of the proposed method is comparable to that of

the GICA-based method. Specifically, the former is slower at the initial phase, but becomes
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(a) (b)

(c) (d)

Fig. 6 Performance comparison between the proposed method (LICA) with the existing method (GICA)

(Bandyopadhyay et al. 2017): a the convergence error between the current swarm status and the desired status;

b the fraction of agents transitioning between any two bins; c the cumulative travel expenses of all the agents

from the beginning; d the number of other agents whose information is necessary for each agent

similar to that of the GICA-based method as reaching DH (Θ, xk) = 0.10. This is confirmed

by the statistical results in Fig. 7a, which presents the ratio of the required time instants for

converging to DH (Θ, xk) ∈ {0.30, 0.28, . . . , 0.12, 0.10} in the LICA-based method to those

of the GICA-based method.

Figure 6c shows that the cumulative travel expenses are smaller in the proposed method

than in the existing method. Until achieving DH (Θ, xk) = 0.1, the expenses by the proposed

method and those by the compared method are 1.72 × 104 and 1.96 × 104, respectively, and

their ratio is 0.878. This is also confirmed by the statistical result in Fig. 7b. A possible

explanation is that when some of the bins do not meet their desired swarm densities, the

entire swarm in the GICA-based method would obtain higher feedback gains, leading to

unnecessary transitions. On the contrary, this is not the case in the LICA-based method since

agents are only affected by their neighbour bins.

More importantly, Fig. 6d indicates that agents in the proposed framework require much

less information from other agents. This figure shows the number of other agents whose

information is necessary for each agent to generate its stochastic policies. For the LICA-based

framework, the red dashed line and the red dotted line represent the maximum case (i.e. the

agent who needs the largest amount of information) and the minimum case (i.e. the agent
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(a) (b)

Fig. 7 Performance comparison (Monte Carlo experiments) between the proposed method (LICA) and the

existing method (GICA) (Bandyopadhyay et al. 2017): a the required time instants to converge to DH (Θ, xk ) ∈
{0.30, 0.28, . . . , 0.12, 0.10} (i.e. convergence rate); b the ratio of the cumulative travel expenses by LICA to

those by GICA until converging to DH (Θ, xk ) = 0.1

who needs the smallest amount of information) amongst all the agents, respectively. This

results show that just 20 % of information are averagely required in the proposed method

after the system converges such that DH (Θ, xk) < 0.1, compared with the GICA-based

method. This also implies that the LICA-based framework has a shorter timescale for each

time instant interval and that its convergence performance in practice would be better. Note

that the convergence comparison result in Fig. 6a is presented in respect to time instants of

each Markov process.

6.3 Robustness in asynchronous environments

This subsection investigates the effects of asynchronous environments in the proposed LICA-

based method for (P1) and compares them with those in the GICA-based method. We consider

a realistic scenario where an asynchronous process is required: agents in some bins cannot

communicate or cannot operate temporarily for some reasons (such bins are called blocked),

and thus other agents in normal bins have to perform their own process without waiting for

them. The proportion of blocked bins to the entire bins is set to be 0%, 10%, 20% and 30%. At

each time instant, the corresponding proportion of bins become randomly blocked. Despite

the absence of information from the blocked bins, we set that agents in normal bins anyway

compute x̄k[ j] in the proposed method (or xk in the GICA-based method). For the proposed

method, the asynchronous implementation in Sect. 5 is built with Algorithm 3. The rest of

scenario setting are the same as those in Sect. 6.2.

Figure 8 illustrates the performance of each method: convergence rate, fraction of transi-

tioning agents, cumulative travel expenses, and the amount of information to communicate.

As the proportion of the blocked bins increases, the GICA-based method tends to have faster

convergence speed, whereas it loses Desired Feature 2 and thus increases cumulative travel-

ling expenses (as shown in Fig. 8a–c, respectively). On the contrary, the LICA-based method

shows a graceful degradation in terms of Desired Feature 2 (as shown in Fig. 8b). A possible
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(a) (b)

(c) (d)

Fig. 8 Performance comparison in communication-disconnected situations: a the convergence error between

the current swarm status and the desired status (the legend applies to all the other subfigures); b the fraction

of agents transitioning between any two bins; c the cumulative travel expenses of all the agents from the

beginning; d the average number of other agents whose information is necessary for each agent

explanation for these results could be that higher feedback gains due to the communication

disconnection induce faster convergence performance in each method than the normal situa-

tion. This effect is dominant for the GICA-based method because it affects the entire agents,

who use global information. However, in the LICA-based framework, the communication

disconnection only locally influences so that its effectiveness is relatively modest. Figure 8d

shows that the proposed framework still only relies on much less information (e.g. averagely

20% after the system reasonably converges), compared with the existing method.

6.4 Effect of local information estimation error

Let us now examine the performance degradation of the proposed method when there exist

estimation errors on local information. In this experiment, agent ai in bin B j is set to locally

perceive nk[l] as ni
k[l], ∀Bl ∈ Nk( j), which is generated from a uniform random distribution

[

(1 − η) · nk[l], (1 + η) · nk[l]
]

, where η is the predefined error level. Then, ni
k[l] is used to

compute x̄k[ j] as in Eq. (4). Apart from that, we use the same scenario setting in Sect. 6.2,

while varying η ∈ {0%, 10%, 20%, 30%, 40%}.
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(a) (b)

Fig. 9 Performance degradation of the proposed framework in the existence of estimation error (from 10

to 40%) on local information nk [l] about neighbour bins: a the convergence behaviour; b the fraction of

transitioning agents

Figure 9 shows that despite the estimation errors, the proposed LICA-based method still

achieves Desired Features 1 and 2 with graceful performance degradation. The uncertainty

induces faster convergence but keeps a higher number of transitioning agents even at the last

phase. A possible reason behind this would be similar to that for the results in Sect. 6.3. In

practice, such faster convergence behaviour caused by uncertainties provide obvious bene-

fits. The increased transitioning agents at the last phase could be addressed by allowing them

to utilise more time to estimate the local information more accurately as the system con-

verges (e.g. by setting variable time instants), considering the fact that the costs of physical

transition between bins are in general much more expensive than those for communication.

Alternatively, we could also utilise global information once in a while and make the agents

forcefully settle down when a certain level of the desired global status is achieved, as similar

to Bandyopadhyay et al. (2017).

6.5 Demonstration of examples II and III

This subsection demonstrates the LICA-based method for (P2) (i.e. Algorithm 4) and the

quorum model (i.e. Algorithm 5). For the former, we consider a scenario where 10, 000

agents and an arena consisting of 10 × 10 bins are given. The arena is as depicted in Fig. 2,

where the agents are allowed to move only one path away within a unit time instant. For

each one-way path, the flux upper limit per time instant is set as 20 agents (i.e. c( j,l) = 20,

∀ j,∀l 	= j). All the agents start from a bin, and the desired swarm distribution is uniform-

randomly generated.

For the latter, we build the quorum model upon the LICA-based method for (P2). Combin-

ing the two may be a good strategy for a user who wants to achieve not only faster convergence

rate but also lower unnecessary transitions after equilibrium, which are regulated by the flux

upper limits. In the same scenario described above, we will demonstrate the combined algo-

rithm that computes Sk and Gk by Algorithm 5 and Pk by Algorithm 4. We set q j = 1.3 and

γ = 30 for (28); α = 1 and ǫξ = 10−9 for (6); and λ = 10−6 for (9).

Figure 10a shows that both approaches make the swarm converge to the desired swarm

distribution. It is observed from Fig. 10b that the number of transitioning agents in the method

for (P2) is restricted because of the upper flux bound during the entire process. Meanwhile, the

quorum-based method very quickly disseminates the agents, who are initially at one bin, over
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(a) (b)

(c)

Fig. 10 Comparison results between the method for (P2) and the quorum-based model: a the convergence

error between the current swarm status and the desired status; b the fraction of agents transitioning between

any two bins; c the maximum number of transitioning agents via each path in the method for (P2) (Case 1:

|A| = 10,000 and c( j,l) = 20, ∀ j, ∀l 	= j ; Case 2: |A| = 100,000 and c( j,l) = 200, ∀ j, ∀l 	= j)

the other bins, and thus the fraction of transitioning agents is very high in the initial phase.

After that, the population fraction drops and remains as low as the resultant transitioning

from the method for (P2).

Figure 10c reports the maximum value amongst the number of transitioning agents via

each (one-way) path. Note that the results are plotted every 10 time steps for clarity. The red

squares indicate the actual result by the method for (P2), while the green triangles indicate the

corresponding probabilistic values (i.e. max∀ j max∀l 	= j nk[ j]Pk[ j, l]). It is shown that the

stochastic policies reflect the given upper bound, even though this bound is often violated in

practice due to the finite-number agents’ randomness. However, the result in the same scenario

with setting |A| = 100,000 and c( j,l) = 200, ∀ j, l 	= j (denoted by Case 2), depicted by

the blue squares and the magenta triangles in Fig. 10c, suggests that such violation can be

mitigated as the number of given agents increases.

6.6 Visualised adaptiveness test

We now consider a scenario in which the robots must be distributed spatially to resemble

a reference image. Every pixel of an area is regarded as a bin. We have na = 2000 agents
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Fig. 11 Visualisation results: 2000 agents are deployed into 100 pixels (bins) to configure images

and nb = 10 × 10 bins, and all the bins are connected as shown in Fig. 2. The scenario

considered is as follows. Initially (i.e. at k = 0), all the agents are randomly distributed over

the area, and they know the desired distribution vector, which is a smile icon. At k = 41,

the inverted-colour icon is given to them as a new desired distribution vector. Then (i.e. at

k = 137), it happens that some agents for the right eye of the smiling face are somehow

unexpectedly eliminated. The disappearance of agents is apparent only to the remaining

neighbouring agents, but not to farther agents. We use the proposed algorithm for (P1) (i.e.

Algorithm 3) and additionally adopt a subroutine whereby agents in zero-desired-density

bins randomly move to one of its closest neighbour bins. Due to this subroutine and the

constraint Θ[ j]Pk[ j, l] = Θ[l]Pk[l, j] in Requirement 3 (i.e. not allowed to move to a zero-

desired-density bin from a positive-desired-density one), all the agents eventually remain in
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the positive-desired-density bins. The rest of the dynamics of system are the same as those

in Sect. 6.2. The visualised results are shown in Fig. 11.

7 Conclusion

In this paper, we propose a LICA(Local Information Consistency Assumption)-based closed-

loop Markov chain framework for probabilistic swarm distribution guidance. To generate

feedback, our framework only requires the agents to employ local information. Consequently,

the agents exhibit reduction in communication, shorter timescales for obtaining new informa-

tion, asynchronous decision-making, and deployability without a priori mission knowledge.

One of the major features of our approach is that, even if the information used is limited, the

agents can converge to a desired density distribution, while ensuring scalability, robustness,

and long-term system efficiency. The numerical experiments reveal that the proposed frame-

work is more robust when arbitrary parts of the inter-agent communication is sporadically

disconnected. We discuss the design requirements for the Markov matrix to hold all these

advantages, and we provide specific implementation examples.

Future work will investigate optimisation of ξ̄k[ j], which can mitigate the trade-off

between convergence rate and residual error. In addition, it is expected that the commu-

nication cost can be further reduced by incorporating a vision-based local density estimation

(Saleh et al. 2015). Another natural progression would be to extend this study to accom-

modate heterogeneous agents as shown in Prorok et al. (2017), which addressed how to

distribute different agents having various multiple traits into a desired trait distribution rather

than a desired population density. It would be also interesting to compare this Markov chain

framework with others (e.g. a game-theoretical approach in Jang et al. (2018b)). Some results

were preliminarily shown in Jang et al. (2018), but will include real-robot experiments using

MONA robots (Arvin et al. 2018) or Kilobots (Rubenstein et al. 2014).
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Appendix

A. Proof for Theorem 1

Definition 10 (Irreducible) A matrix is reducible if and only if its associated digraph is not

strongly connected. A matrix that is not reducible is irreducible.

Definition 11 (Primitive) A primitive matrix is a square non-negative matrix M such that

for every i , j there exists k > 0 such that Mk[i, j] > 0.

Definition 12 (Regular) A regular matrix is a stochastic matrix such that all the entries of

some power of the matrix are positive.
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Definition 13 (Seneta 1981, pp. 92, 149) (Asymptotic Homogeneity) “A sequence of stochas-

tic matrices Mk ∈ M
n×n , k ≥ k0, is said to be asymptotically homogeneous (with respect

to d) if there exists a row-stochastic vector d ∈ P
n such that limk→∞ dMk = d .” (Bandy-

opadhyay et al. 2017)

Definition 14 (Seneta 1981, pp. 92, 149) (Strong Ergodicity) “The forward matrix product

Uk0,k := Mk0Mk0+1 . . . Mk−1, formed from a sequence of stochastic matrices Mr ∈ P
n×n ,

r ≥ k0, is said to be strongly ergodic if for each j, l, r we get limr→∞ Uk0,r [ j, l] = v[l]”,

where v ∈ P
n is a row-stochastic vector. Here, v is called its unique limit vector (i.e.

limr→∞ Uk0,r = 1⊤v). (Bandyopadhyay et al. 2017)

Lemma 6 Given the requirements (R1)–(R4) are satisfied, Mk in Eq. (10) has the following

properties:

1. row stochastic;

2. irreducible;

3. all diagonal elements are positive, and all other elements are non-negative;

4. there is a positive lower bound κ such that 0 < κ ≤ min+
j,l Mk[ j, l] (note that min+

refers to the minimum of the positive elements);

5. asymptotically homogeneous with respect to Θ .

In addition, Uk0,k in Eq. (11) has the following properties:

6. irreducible;

7. primitive.

Proof This lemma can be proved by similarly following the mathematical development for

Bandyopadhyay (2017, Theorem 4). Mk is row stochastic because Mk · 1⊤ = (I − Wk)Pk ·
1⊤ + Wk Sk · 1⊤ = (I − Wk) · 1⊤ + Wk · 1⊤ = 1⊤. Pk is irreducible and ωk[ j] is always

less than 1; thus, Mk is also irreducible (i.e. Mk[ j, l] > 0 if Pk[ j, l] > 0). The property 3 is

true because diag(I − Wk) > 0, Wk ≥ 0, and Pk is also a non-negative matrix such that its

diagonal elements are positive. The property 4 is implied by either the property 2 or 3. From

the definition of Wk [i.e. Eq. (9)], it follows that limk→∞ Wk = 0 because of exp(−λk), and

thereby limk→∞ Mk = limk→∞ Pk . Hence, limk→∞ Θ Mk = limk→∞ Θ Pk = Θ , and the

property 5 is valid.

Let us now turn to Uk0,k . If Mr [ j, l] > 0 for some r ∈ {k0, . . . , k − 1} and j, l ∈
{1, . . . , nb}, then the corresponding element Uk0,k[ j, l] > 0 (Bandyopadhyay et al. 2017,

Theorem 4). Thus, due to the property 2, Uk0,k is irreducible as well. Besides, it follows from

(Horn and Johnson 2012, Lemma 8.5.4, p. 541) that Uk0,k is primitive: “if a square matrix

is irreducible, non-negative and all its main diagonal entries are positive, then the matrix is

primitive”. ⊓⊔

Proof for Theorem 1 Theorem 1 can be proved by following similar steps in proving (Bandy-

opadhyay et al. 2017, Theorem 4). The claim in the thorem is true if limk→∞ xk =
xk0 · limk→∞ Uk0,k = xk0 · 1⊤Θ = Θ . In order for that, the matrix product Uk0,k should (i)

be strongly ergodic and (ii) have Θ as its unique limit vector, i.e. limk→∞ Uk0,k = 1⊤Θ . We

will show that the two conditions are valid under the assumption that (R1)–(R4) are satisfied.

From Lemma 6, we found that (a) Uk0,k is primitive (thus, regular); (b) there is a positive

lower bound κ such that 0 < κ ≤ min+
j,l Mk[ j, l], ∀k; and (c) Mk is asymptotically homo-

geneous. Then, it follows from (Seneta 1981, Theorem 4.15, p. 150) that Uk0,k is strongly

ergodic with respect to a certain vector v ∈ P
nb , which fulfils the condition (i).

Let ek ∈ P
nb be the unique stationary distribution vector corresponding to Mk (i.e. ek Mk =

ek). Due to the prior condition (b) and the fact that (d) Mk is irreducible for ∀k ≥ k0, it
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follows from (Seneta 1981, Theorem 4.12, p. 149) that the asymptotical homogeneity of

Mk with respect to Θ (i.e. limk→∞ Θ Mk = Θ), given by Lemma 6, is equivalent to both

limk→∞ ek = e, where e is a limit vector, and Θ = e. According to Seneta (1981, Corollary,

p. 150), under the prior conditions (b) and (d) and if Uk0,k is strongly ergodic with its unique

limit vector v, then v = e. Hence, it turns out that the unique limit vector of Uk0,k is v = e = Θ

(i.e., limk→∞ Uk0,k = 1⊤Θ). Thereby, the condition (ii) is also fulfilled. ⊓⊔

B. Proof for Corollary 3

Proof for Corollary 3 We can prove this by following the proof of Bandyopadhyay (2017,

Corollary 1). Suppose that the problem is only subject to (R4) and (14), without (R1)–(R3)

and (R5). Then, the off-diagonal elements of an optimal matrix should be their corresponding

lower bounds in (14) if Ak[ j, l] = 1. The diagonal elements of the matrix do not affect the

objective function due to the fact that Ek[ j, j] = 0,∀ j . Accordingly, the matrix Pk that

holds (16) and (17) is also an optimal matrix for the simplified problem.

Let us now consider (R1)–(R3) and (R5). Since fξ (ξ̄k[ j], ξ̄k[l]), and fE (Ek[ j, l]) are

upper-bounded by 1 and
∑

∀l 	= j Θ[l] < 1, Pk[ j, j] in (17) is always positive for all j ,

which fulfils (R2). It also follows that (R1) is satisfied by Eq. (17). From Eq. (16), it

holds that Θ[ j]Pk[ j, l] = Θ[l]Pk[l, j], complying with (R3). Since (R1)–(R4) are satis-

fied, the Markov process is converging to a desired distribution due to Theorem 1. Noting

that fξ (ξ̄k[ j], ξ̄k[l]) diminishes as ξ̄k gets close to 0 (i.e. x̄k → Θ̄), (R5) is also fulfilled by

Eqs. (16) and (17). Hence, Pk is the optimal solution for problem (P1). ⊓⊔
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