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Bio-Inspired Stochastic Computing Using Binary

CBRAM Synapses
Manan Suri, Student Member, IEEE, Damien Querlioz, Member, IEEE, Olivier Bichler, Giorgio Palma,

Elisa Vianello, Dominique Vuillaume, Christian Gamrat, and Barbara DeSalvo

Abstract—In this paper, we present an alternative approach
to neuromorphic systems based on multi-level resistive memory
(RRAM) synapses and deterministic learning rules. We demon-
strate an original methodology to use conductive-bridge RAM
(CBRAM) devices as, easy to program and low-power, binary
synapses with stochastic learning rules. New circuit architecture,
programming strategy and probabilistic STDP learning rule
for two different CBRAM configurations ’with-selector (1T-
1R)’ and ’without-selector (1R)’ are proposed. We show two
methods (intrinsic and extrinsic) for implementing probabilistic
STDP rules. Fully unsupervised learning with binary synapses is
illustrated with the help of two example applications: (i) real-time
auditory pattern extraction (inspired from a 64-channel silicon
cochlea emulator) and (ii) visual pattern extraction (inspired from
the processing inside visual cortex). High accuracy (audio pattern
sensitivity>2, video detection rate>95%) and low synaptic-power
dissipation (audio 0.55µW, video 74.2µW) are shown. The ro-
bustness and impact of synaptic parameter variability on system
performance is also analyzed.

Index Terms—Stochastic Neuromorphic System, CBRAM
Synapse, STDP, Auditory Learning, Visual Pattern Extraction.

I. INTRODUCTION

NEUROMORPHIC and cognitive computing research is

gaining importance in recent years. With potential ap-

plication in fields such as robotics, large-scale data analysis

and intelligent autonomous systems, bio-inspired computing

paradigms are being investigated as next generation (post-

moore) ultra-low power computing solutions. While emulation

of spiking neural networks (SNN) in software and Von-

Neumann type hardware (such as DSPs, GPUs and FPGAs)

has been around for a while, they fail to realize the true

potential of bio-inspired computing in terms of low power-

dissipation, scalability, reconfigurability and low instruction-

execution redundancy [1]. One of the main limitations of Von-

Neumann type architectures, while emulating massively par-

allel asynchronous SNN is the need for very high bandwidths

(GHz) to effectively transmit spikes between the memory and

the processor, thus leading to high power dissipation and limit-

ing the scalability. The true potential of bio-inspired learning
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rules can be realized if they are implemented on optimized

special purpose hardware which can provide direct one-to-

one mapping with the learning algorithms running on it [2].

Several research groups are actively working on implementing

bio-inspired synaptic behavior directly in hardware [3],[4].

Emerging non-volatile resistive memory (RRAM) technolo-

gies such as phase-change memory (PCM), conductive-bridge

memory (CBRAM) and oxide based memory (OXRAM) have

been shown as good candidates for emulation of synaptic

plasticity and learning rules like spike-timing dependent plas-

ticity (STDP) [5],[6],[7],[8],[9]. Most recent demonstrations

of RRAM based synaptic emulation treat the synapse as a

deterministic multi-valued programmable non-volatile resistor.

Although such treatment is desirable, it is challenging in

terms of actual implementation. Programming schemes for

multi-level operation in RRAM devices are more complicated

compared to binary operation. Gradual multi-level resistance

modulation of RRAM synapses may require generation of

successive non-identical neuron spikes (pulses with changing

amplitude or width or a combination of both), thus increasing

the complexity of the peripheral CMOS neuron circuits which

drive the synapses. Pulse trains with increasing amplitude

lead to higher power dissipation and parasitic effects on large

crossbars. In our previous work we provided a solution (called

’2-PCM Synapse’) to address the issue of non-identical neuron

spikes for multi-valued neuromorphic systems based on PCM

synapses [10]. Another issue is that aggressive scaling leads to

increased intrinsic device variability. Unavoidable variability

complicates the definition and reproducibility of intermediate

resistance states in the synaptic devices. In this paper, we

present an alternative approach to multi-level synapses. We

show a neuromorphic system which uses CBRAM devices

as binary synapses with a stochastic-STDP learning rule. At

the system level, a functional equivalence [11] exists between

deterministic multi-level and stochastic-binary synapses. In

the case of supervised NN, several works have exploited this

concept [12],[13],[14]. In this work, we use a similar approach

for a fully unsupervised SNN. Our approach is also motivated

by some works from biology [15], which suggest that STDP

learning might be a partially stochastic process in nature.

Section II describes the basics of our CBRAM technology.

Experiments of multi-level and stochastic programming are

discussed. Section III discusses our simplified STDP learning

rule and the synaptic programming methodology. Finally in

section IV we present two examples of fully unsupervised

learning from complex asynchronous auditory and visual data

streams. In the following sections, we use the terms strong-



IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. XX, NO. X, MONTH YEAR 2

and weak- programming conditions. However these have a

relative definition with respect to the technology and materials

used for fabricating the CBRAM devices. For the devices

presented here, a weak-condition refers to a short pulse width

(<10µs), usually 1µs or 500ns, with a voltage <2.5V applied

at the anode or the bit-line. A strong condition corresponds to

a pulse width>10µs.

II. CBRAM TECHNOLOGY

1T-1R CBRAM devices (both isolated and in 8x8 ma-

trix), integrated in standard CMOS platform [16], were tested

(Fig. 1). A Tungsten (W) plug was used as bottom electrode.

The solid electrolyte consisted of a 30nm thick GeS2 layer

deposited by RF-PVD and a 3nm thick layer of Ag deposited

by a DC PVD process. The 3nm thick Ag layer is dissolved

into the GeS2 using the photo-diffusion process [17]. Then a

2nd layer of Ag about 75nm thick was deposited to act as top

electrode.

CBRAM operating principle relies on the reversible tran-

sition from high (reset) to low (set) resistive states owing

to the formation and dissolution of a conductive filament in

the electrolyte layer. In particular, applying a positive voltage

at the Ag electrode results in the drift of Ag+ ions in the

GeS2 and discharge at the inert counter electrode (W), leading

to the growth of Ag dendrites that eventually shunt the top

and the bottom electrodes. Upon reversal of voltage polarity,

an electrochemical dissolution of the conductive bridge oc-

curs, resetting the system to the OFF (reset) state (Fig. 2).

No forming step is required for this device stack. Simple

fabrication, CMOS compatibility, high scalability, low power

dissipation, and low operating-voltages [18] make CBRAM

devices a good choice for the design of synapses in dense

neuromorphic systems.

A. Limitations of Multi-level CBRAM Synapses

In literature, CBRAM devices have been proposed to emu-

late biological synaptic-plasticity by programming the devices

in: multiple low-resistance states for emulating long term

potentiation (LTP) and multiple high-resistance states for long

term depression (LTD) [19],[20]. We demonstrate LTP-like

behavior (i.e. gradual ON-state resistance decrease) in our

GeS2 based samples by applying a positive bias at the anode

and gradually increasing the select transistor gate voltage (Vg)

Fig. 1. (Left) TEM of the CBRAM resistor element. (Right) Circuit schematic
of the 8 X 8 1T-1R CBRAM. matrix. (note: the devices used in this study had
a GeS2 layer thickness of 30nm. The 50nm TEM is for illustrative purpose
only.)

(Fig. 2a). This phenomenon of gradual resistance decrease can

be explained with our model [21], assuming a gradual increase

in the radius of the conductive filament formed during the set

process. Larger gate voltages supply more metal ions leading

to the formation of a larger conductive filament during the set

process [22].

Nevertheless, this approach implies that each neuron must

generate pulses with increasing amplitude while keeping a his-

tory of the previous state of the synaptic device, thus leading

to additional overhead in the neuron circuitry. Moreover, we

found it difficult to reproducibly emulate a gradual LTD-like

effect using CBRAM. Fig. 2b shows the abrupt nature of the

set-to-reset transition in our devices. Precisely controlling the

dissolution of the conductive filament was not possible during

the pulsed reset process. Note that for emulating a spiking

neural network (SNN) it is essential that both LTP and LTD

be implemented by pulse-mode programming of the synaptic

devices. Pulse based synaptic programming is an analogue for

the neuron spikes or action-potentials.

B. Deterministic and Probabilistic Switching

Fig. 3 shows the On/Off resistance distributions of an

isolated 1T-1R CBRAM (during repeated cycles with strong

set/reset conditions). The OFF state presents a larger dis-

persion compared to the ON state. This can be interpreted

in terms of non-uniform breaking of the filament during the

reset process, due to the unavoidable defects [23],[24] close

to the filament which act as preferential sites for dissolution.

By fitting the Roff-spread data with our physical model [21],

the distribution of the left-over filament-height was computed.

Using the computed distribution of the left-over filament

height and the equations in [21] we estimated the spread on

the voltage (Vset) and time (Tset) needed for a successful

consecutive set operation (Fig. 4). Moreover, when weak-set

programming conditions are used immediately after a reset, a

probabilistic switching of the device may appear as seen in

fig. 5. In fig. 5 the set operation fails in several cycles as the

set-programming conditions are not strong enough to switch

the device in those cycles.

In a large-scale system, such stochastic switching behavior

at weak conditions will get compounded with the inclusion of

’device-to-device’ variations. To take into account the device-

to-device variability, we performed similar analysis on the ma-

trix devices. Fig. 6 shows the On/Off resistance distributions

for all devices cycled 20 times with strong conditions. As

expected, the spread on Roff values is larger compared to the

Roff spread for a single device shown in fig. 3.

To quantify the trend of probabilistic switching (both

set/reset) we designed two simple experiments: a cycling

procedure with a strong-set condition and progressively

weakening-reset condition was used to determine reset prob-

ability (fig. 7a) while a strong-reset condition and progres-

sively weakening set condition was used to determine the set-

probability (fig. 7b). As shown in fig. 7, the overall switching

probability (criterion for successful switch: Roff/Ron>10),

for 64 device matrix, increases with stronger programming

conditions. It is thus conceivable to tune the CBRAM device
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(a) (b) 

Fig. 2. (a) On-state resistance modulation using current compliance. Fitting
using model [21] is also shown (extracted filament radius are indicated). (b)
Resistance dependence on gate voltage during the set-to-reset transition.

Fig. 3. On/Off resistance distribution of an isolated 1T-1R device during 400
cycles when strong programming is used.

switching probability by using the right combination of pro-

gramming conditions.

III. STOCHASTIC STDP AND PROGRAMMING

METHODOLOGY

Fig. 8 shows the core circuit of our architecture. It is similar

to the one that we proposed for deterministic synapses in

[10],[25] but is adapted for bipolar-devices and stochastic

learning rule. The core consists of three main blocks- (i)

Input/Output CMOS-neuron circuits (ii) CBRAM synapse-

crossbar connecting the neurons. This may be implemented

without (1R) or with (1T-1R) selector devices (Fig. 8(a) and

(b), respectively), and (iii) Pseudo-random number generator

Fig. 4. Computed distributions (generated using Roff data from fig. 3 and
model [21], of: (a) Tset and (b) Vset (Inset) values for consecutive successful
set operation (mean and sigma are indicated). For computing (a) the applied
voltage is 1V and for (b) a ramp rate of 1V/s is used in the quasi-static mode.

Fig. 5. Stochastic switching of 1T-1R device during 1000 cycles using weak-
conditions (switch-probability=0.49).

Fig. 6. On/Off resistance distributions of the 64 devices of the 8x8 matrix
cycled 20 times. Inset shows Ron and Roff values in log scale with dispersion
for each cycle.

(PRNG) circuit. The PRNG block is only used for imple-

menting optional extrinsic stochasticity as explained later. All

neurons are modeled as leaky-integrate and fire (LIF) type.

Our stochastic-STDP rule (Fig. 9) is a simplified version of

the deterministic biological STDP rule [26]. The optimization

of the LTP window and neuron parameters is performed using

genetic-evolution algorithm [27]. The STDP rule functions as

follows: when an output neuron fires, if the input neuron was

active recently (within the LTP time window) the correspond-

ing CBRAM synapse connecting the two neurons, has a given

probability to switch into the ON-state (probabilistic LTP).

If not, the CBRAM has a given probability to switch to the

OFF-state (probabilistic LTD).

Synaptic programming can be implemented using specific

voltage pulses. The case without selector device is straightfor-

Fig. 7. Overall switching probability for the 64 devices of the matrix
(switching being considered successful if Roff/Ron>10) using (a) weak-
reset conditions and (b) weak-set conditions. Vg of 1.5V was used in both
experiments.
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Fig. 8. (a) Circuit schematic with CBRAM synapses without selector
devices, LIF neurons, in the external probability case. (b) Circuit schematic
with CBRAM synapses with selector devices, LIF neurons, in the external
probability case. In both cases, the presented voltages waveforms implement
the simplified STDP learning rule for the CBRAMs.

Fig. 9. Probabilistic STDP learning rule (used for audio application). X-axis
shows the time difference of post-and pre-neuron spike.

ward (Fig. 8(a)). After an output neuron spikes, it generates a

specific voltage waveform (signal (3)). Additionally, the input

neurons apply signal (1) if they were active recently (within the

LTP time window), else they apply signal (2). The conjunction

of the input and output waveforms implements STDP. In the

case with selector devices (Fig. 8(b)), the gates are connected

to the output neurons as shown. When an output neurons

spikes (fires), it applies a specific voltage waveform to the

gates of the selector devices (signal (3)), while non-spiking

Fig. 10. (a) Single-layer SNN simulated for auditory processing.(b) 2-layer
SNN for visual processing.(Right) AER video data snapshot with neuron
sensitivity maps.

Fig. 11. (a) Full auditory-data test case with noise and embedded repeated
patterns. (b) Auditory input data and (c) spiking activity for selected time
intervals of the full test case of the output neuron (shown in Fig.16b).

Fig. 12. (a) Pattern Sensitivity (d’) for the test case shown in fig. 11. The
system reaches a very high sensitivity (d’>2). (b) Number of false detections
by the output neuron during the auditory learning.

output neurons will apply signal (4) on the corresponding

gates. The input neurons apply pulses similar to the case

without selector devices (i.e. signals (1) and (2)). The above

described signaling mechanism leads to change in synaptic

conductance but does not account for probabilistic or stochas-

tic switching. Probabilistic switching can be implemented in

two ways:

• Extrinsically, by multiplying the signal of the input

spiking neuron with the PRNG output, whose signal

probability can be tuned by combining with logical AND

and OR operations several independent PRNGs, that can

be implemented for example with linear feedback shift

registers (LFSR) [28]. This approach is illustrated in

Fig. 8. The PRNG output allows or blocks the input

neuron signals according to the defined probability levels.

• Intrinsically, by using weak programming conditions

(Figures 5 and 7). In this case, the input neuron applies

a weak programming signal, which leads to probabilistic

Fig. 13. Final sensitivity map of 9 output neurons from the 1st layer of the
neural network shown in Fig.17b. Average detection rate for 5 lanes was 95%.
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switching in the CBRAM devices.

Exploiting the intrinsic CBRAM switching probability

avoids the presence of the PRNG circuits, thus saving im-

portant silicon footprint. It also reduces the programming

power, as the programming pulses are weaker compared to

the ones used for deterministic switching. However it might

be difficult to precisely control the switching probability of

individual synapses using weak-conditions in a large-scale

system. When weak programming conditions are used, both

’device-to-device’ and ’cycle-to-cycle’ variations contribute to

probabilistic switching. Decoupling the effect of the two types

of variations is not straightforward in filamentary type of

devices (due to the spread on left-over filament height post-

reset). In order to precisely control the switching probability a

better understanding and modeling of the device phenomena at

weak programming conditions is required. If precise values of

switching probability are desired then extrinsic PRNG circuits

should be used. For instance a 2-bit PRNG control signal as

shown in Fig. 8 can be used to separately tune the LTP and

LTD probability. The core with and without selector devices

are equivalent from a functional point of view. Selector-free

configuration is the most compact (4F2) and highest CBRAM

integration density can be obtained with it. Although adding

selector element consumes more area (>4F2), it helps to

reduce the sneak-path leakage and unwanted device disturbs

during the STDP operation which are difficult to control with

just 1R devices. Since we did not fabricate a full test chip

to measure the leakage and disturb effects in the 1R case,

the simulations described in Section IV are based on synaptic

programming methodology with-selector devices (1T-1R).

IV. AUDITORY AND VISUAL PROCESSING SIMULATIONS

We performed full system-level simulations with our special

purpose event-based Xnet simulator tool [10],[27],[25]. The

neuron circuits are modeled with behavioral equations as in

[25],[27]. The synapses are modeled by fitting data of Fig. 3

and Fig. 6 with a log-normal distribution, in order to take into

account the experimental spread in the conductance param-

eters. Effect of both ’device-to-device’ and ’cycle to cycle’

variations are captured in the synapse model. Two different

SNN were used to process auditory and visual data. Fig. 10a

shows the network designed to learn, extract, and recognize

hidden patterns in auditory data. Temporally encoded auditory

data is filtered and processed using a 64-channel silicon

cochlea emulator (similar to [29], simulated within Xnet).

The processed data is then presented to a single layer feed-

forward SNN with 192-CBRAM synapses (i.e. every channel

of the cochlea is connected to the output neuron by 3 CBRAM

synapses). Initially (from 0 to 400s), gaussian audio noise

is used as input to the system, and the firing pattern of the

output neuron is completely random (as seen in Fig. 11).

Then (from 400 to 600s), an arbitrarily created pattern is

embedded in the input noise data and repeated at random

intervals. Within this time frame, the output neuron starts to

spike predominantly when the pattern occurs, before becoming

entirely selective to it at the end of the sequence. This is well

seen on the sensitivity d’ (a standard measurement in signal

detection theory) presented in Fig. 12a, which grows from 0

to 2.7. By comparison, a trained human on the same problem

achieves a sensitivity of approximately 2 [30]. During the same

period, the number of false positives also decreases to nearly

0 (Fig. 12b). At the end of the test case (from 600 to 800s),

pure noise (without embedded patterns) is again presented to

the system. As expected, the output neuron does not activate

at all, i.e. no false positive is seen (Fig. 11,12). The total

synaptic learning power consumption (i.e. the power required

to read, write and erase the CBRAMs) was extremely low

(0.55 µW in the extrinsic probability case, 0.15 µW in the

intrinsic probability case). The estimation of synaptic learning

power is described in detail in Tab.1[6], following equations

were used:

Eset/reset = Vset/reset×Iset/reset×tpulse

Etotal = (Eset×total set events) + (Ereset×total reset events)

Powersynaptic learning = Etotal/Durationlearning

In the extrinsic probability case, about 90% of the energy

was used to program the CBRAM devices, and about 10%

to read them (while in the case of intrinsic probability it was

about 81% and 19% respectively). The sound pattern extrac-

tion example can act as a prototype for implementing more

complex applications such as speech recognition and sound-

source localization. Fig. 10b shows the network simulated

to process temporally encoded video data, recorded directly

from an artificial silicon retina [31]. A video of cars passing

on a freeway recorded in address-event-representation (AER)

format by the authors of [31] is presented to a 2-layered SNN.

In each layer, every input is connected to every output by a

single CBRAM synapse. The CBRAM based system learns to

recognize the driving lanes, extract car-shapes (Fig. 13) and

orientations, with more than 95% average detection rate. The

total synaptic-power dissipation was 74.2 µW, in the extrinsic

probability case and 21 µW in the intrinsic probability case.

This detection rate is similar to the one that we simulated on

the same video test case with a deterministic system based on

multi-level PCM synapses [10],[32],[33]. The example SNN

on visual pattern extraction, shown here, can be used as a

prototype to realize more complex functions such as image

classification [34],[25], position detection and target-tracking.

We tested the two test applications with both extrinsic and

intrinsic probability programming methodologies. Sensitivity

and detection rates were nearly identical in both cases, which

suggests a relative equivalence of the two approaches. Total

synaptic power consumption was lower when the intrinsic

probability methodology was used. This suggests that the

power saved by using weak programming pulses is greater

than the power dissipated due to the extra programming pulses

required to implement the intrinsic probability. Additionally,

we performed simulations without any intrinsic or extrinsic

conductance spreads (ideal or non-variable synapses). These

gave sensitivity values and detection rates similar to the

ones when the spread was considered, suggesting that the

experimentally measured variability in our devices had no

significant impact on the overall system learning performance.

This is consistent with variability-tolerance of STDP-based

networks [25].
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V. CONCLUSION

We proposed for the very first time a bio-inspired system

with binary CBRAM synapses and stochastic STDP learning

rule able to process asynchronous analog data streams for

recognition and extraction of repetitive patterns in a fully

unsupervised way. The demonstrated applications exhibit very

high performance (auditory pattern sensitivity>2.5, video de-

tection rate>95%) and ultra-low synaptic power dissipation

(audio 0.55µW, video 74.2µW) in the learning mode. We

show different programming strategies for 1R and 1T-1R based

CBRAM configurations. Intrinsic and extrinsic programming

methodology for CBRAM synapses is also discussed.
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