
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 354523, 12 pages
http://dx.doi.org/10.1155/2013/354523

Review Article

Bio-Inspired Optimization of Sustainable
Energy Systems: A Review

Yu-Jun Zheng,1 Sheng-Yong Chen,1 Yao Lin,2 and Wan-Liang Wang1

1 College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China
2College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China

Correspondence should be addressed to Sheng-Yong Chen; sy@ieee.org

Received 12 December 2012; Accepted 17 January 2013

Academic Editor: Maurizio Carlini

Copyright © 2013 Yu-Jun Zheng et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sustainable energy development always involves complex optimization problems of design, planning, and control, which are o
en
computationally di�cult for conventional optimization methods. Fortunately, the continuous advances in arti�cial intelligence
have resulted in an increasing number of heuristic optimization methods for eectively handling those complicated problems.
Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies
have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent
advances in bio-inspired optimization methods, including arti�cial neural networks, evolutionary algorithms, swarm intelligence,
and their hybridizations, which are applied to the �eld of sustainable energy development. Literature reviewed in this paper shows
the current state of the art and discusses the potential future research trends.

1. Introduction

	e demand for energy supply is increasing rapidly in recent
years and will probably continue to grow in the future. 	e
realization that fossil fuel resources are becoming scarce and
that climate change is related to carbon emissions has stimu-
lated interest in sustainable energy development [1]. In gen-
eral, sustainable energy development strategies involve three
major technological changes: energy savings on the demand
side, e�ciency improvements in the energy production, and
replacement of fossil fuels by various sources of renewable
energy [2]. In particular, due to its multifold advantages
including inexhaustibility, safety, decrease in external energy
dependence, decrease in impact of electricity production
and transformation, increase in the level of services for the
rural population, and so forth [3], renewable energy is now
considered an important resource around the world and
regarded as a key component in obtaining a sustainable
development of our society.

	e implementation of sustainable energy development
strategies involves a wide range of design, planning, and
control optimization problems. Various conventional opti-
mizationmethods, such as linear programming [4–6], integer

programming [7, 8], mixed integer linear programming [9–
12], nonlinear programming [13–16], dynamic programming
(DP) [17–20], constrained programming [21, 22], and so
forth, have been applied for solving these problems. Never-
theless, current optimization problems in sustainable energy
systems become more and more complex, especially when
they include the integration of renewable sources in coherent
energy systems. 	is is because most of such problems
are nonlinear, nonconvex, with multiple local optima, and
included in the category of NP-hard problems [23]. In conse-
quence, those conventional methods might need exponential
computation time in the worst case to obtain the optimum,
which leads to computation time that is too high for practical
purposes [24]. In recent years,modern heuristic optimization
techniques, which are stochastic search methods inspired
by the concepts and principles of arti�cial intelligence, have
gained popularity in the optimization of sustainable energy
systems.

In this paper, we give an overview of the latest research
advances in bio-inspired solution methods for sustainable
energy development. We particularly focus on the bio-
inspired optimization algorithms that have been applied to
the design, planning, and control problems in the �eld of
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renewable and sustainable energy systems.We roughly group
those methods into three categories, which are arti�cial
neural networks (ANNs), evolutionary algorithms (EAs),
and swarm intelligence. Besides, we also describe the recent
work about the hybridization of individual methods. 	ese
heuristic methods usually do not require deep mathematical
knowledge and have been demonstrated to be quite useful
and e�cient in optimization search for complex optimization
problems in science and engineering. We believe that this
paper can help researchers to gain knowledge about the
major developments emerged throughout the years and �nd
valuable approaches that can be applied in the practice of
implementing sustainable energy systems.

	e rest of the paper is synthesized as follows: Section 2
reviews the application of ANNs in sustainable energy devel-
opment, Section 3 summarizes the work about EAs applied to
dierent types of optimization problems in energy, Section 4
presents the recent advances in swarm-based methods used
in the �eld, Section 5 introduces the hybrid techniques
combining two or more of above methods, and Section 6
concludes with discussion.

2. Artificial Neural Networks

An ANN is a collection of neuron-like processing units with
weighted connections between the units, which is inspired
by our present understanding of biological nervous systems.
Roughly speaking, ANNs use processing elements connected
by links of variable weights to form a black box representation
of systems [25]. ANNs can be trained by adjusting theweights
so as to be able to predict or classify new patterns, and they
provide some of the human characteristics of problem solving
that are di�cult to simulate using other computational tech-
nologies. Advantages of ANN include their high tolerance of
noisy data, their ability to process patterns onwhich they have
not been trained, as well as that they can be used without
much preliminary knowledge about the problem domain.
However, ANNs typically involve long training times and
have been criticized for their poor interpretability [26].

ANNs are popular for prediction and forecasting nonlin-
ear physical series (such as wind [27] and water lever [28])
which are beyond the capability of linear predictors such as
autoregressive (AR), moving average (MA), and autoregres-
sive moving average (ARMA), [29–31]. Since 1990s, various
studies have been reported on the applications of ANN
in predicting electric loads and energy demands. An early
work of Kawashima [32] developed anANNbackpropagation
model with three-phase annealing for the �rst building
energy prediction competition held by the American Society
of Heating, Refrigerating- and Air-Conditioning Engineers
in 1993. Islam et al. [33] proposed an ANN-based weather-
load and weather-energy models, where a set of weather
and other variables are identi�ed for both models together
with their correlations and contribution to the forecasted
variables. 	ey applied the models to historical energy, load,
and weather data available for theMuscat power system from
1986 to 1990, and the forecast results for 1991-1992 show that
monthly electric energy and load can be predicted within

a maximum error of 6% and 10%. Al-Shehri [34] used an
ANN model for forecasting the residential electrical energy
in the Eastern Province of Saudi Arabia, the forecasting
result of which is shown to be closer to the real data than
that predicted by the polynomial �t model. Azadeh et al.
[35] developed a simulated-based ANN and applied it in
forecasting monthly electrical energy consumption in Iran
from March 1994 to February 2005 (131 months), and the
result shows that the ANN model always provides the best
solutions and estimation in comparison with other models
such as time series.

ANNs have also been applied in midterm and long-term
energy forecasting in dierent industrial sectors, areas, and
countries and demonstrated their superiorities in compar-
ison with conventional prediction models [36–41]. In [42]
Ermis et al. presented an ANNmodel which is trained based
on world energy consumption data from 1965 to 2004 and
applied for forecasting world green energy consumption to
the year 2050. It is estimated that world green energy and
natural gas consumption will continue increasing a
er 2050,
while world oil and coal consumption are expected to remain
relatively stable a
er 2025 and 2045, respectively.

In recent years, ANN-basedmodels have also beenwidely
used in design and implementation of dierent kinds of
renewable energy systems. For example, in the design of solar
energy systems the estimation and calculation of radiation
data are very important. Bosch et al. [43] presented an ANN
approach for calculating solar radiation levels over complex
mountain terrains using data from only one radiometric
station. Cao and Lin [44] proposed a diagonal recurrent
wavelet neural network which uses historical information of
cloud cover to sample data sets for network training and
applied their approach in hourly irradiance forecasting in
Shanghai, China. Zervas et al. [45] developed an ANN-
based prediction model of global solar irradiance distri-
bution on horizontal surfaces, which has been applied to
the meteorological database of NTUA, Zografou Campus,
Athens.

In the same manner, the prediction of water level is
fundamental for ocean energy generation. Huang et al. [46]
developed an ANN for water level predictions, which has
been applied to coastal inlets taking into account long-term
water level observations. Kazeminezhad et al. [47] studied
an ANN-based fuzzy inference system for predicting wave
parameters, with an application to the data set comprising of
fetch-limited wave data and over water wind data gathered
from deep-water location in Lake Ontario.

	e performance of photovoltaic system heavily depends
on the meteorological conditions, and sizing represents an
important part of photovoltaic systems design, that is, the
optimal selection of the number of solar, cell panels, the size of
the storage battery, and the size of wind generator to be used
for certain hybrid applications [48]. ANNs have the capability
to model complex, nonlinear processes without having to
assume the formof the relationship between input and output
variables, and thus ANN-based models, including adaptive
ANN [49, 50], recurrent ANN [51], radial basis function
network (RBFN) [52], have been successfully applied for
sizing of photovoltaic systems.
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3. Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic searchmethods
inspired by the principles of natural biological evolution for
computationally di�cult problems. 	ey are very suitable
for complex engineering optimization problems which may
be multimodal, nondierentiable, or discontinuous and thus
cannot be solved by conventional gradient-based methods.
In general, An EA simultaneously evolves a population of
possible solutions and also returns a population of solutions.
Typical EAs include genetic algorithms (GAs) [53], evolution-
ary programming (EP) [54], evolution strategies (ES) [55],
dierential evolution (DE) [56], and biogeography-based
optimization (BBO) [57]. 	e advantages of EAs include
their relative simplicity of implementation, inherent parallel
architecture, and scalability to high-dimensional solution
spaces.

Moreover, in real-world applications there are a large
number of multiobjective optimization problems, that is,
problems requiring the simultaneous optimization of several
objectives which are o
en con�icted. For most of such
problems, there is no single optimal solution and thus a
solution method should search for a set of nondominated
(Pareto optimal) solutions, that is, all the solutions such that
there exists no other individual better in all the objectives.
EAs are capable of �nding several members of the Pareto
optimal set in a single run of the algorithm, instead of
having to perform a series of separate runs as in the case
of the traditional mathematical programming techniques
[58] and thus are very suitable for tackling with complex
multiobjective optimization problems.

3.1. Genetic Algorithms. Genetic algorithms (GAs) are of the
famous evolutionary algorithms which simulate the Dar-
winian principle of natural selection and the survival of the
�ttest in optimization [53]. AGA typically works with a �xed-
size population of solutions and uses three genetic operations,
namely selection, crossover, and mutation, to modify the
solutions chosen from the current generation and select the
most appropriate ospring to pass on to the next generations.

A number of researches have been reported on the
application of GA in the optimal design and operation of
sustainable energy systems. For wind energy systems, Li et al.
[59] used amultilevel GA to solve the optimal design problem
of integrating the number of actuators, the con�guration of
the actuators, and the active control algorithms in buildings
excited by strong wind force. Li et al. [60] employed a GA
to optimize the ranges of gearbox ratios and power ratings
of multihybrid permanent-magnet wind generator systems.
Grady et al. [61] used a GA to determine the optimal place-
ment of wind turbines for maximum production capacity
while limiting the number of turbines installed and the
acreage of land occupied by each wind farm. Emami and
Noghreh [62] proposed a GA with a new coding and a new
objective function with adjustable coe�cients for the similar
problem, and their algorithm shows better performance on
the optimal control of the cost, power, and e�ciency of the
wind farm. For solar energy systems, Varun and Siddhartha
[63] proposed a GA to optimize system parameters in order

to maximize the thermal performance of �at plate solar air
heaters. Zagrouba et al. [64] adapted a GA to identify the
electrical parameters of photovoltaic solar cells and modules
to determine themaximumpower point from the illuminated
current-voltage characteristic. GAs have also been used in
geothermal systems [65] and hybrid photovoltaic systems
[66–70].

3.2. Evolutionary Programming andEvolution Strategies. Evo-
lutionary Programming (EP) was devised in order to evolve
�nite state machines for the prediction of events on the basis
of former observations and has been demonstrated useful for
searching the optimum of nonlinear functions [71]. Cau and
Kaye [72] proposed a constructive EP approach to minimize
the cost of operating a power systemwithmultiple distributed
energy storage resources. 	eir approach combines DP and
EP by evolving piecewise linear convex cost-to-go functions
and thus decomposes themultistage scheduling problem into
smaller one-stage sub-problems which are easy to cope with.
Fong et al. [73] developed a simulation-EP coupling method
to solve the discrete, nonlinear, and highly constrained
optimization problems related to energy management of
heating, ventilating, and air-conditioning (HVAC) systems.
	e application of the method to a local HVAC installation
project achieved a saving potential of about 7% as compared
to the existing operational settings, without any extra cost.
In [74] MacGill presented a dual EP approach integrating
with so
ware agents for power system resources to coevolve
optimal operational behaviors over repeated power system
simulations. 	e proposed tool was successfully applied to a
real-world problem exploring the potential operational syn-
ergies between signi�cant PV penetrations and distributed
energy storage options including controllable loads.

Evolution strategies (ES) are a class of general optimiza-
tion methods which evolve a population of solutions by
means of variation and selection. Original ES uses amutation
operator that produces a single descendent from a given
ancestor, denominated ES-(1 + 1), and was progressively
generalized to ES-(�+�), that is, several ancestors (� > 1) and
descendents (� > 1) in each generation [75]. In [76] Chang
used an ES approach to solve optimal chiller loading problem,
which takes the chilled water supply temperature as the
variable to be determined for the decoupled air-conditioning
system.	e result shows, the approach outperforms both the
Lagrangian method and the GA method. Considering the
optimal selection and sizing of distributed energy resources
which can be formulated as a nonlinear mixed-integer min-
imization problem, Logenthiran et al. [77] used ES for the
minimization of capital and annual operational cost of DER
under a variety of system and unit constraints. 	eir method
was applied to design integrated microgrids for an intelligent
energy distribution system project.

3.3. Di�erential Evolution. Dierential evolution (DE)
approach combines simple arithmetic operators with the
classical operators of crossover, mutation, and selection
to evolve a randomly generated starting population to
a �nal solution. It is similar to a (� + �) ES, but in DE
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the mutation is not done via some separately de�ned
probability density function [78]. Chakraborty et al.
[79] presented a fuzzy DE method for solving thermal
unit commitment problem integrated with solar energy
system, where the solar radiation, forecasted load demand
and associated constraints are formulated as fuzzy sets
considering the error. Slimani and Bouktir [80] developed
a DE method to solve the optimal power �ow problem,
whose objective function is the minimization of the cost of
the thermal and the wind generators with dierent sizes.
	e method decomposes the optimization constraints of the
power system into active constraints manipulated directly by
DE, and passive constraints maintained in their so
 limits
using a conventional constraint load �ow.

dos Santos Coelho et al. [81] developed a cultural DE
algorithm for optimizing the economic dispatch of electrical
energy using thermal generators and validated their approach
on a test system consisting of 13 thermal generators whose
nonsmooth fuel cost function takes into account the valve-
point loading eects. Suzuki et al. [82] studied a large-scale
mixed-integer nonlinear problem for generating optimal
operational planning for energy plants and developed an �
constrained DE algorithm to eectively solve the problem
without much parameters tuning eort. Hejazi et al. [83]
developed a DE algorithm for optimal allocation of energy
and spinning reserve, taking all security and power systems
constraints in steady state and system credible contingencies
into consideration. Lee et al. [84] conducted a compara-
tive study of DE, GA, PSO, and LP methods for solving
the optimal chiller loading problem for reducing energy
consumption, and the result shows that the DE algorithm
achieves the best result. Peng et al. [85] considered a problem
in the design of the Earth-Moon low-energy transfer to �nd
the patch point of the unstablemanifold of the Lyapunov orbit
around Sun-Earth L2 and the stablemanifold of the Lyapunov
orbit aroundEarth-MoonL2.	eydesigned an improved dif-
ferential evolution algorithmwhich incorporates the uniform
design technology and the self-adaptive parameter control
method into standard dierential evolution to accelerate
its convergence speed and improve the stability, and thus
eectively solve the problem.

3.4. Multiobjective Evolutionary Algorithms. Multiobjective
evolutionary algorithms (MOEAs) have receivedmuch inter-
est in recent years. A number of metaheuristic algorithms,
such as the nondominated sorting genetic algorithm NSGA
[86] and the NSGA-II [87], the strength Pareto evolutionary
algorithm (SPEA) [88] and the SPEA2 [89], the Pareto
archived evolution strategy (PAES) [90], the Pareto dier-
ential evolution algorithm (PDE) [91], the nondominated
sorting dierential evolution (NSDE) [92], and so forth have
gained great success in solving multiobjective optimization
problems [93].

Benini and Toolo [94] presented an MOEA for the
design of stall-regulated horizontal-axis wind turbines, the
aim of which is to achieve the best trade-o performance
between the total energy production per squaremeter ofwind
park and cost. 	eir method can optimize the geometrical
parameters of the rotor con�guration of wind turbines,

achieving the best trade-o performance between the two
objectives. Zhao et al. [95] employed a GA whose input
parameters are the main components of a wind farm and
key technical speci�cations and whose output is an optimal
electrical system design of the wind farm which is optimized
in terms of both production cost and system reliability. Kusiak
et al. [96] proposed an MOEA for evaluating wind turbine
performance, where the objectives include the maximization
of the wind power output and the minimization of the vibra-
tion of the drive train and of the tower. In [97] Kusiak and
Song used theMOEA for optimizing wind turbine placement
based on wind distribution, including the selection the best
turbine combination from a given list of available turbines.

Bernal-Agust́ın et al. [98] applied the SPEA to the design
of a photovoltaic-wind-diesel system, where the objectives
include the minimization of both the total cost throughout
the useful life of the installation and the pollutant emissions.
	ey later applied the algorithm to an extension of the
problem, which adds an objective of the unmet load in
the system [99]. Ould Bilal [100] proposed a multiobjective
GA for minimizing the annualized cost system and the loss
of power supply probability of a hybrid solar-wind-battery
system. Montoya et al. [101] combined PAES with simulated
annealing (SA) and tabu search (TS) to minimize voltage
deviations and power losses in power networks. 	iaux et al.
[102] applied NSGA-II to optimize stand-alone photovoltaic
systems by reducing the gross energy requirement and mini-
mizing the storage capacity. In [103] Rao and Peng considered
a multiobjective optimal model of dispatch of energy-saving
and emission reduction generation in the power system
and developed a multiobjective DE algorithm with niche
strategy for improving the crowingmechanism in the process
of Pareto nondominated sorting operation. 	e experiment
shows that theirmethod can achieve better result thanNSGA-
II and NSDE.

4. Swarm Intelligence

	e expression “swarm intelligence” was originally used in
the context of cellular robotic systems to describe the self-
organization of simple mechanical agents through nearest-
neighbor interaction [104]. Bonabeau et al. [105] extended
the de�nition to include “any attempt to design algorithms or
distributed problem-solving devices inspired by the collective
behavior of social insect colonies and other animal societies.”
Since the 1990s, a number of swarm-based algorithms,
including particle swarm optimization (PSO) [106], ant
colony optimization (ACO) [107], arti�cial bee algorithms
[108, 109], arti�cial immune systems (AIS) [110] have been
proposed for di�cult optimization problems especially with
large continuous or combinatorial search spaces.

4.1. Particle Swarm Optimization. PSO is another popu-
lation-based global optimization technique that enables a
number of individual solutions, called particles, to move
through a hyperdimensional search space to search for the
optimum. Each particle has a position vector and a velocity
vector, which are adjusted at iterations by learning from a
local best found by the particle itself and a current global
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best found by thewhole swarm. Empirical studies have shown
that PSO has a high e�ciency in convergence to desirable
optima and performs better than GA and other EAs onmany
problems [111].

AlRashidi and EL-Naggar [112] employed a PSO algo-
rithm for estimating annual peak load forecasting in an
electrical power system, the aim of which is to minimize
the error associated with the estimated model parameters.
	eir approach was validated on actual recorded data from
Kuwaiti and Egyptian networks. Niknam and Firouzi [113]
developed a PSO algorithm combined with simplex search,
for estimating load and renewable energy source output on
the power systems, and their comparative experiment show
that the PSO performs better than several EAs and other
swarm-based algorithms.

Amjady and Soleymanpour [114] developed a modi�ed
adaptive PSO for daily hydrothermal generation scheduling,
which is a complicated nonlinear, nonconvex, and nons-
mooth optimization problem with discontinuous solution
space. As some other adaptive PSOs [115, 116], their method
dynamically changes the inertia weight and acceleration
coe�cients of the algorithm to increase activities of particles
to explore broad space. Lee [117] applied PSO to solve
short-term hydroelectric generation scheduling of a power
system with wind turbine generators. Kongnam and Nuch-
prayoon [118] used PSO for the control problem of a wind
turbine, which involves the determination of rotor speed
and tip-speed ratio to maximize power and energy capture
from the wind. Khanmohammadi et al. [119] developed a
method based on PSO and Nelder-Mead algorithms for
determining the optimal unit commitment (startups and
shutdowns scheduling) of hydropower plants. López et al.
[120] presented a binary PSO-based method to accomplish
optimal location of biomass-fuelled systems for distributed
power generation with forest residues as biomass source,
and the results outperformed those obtained by a GA
when maximizing a pro�tability index taking into account
technical constraints. In [121] the authors also applied a
PSO algorithm for the optimal location and supply area
for biomass-based power plants. 	ere are also a number
of researches reported on the application of PSO in the
design and control of hybrid photovoltaic systems [122–
126].

Economic dispatch problems, the main aim of which is to
schedule the committed generating units output so as tomeet
the required load demand at minimum cost satisfying all unit
and system operational constraints, typically have nonlinear,
nonconvex type objective function with intense equality and
inequality constraints. Mahor et al. [127] presented a yearly
(2003–2008) review of work of application of PSO to solve the
various economic dispatch problems.	e algorithms include
linearly varying inertia weight PSO [128, 129], PSO with
constriction factor and inertia weight [130, 131], PSO with
linearly varying inertia weight with constriction factor [132],
chaotic PSO [133–135], and multiobjective PSO [136–139].
It was suggested that PSO algorithms (in particular those
with time varying control parameters) can give an improved
results within less computational time in comparison to
conventionalmethods, but still further improvements in PSO

algorithms are required, especially for real-time scheduling
problems.

4.2. Ant Colony Optimization. Ant colony optimization
(ACO) algorithms mimic the behavior of real ants liv-
ing in colonies that communicate with each other using
pheromones in order to accomplish complex tasks such as
establishing a shortest path from the nest to food sources
[107]. Li et al. [140] applied an ACO algorithm to the optimal
design of solar energy dynamic power system in space
station, with the aim to minimize the launching mass of the
system subject to a set of constraints on parameters including
pressure, temperature, compression coe�cient, numbers and
diameter of heat exchangers, height of recycling refrigerant,
and so forth. Considering the optimal sizing of the design
of standalone hybrid wind/photovoltaic power systems, Xu et
al. [141] used ACO to minimize the total capital cost, subject
to the constraint of the loss of power supply probability
calculated by simulation. Foong et al. [142] considered a
power plant maintenance scheduling optimization formula-
tion incorporating the options of shortening themaintenance
duration and/or deferringmaintenance tasks in the search for
practical maintenance schedules and developed an improve
ACO algorithm for solving the problem. Warner and Vogel
[143] considered planning of an energy supply network by
simultaneously choosing the plants and the optimal net-
work and implemented an ACO algorithm for the problem.
See et al. [144] used ACO for determining optimal parameter
values to the control model of energy extraction and thus
improving the performance of wave energy converters as well
as their long-term economic value.

Toksari [145] proposed an ACO electricity energy estima-
tion model for forecasting electricity energy generation and
demand, taking population, gross domestic product (GDP),
import and export into consideration. He found that the
modelwith quadratic equations can provide better �t solution
due to the �uctuations of the economic indicators. 	e pro-
posed model was applied to indicate Turkey’s net electricity
energy generation and demand until 2025. Baskan et al.
[146] used ACO for estimating the transport energy demand
of Turkey using gross domestic product, population, and
vehicle-km. It is also expected that the work will be helpful
in developing highly applicable and productive planning for
transport energy policies.

4.3. Arti
cial Bee Algorithms. Arti�cial bee algorithms simu-
late the intelligent foraging behavior of a honeybee swarm.
Two most popular algorithms are the arti�cial bee colony
(ABC) algorithm and the honey bee mating optimization
(HBMO) algorithm [147]. Niknam et al. [148] presented a
multiobjective HBMO algorithm for the siting and sizing
of renewable electricity generators, in order to optimize the
placement of renewable electricity generators by considering
objective functions including losses, costs of electrical gener-
ation, and voltage deviation. In [149] Niknam et al. also pro-
posed an improve a HBMO algorithm for economic dispatch
in power systems, with the aim to getmaximumusable power
using minimum resources. Abu-Mouti and El-Hawary [150]
considered a dynamic economic dispatch problem, whose
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aim is to determine the optimal power outputs of online
generating units in order to meet the load demand subject to
satisfying various operational constraints over �nite dispatch
periods, and they applied an ABC algorithm to solve the
problem.

Vera et al. [151] proposed a binary honey bee foraging
(HBF) swarm approach for searching the optimal location,
biomass supply area, and power plant size that oer the best
pro�tability for investor. Experimental results show that the
HBF approach method outperforms PSO and GA. Hong
[152] presented an electric load forecasting model based on
a chaotic ABC algorithm combined with the seasonal recur-
rent support vector regression model, and the experiments
indicated that the model can provide a promising forecasting
performance for electric load.

4.4. Arti
cial Immune System (AIS). Inspired by the theo-
retical immunology, observed immune functions, principles,
and models, AIS stimulates the adaptive immune system of
a living creature to unravel the various complexities in real-
world engineering optimization problems. Abdul Rahman
et al. [153] developed an AIS algorithm for the economic
dispatch problem, which uses the total generation cost as the
objective function.	rough genetic evolution, the antibodies
with high a�nity measure are produced and become the
solution, and the algorithm converges within an acceptable
execution time and highly optimal solution for economic
dispatchwithminimumgeneration cost. Coelho andMariani
[154] coped with the problem by using a chaotic arti�cial
immune network approach, which has been demonstrated by
the experiments to be an eective alternative to schedule the
committed generating unit outputs to meet the required load
demand at minimum operating cost while satisfying system
constraints. Recently, Arsalani and Seddighizadeh [155] used
an AIS algorithm to minimize the deviation of bus voltage
from its nominal value as well as the loss of energy in a
power system. 	e main advantage of the algorithm is that it
prevents many times repetition of similar solutions, and the
result shows that the algorithm can achieve a solution that
meets a level of preferences better than that required although
the threshold is determined by means of fuzzy logic to re�ect
the imprecise nature of optimization objectives.

5. Hybrid Methods

By exploiting the advantages and disadvantages of two or
more solution methods, we have a chance to obtain a
powerful approach that is much more competitive than any
individualmethod. Research anddevelopment onhybrid bio-
inspired methods in sustainable energy systems have grown
dramatically since the late 1990s.

Mellit and Kalogirou [156] studied the combination of
GA and ANN for optimal sizing of stand-alone photovoltaic
systems. Firstly the GA was used to optimize the sizing
parameters of sites, and then the ANNwas used to predict the
optimal parameters in remote areas. Mellit later developed
a hybrid model combining adaptive-network-based fuzzy
inference system (ANFIS) and GA and demonstrated that

the model with ANFIS presents more accurate results [157].
Chang and Ko [158] designed a hybrid heuristic method
which combines PSO with nonlinear time-varying evolution
and ANN in order to determine the tilt angle of photovoltaic
modules with the aim of maximizing the electrical energy
output of the modules.

Li et al. [159] proposed amethod combiningAIS andPSO,
for optimal load distribution among cascade hydropower sta-
tions.	eir hybridmethod involves the immune information
processing mechanism into PSO and thus improves the abil-
ity to �nd the globally excellent result and the convergence
speedwith its special concentration selectionmechanism and
immune vaccination. Yang et al. [160] combinedGAandABC
into a bee evolutionary genetic algorithm (BEGA), which has
characteristics of higher precision and faster convergence rate
and has been eectively applied to a problem of minimizing
the energy consumption of central air-conditioning system
without lowering the degree of comfort. 	e test on a
common load distribution case shows that the hybridmethod
can achieve an energy-saving rate at 25.1%.

Kıran et al. [161] proposed a hybrid method of PSO
and ACO for estimating energy demand, PSO for solving
continuous optimization part and ACO for discrete part.
	e experiments demonstrated that the hybrid method
outperforms both the individual PSO and ACO. In [162]
Ghanbari et al. combined GA and ACO to model and
simulate �uctuations of energy demand under the in�uence
of related factors. Firstly the GA is used for generating data
base of the expert system, and then the ACO is used for
learning linguistic fuzzy rules such that degree of cooperation
between data base and rule base increases. Results showed
that the method can provide more accurate-stable results
than ANFIS- and ANN-based approaches.

6. Discussion and Conclusion

We have summarized the recent research advances in bio-
inspired solutions applied to the design, control, and imple-
mentation of sustainable energy systems. Typical illustrations
are addressed for ANNs, EAs, swarm-based algorithms, and
their hybridizations. Representativeworks are summarized to
help readers have a general overview of the state-of-the-art
and easily refer suitable methods in practical solutions.

	e �rst �nding of this paper is that the number of
research papers on bioinspired optimization algorithms on
sustainable energy problems has increased dramatically since
1990s. A large percent of early workwasGA related. However,
in recent years, DE has become more popular in the category
of EAs, and swarm-based methods have gained more and
more attentions of the researchers and practitioners. In the
last three years, we found that PSO algorithms have become
one of themost widely usedmethods in the �eld of renewable
and sustainable energy development.

In general, none of the individualmethods could perform
better than all the other methods on all kinds of problems,
suggesting that customized methods need to be carefully
chosen or designed according to the respective problem. But
researchers and practitioners can learn from the experiences
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of early researchers. For example, on most problems of unit
sizing of stand-alone hybrid energy systems, PSO typically
outperforms GAs [163], mainly because PSO algorithms are
more suitable for high-dimensional optimization problems,
and improved versions of PSO are less sensitive to multiple
local optima than GAs.

With the increasing importance and complexity of energy
systems, we are facing the challenges to promote the perfor-
mance, reliability, and scalability of solution methods [164,
165]. In consequence, it can be anticipated that future research
will continuously put great emphasis on the hybridization
of bio-inspired methods. In addition, more and more real-
world problems in sustainable energy consider more than
one objective. It can be expected that multiobjective bio-
inspired optimization algorithms and parallel processing will
be promising research areas in this �eld [166]. Moreover,
current studies on multiobjective algorithms combing more
than one metaheuristics are still rare, and we think that this
can be a valuable direction for the researchers.

Today’s new computational paradigms, such as quantum
computing [167], DNA computing [168], and fractal comput-
ing [169–172], provide valuable inspiration for creating new
heuristics for extremely di�cult problems. 	us, the exten-
sions of current bio-inspired methods based on these new
paradigms are expected to achieve dramatic improvement on
computational performance. For example, quantum-inspired
EAs are regarded as one of the three main research areas
related to the complex interaction between quantum comput-
ing and EAs [173]. In the aspect of quantum computing, if
applying ANNs, it is worth considering time series models in
that aspect as that discussed byBakhoumandToma [174, 175].
We believe that the fruits of these researches are continuously
becomingnew technological solutions to newopenproblems,
and the full potential is far from being reached.

Acknowledgments

	is work was supported by the National Natural
Science Foundation of China (61105073, 61173096, and
61103140), Doctoral Fund of Ministry of Education of China
(20113317110001), and Zhejiang Provincial Natural Science
Foundation (R1110679).

References

[1] E. Vine, “Breaking down the silos: the integration of energy
e�ciency, renewable energy, demand response and climate
change,” Energy E�ciency, vol. 1, no. 1, pp. 49–63, 2008.

[2] H. Lund, “Renewable energy strategies for sustainable develop-
ment,” Energy, vol. 32, no. 6, pp. 912–919, 2007.

[3] A. Hepbasli, “A key review on exergetic analysis and assessment
of renewable energy resources for a sustainable future,” Renew-
able and Sustainable Energy Reviews, vol. 12, no. 3, pp. 593–661,
2008.

[4] R. Chedid and Y. Saliba, “Optimization and control of
autonomous renewable energy systems,” International Journal
of Energy Research, vol. 20, no. 7, pp. 609–624, 1996.

[5] S. Iniyan and K. Sumathy, “	e application of a Delphi
technique in the linear programming optimization of future

renewable energy options for India,”Biomass andBioenergy, vol.
24, no. 1, pp. 39–50, 2003.

[6] G. Privitera, A. R. Day, G. Dhesi, and D. Long, “Optimising the
installation costs of renewable energy technologies in buildings:
a linear programming approach,” Energy and Buildings, vol. 43,
no. 4, pp. 838–843, 2011.

[7] M. Gong, “Optimization of industrial energy systems by incor-
porating feedback loops into the MIND method,” Energy, vol.
28, no. 15, pp. 1655–1669, 2003.

[8] P. Liu, D. I. Gerogiorgis, and E. N. Pistikopoulos, “Modeling
and optimization of polygeneration energy systems,” Catalysis
Today, vol. 127, no. 1–4, pp. 347–359, 2007.

[9] T. Ikegami, Y. Iwafune, and K. Ogimoto, “Development of
the optimum operation scheduling model of domestic electric
appliances for the supply-demand adjustment in a power
system,” IEEJ Transactions on Power and Energy, vol. 130, no.
10, pp. 877–887, 2010.

[10] B. Wille-Haussmann, T. Erge, and C. Wittwer, “Decentralised
optimisation of cogeneration in virtual power plants,” Solar
Energy, vol. 84, no. 4, pp. 604–611, 2010.

[11] H. Morais, P. Kádár, P. Faria, Z. A. Vale, and H. M. Khodr,
“Optimal scheduling of a renewable micro-grid in an isolated
load area using mixed-integer linear programming,” Renewable
Energy, vol. 35, no. 1, pp. 151–156, 2010.

[12] S. Ruangpattana, D. Klabjan, J. Arinez, and S. Biller, “Opti-
mization of on-site renewable energy generation for industrial
sites,” in Proceedings of IEEE/PES Power Systems Conference and
Exposition (PSCE ’11), March 2011.

[13] C. A. Babu and S. Ashok, “Optimal utilization of renewable
energy-based IPPs for industrial load management,” Renewable
Energy, vol. 34, no. 11, pp. 2455–2460, 2009.

[14] Z. Kravanja, “Mathematical programming approach to sustain-
able system synthesis,” Chemical Engineering Transactions, vol.
21, pp. 481–486, 2010.

[15] A. Borghetti, M. Bosetti, S. Grillo et al., “Short-term scheduling
and control of active distribution systems with high penetration
of renewable resources,” IEEE Systems Journal, vol. 4, no. 3, pp.
313–322, 2010.

[16] A. Vergnano, C. 	orstensson, B. Lennartson et al., “Modeling
and optimization of energy consumption in cooperative multi-
robot systems,” IEEE Transactions on Automation Science and
Engineering, vol. 9, no. 2, pp. 423–428, 2012.

[17] E. D. Castronuovo and J. A. P. Lopes, “Optimal operation and
hydro storage sizing of awind-hydro power plant,” International
Journal of Electrical Power and Energy System, vol. 26, no. 10, pp.
771–778, 2004.
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[168] G. Păun, G. Rozenberg, and A. Salomaa,DNA Computing: New
Computing Paradigms, Texts in 	eoretical Computer Science.
An EATCS Series, Springer, Berlin, Germany, 1998.

[169] M. Joyeux, S. Buyukdagli, and M. Sanrey, “1/f �uctuations of
DNA temperature at thermal denaturation,” Physical Review E,
vol. 75, no. 6, Article ID 061914, 9 pages, 2007.

[170] A. Castro,M.A. L.Marques,D.Varsano, F. Sottile, andA. Rubio,
“	e challenge of predicting optical properties of biomolecules:
what can we learn from time-dependent density-functional
theory?” Comptes Rendus Physique, vol. 10, no. 6, pp. 469–490,
2009.

[171] C. Cattani, E. Laserra, and I. Bochicchio, “Simplicial approach
to fractal structures,” Mathematical Problems in Engineering,
vol. 2012, Article ID 958101, 21 pages, 2012.

[172] C. Cattani, “On the existence of wavelet symmetries in archaea
DNA,” Computational and Mathematical Methods in Medicine,
Article ID 673934, 21 pages, 2012.

[173] G. Zhang, “Quantum-inspired evolutionary algorithms: a sur-
vey and empirical study,” Journal of Heuristics, vol. 17, no. 3, pp.
303–351, 2011.

[174] E. G. Bakhoum and C. Toma, “Dynamical aspects of macro-
scopic and quantum transitions due to coherence function and
time series events,” Mathematical Problems in Engineering, vol.
2010, Article ID 428903, 13 pages, 2010.

[175] E. G. Bakhoum and C. Toma, “Mathematical transform of
traveling-wave equations and phase aspects of quantum inter-
action,”Mathematical Problems in Engineering, vol. 2010, Article
ID 695208, 15 pages, 2010.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


