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Abstract: Efficient scheduling of tasks in workflows of cloud or grid applications is a key to achieving better utilization of resources as well as timely completion of the user jobs.  
Many scientific applications comprise several tasks that are dependent in nature and are specified by workflow graphs. The aim of the cloud meta-scheduler is to schedule the 
user application tasks (and the applications) so as to optimize the resource utilization and to execute the user applications in minimum amount of time. During the past decade, 
there have been several attempts to use bio-inspired scheduling algorithms to obtain an optimal or near optimal schedule in order to minimize the overall schedule length and to 
optimize the use of resources. However, as the number of tasks increases, the solution space comprising different tasks-resource mapping sequences increases exponentially. 
Hence, there is a need to devise mechanisms to improvise the search strategies of the bio-inspired scheduling algorithms for better scheduling solutions in lesser number of 
iterations/time. The objective of the research work in this paper is to use bio-inspired bacteria foraging optimization algorithm (BFOA) along with other heuristics algorithms for 
better search of the scheduling solution space for multiple workflows. The idea is to first find a schedule by the heuristic algorithms such as MaxMin, MinMin, and Myopic, and use 
these as initial solutions (along with other randomly generated solutions) in the search space to get better solutions using BFOA. The performance of our approach with the existing 
approaches is compared for quality of the scheduling solutions. The results demonstrate that our hybrid approach (MinMin/Myopic with BFOA) outperforms other approaches. 
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1 INTRODUCTION  
 

High performance computing is about the use of high-

productivity computing resources to solve challenging 

problems in scientific and engineering domains [1]. The HPC 

platform could comprise workstations, desktop machines, 

supercomputers, grid or cloud [2]. Grid computing is a kind 

of HPC loosely coupled collection of heterogeneous 

resources that are shared by the grid users for utilizing the 

ideal and under-utilized capacity of the resources [3, 4]. On 

the other hand cloud computing is a simplified form of grid 

computing that provides virtual server instance on shared 

resources based on user specifications [5]. 

Scientific computing is becoming more relevant in many 

research disciplines. A typical application may contain 

several dependent tasks specified as a workflow, which 

requires efficient scheduling of the tasks. The scheduling of 

workflows is a challenging task in HPC environment because 

of inter-dependency of the tasks that needs to be taken care 

of while scheduling the workflow tasks [6]. The grid/cloud 

meta-schedulers are responsible for fetching the matched 

resources that are capable to run the workflow application 

and schedule these workflows on the available resources [7]. 

The most important scheduling criterion for HPC 

environment is to produce a schedule with minimum 

schedule length so as to optimize the utilization of the 

resources [8]. 

During the past decade there have been several attempts 

to use bio-inspired scheduling algorithms to obtain an 

optimal or near optimal schedule of the tasks on a specified 

set of resources in order to minimize the overall schedule 

length and to optimize the use of resources. However, as the 

number of tasks increases, the solution space consisting of 

mapping of tasks to corresponding resources increases 

exponentially.  Hence, there is a need to devise mechanisms 

to improvise the search strategies and/or mechanisms of the 

bio-inspired scheduling algorithms for better scheduling 

solutions in lesser number of iterations/time. 

The objective of the research work in this paper is to use 

bio-inspired bacteria foraging optimization algorithm 

(BFOA) along with other heuristics algorithms for better 

search of the scheduling solution space. The idea is to first 

find a schedule by the deterministic or heuristic algorithms 

such as MaxMin, MinMin, and Myopic, and use these as 

initial solutions in the search space to get better solutions 

using BFOA. The advantage of using BFOA over other 

nature inspired evolutionary approaches is that it is 

computationally efficient and has good global convergence 

[9]. The performance of our approach with the existing 

approaches is compared for quality of the scheduling 

solutions. The results demonstrate that our hybrid approach 

(MinMin/Myopic with BFOA) outperforms other 

approaches. 

The paper is organized into five sections. The first 

section provides background details and motivation of the 

research work. The second section provides overview of the 

workflow scheduling mechanism and also provides insights 

into the existing workflow scheduling approaches. The third 

section describes our proposed workflow scheduling 

approach and fourth section is about the experimental setup. 

The fifth section provides detailed discussion on the results 

and observations. The last section concludes the research 

work presented in this paper. 

  

2 WORKFLOW SCHEDULING PROBLEM 
  

The dependent-task or workflow application in grid and 

cloud environment is represented as a standard task graph 

(STG) or directed acyclic graph (DAG) as shown in Fig. 1.  

In DAG, graph vertices represent tasks and the edges 

represent task dependencies [8]. There could be n number of 

dependent tasks and m number of resources; it is very 

difficult to predict the best schedule with respect to large 
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mapping combinations between the tasks and the resources. 

Therefore, the workflow scheduling problem is a non-

deterministic polynomial (NP)-complete problem [10]. The 

workflow scheduling problem can be solved by heuristic 

methods but the complexity of producing an appropriate 

schedule becomes high. Therefore, the metaheuristic 

methods are adopted to produce the near optimal schedule in 

heterogeneous distributed environment. 

 

 
Figure 1 Workflow tasks 

 

Let us assume workflow W(T, E) consists of a set of 

tasks, T = {T1, T2, … , Tx, …, Ty, …, Tn}, and a set of 

dependencies among the tasks, E = {< Ta, Tb >,  ..., < Tx, Ty 

>} , where Tx is the parent task of Ty.  The set R = {R1, R2, …, 

Rm}  represents the set of suitable resources in the Cloud. 

Therefore, the dependent task scheduling problem is the 

mapping of workflow tasks to Cloud resources (T→R) so that 

the makespan M is minimized. The overall timespan of a 

complete schedule is known as total schedule length or 

makespan [11].  

Generally, a workflow is a set of dependent tasks. The 

entry task does not have any predecessing task and exit task 

does not have any successor task [7]. Each dependent task 

can be executed after the completion of its parent tasks. If a 

child task is dependent upon more than one parent than it has 

to wait until all the predecessing tasks complete their 

execution. The child task becomes a ready task when all the 

parent tasks complete their execution. If the child task 

executes upon the same resource where parent task has 

finished its execution then data transfer time is considered to 

be zero. 

The multiple users can submit multiple workflows to the 

meta-schedulers.  The two important aspects that have been 

taken care by our meta-scheduler for scheduling the 

workflow applications are: (1) the parallel handling of 

multiple workflow applications, and (2) the scheduling of 

workflow applications on heterogeneous and distributed 

resources. 

  

3 CURRENT SOLUTIONS IN WORKFLOW SCHEDULING  
 

The current HPC and cloud meta-schedulers use many 

heuristic algorithms to schedule the workflow applications. 

The most popular methods are described below. 

Myopic-Myopic heuristic is based on the minimum time 

to compute strategy, where each ready task is assigned to the 

resource that is capable to complete the ready task at the 

earliest. Myopic heuristic is one of the simplest scheduling 

techniques for scheduling dependent tasks in grid 

environment because it considers a single task while 

allocating the resource for scheduling. The myopic heuristic 

is implemented in some real HPC environments such as 

Condor DAGMan [12]. The Myopic algorithm schedules the 

ready tasks one after other until all the tasks in ready queue 

get scheduled. It maps each task to the resource that can 

process the task at the earliest. 

MinMin-This scheduling heuristic prioritizes dependent 

tasks according the task sizes and schedules the tasks based 

on the sizes of the tasks [13]. The Min–Min scheduling 

heuristic maps shortest task on the fastest. The task having 

minimum expected time for execution over all tasks is 

selected to be scheduled first on the fastest resource that takes 

minimum time for execution during each iteration and it 

keeps scheduling all the tasks until the ready queue is 

exhausted. MinMin is implemented in real HPC environment 

such as vGrADS[14] of Rice University USA. 

MaxMin-The MaxMin [15] scheduling heuristic 

prioritizes the dependent tasks according to the expected time 

to compute, the task that requires the longest execution time 

is allocated to the fastest resource that is capable to process 

the task at the earliest. This heuristic arranges the workflow 

tasks into multiple independent task groups and schedules 

each group of tasks iteratively. In each iterative step, a task 

with maximum time to compute is selected to be scheduled 

on the fastest resource that can process the task at the earliest. 

HEFT-Topcuoglu H. et al. proposed a list scheduling 

method known as Heterogeneous Earliest Finish Time 

(HEFT) [16], which sets higher priority to the dependent 

tasks having higher rank value. The rank value is based on 

the average execution time of each task and average data 

transfer time between the predecessor and successor task, 

where the tasks in the critical path have higher rank values. 

Afterwards, this heuristic sorts the tasks by the descending 

order of the rank values of the tasks and the task with a higher 

rank value are set to higher priority. During actual 

scheduling, tasks in a workflow are scheduled in the order of 

their priorities, and each task is assigned to the fastest 

resource that can process the task at the earliest. 

PSO-Particle Swarm Optimization (PSO) is a random 

based scheduling approach that searches the search space to 

find the near optimal solution. The position of each particle 

in search space represents a potential solution. The swarm 

represents the total number of predefined particles. The 

particle swarm optimization explores the search space by 

using position vector and terminates when predefined 

stopping criterion is met. The best particle that provides 

minimum value for objective function, that is, makespan, is 

selected as a final solution. In [17], authors have 

implemented PSO based scheduling approach to minimize 

the makespan. 

GA- Genetic algorithm is also a metaheuristic approach 

[18] that generates random solutions to achieve near optimal 

solution. In GA, each individual represents a potential 

solution. The search space is explored using crossover and 

mutation operators. The GA terminates after a predetermined 

stopping criterion is met. The best solution obtained during 

evaluations is printed as a final solution. The final solution 
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represents task-resource mapping and scheduling timing. In 

[19], authors have presented workflow scheduling using GA 

with the objective of minimization of overall schedule length. 

GRASP-The Greedy methods randomized adaptive 

search procedure (GRASP) [20] is an iterative approach that 

searches the solution on random basis. In GRASP, 

predetermined iterations are conducted to search a near 

optimal solution for scheduling the tasks on available 

resources. A new solution is generated in each iteration and 

the best solution among all the iterations is taken as the final 

solution. This method determines the minimum and 

maximum time to compute for each task on the available 

resources. The average time is determined by applying 

GRASP equation for executing a ready task on the available 

resources. All the resources that take lesser or equal time to 

the average time (obtained from GRASP equation) are 

considered for scheduling decision and any one resource is 

allocated to the ready task on random basis.   

 

3.1 Related Work  
  

There exists many state-of-the-art works for scheduling 

workflow tasks in HPC environment but most of the 

approaches are capable to handle single workflow at a time 

level-wise. 

Rahman et al. [21] have presented a dynamic workflow 

scheduling approach known as DCP-G that minimizes the 

workflow execution time dynamically along with reducing 

the scheduling overhead. Bogdan et al. [22] have introduced 

an improved critical path using descendant prediction 

method for workflow scheduling, which is known as ICPDP. 

This approach performs well for minimizing makespan and 

for balancing the load of HPC resources. It also minimizes 

idle time of processing elements to enhance the resource 

utilization. Wang et al. [23] have presented an extensive 

approach named look-ahead genetic algorithm (LAGA), 

which optimizes both makespan and reliability of workflow 

tasks. LAGA uses an evolution and evaluation method as a 

two phased methodology. In first phase, the evolution 

operators of GA decide the task-resource mapping and 

second phase allows the evaluation steps to govern the task 

order of solutions using max-min strategy. 

Amalarethinam and Selvi [24] have proposed minimum 

makespan grid workflow scheduling (MMGWS) that mini-

mizes makespan of the workflows in HPC. This approach 

makes advance reservation of the desired resources and 

schedules the tasks on the basis of their respective priorities. 

The results of proposed approach are compared with Min-

Min and HEFT scheduling algorithms. Garg et al. [25] have 

presented an adaptive workflow scheduling (AWS) to opti-

mize makespan considering dynamic availability of the 

resources. This algorithm also takes care of load balancing 

by rescheduling the tasks to new resources form overloaded 

resources. 

The existing approaches have not explained that the 

performance of bio-inspired algorithms deteriorates if the 

search space is huge. The performance depends upon the 

quality of scheduling solutions and the computational time to 

obtain the near optimal schedule.  Hence, we are proposing 

bio-inspired hybrid BFOA approach for better search of the 

scheduling solution that provides scheduling solutions of 

better quality within less computational time. The idea is to 

first find a schedule by the heuristic algorithms such as 

MaxMin, MinMin, and Myopic, and use these as initial 

solutions (along with other randomly generated solutions) in 

the search space to get better solutions using BFOA. Most of 

the existing workflow scheduling approaches are based on 

single workflows whereas we have addressed scheduling 

problem of multiple workflows which are to be scheduled in 

parallel. The performance of our approach with the existing 

approaches is compared for quality of the scheduling 

solutions. The results demonstrate that our hybrid approach 

(MinMin/Myopic with BFOA) outperforms other 

approaches. 

  

4 PROPOSED APPROACH 
  

In this paper, a Bacterial foraging optimization algorithm 

based workflow scheduling mechanism is presented with two 

different aspects a) Starting with some random solution and 

searching for the optimal or sub-optimal scheduling solution, 

2) Starting with a solution generated by MaxMin, MinMin 

and Myopic scheduling strategies and then searching for the 

optimal or sub-optimal schedule from this starting solution. 

  

4.1 Bacterial Foraging Optimization Algorithm (BFOA) 
  

Kevin Passino proposed the Bacterial Foraging 

Optimization Algorithm (BFOA) in 2002. BFOA provides 

vigorous search techniques that let a high quality solution to 

be achieved within a large search space [26].The bacterial 

foraging algorithm explores the new regions of the search 

space by chemotaxis and elimination-dispersal process and 

BFOA exploits the best solutions from the past searches 

through reproduction process. A bacterium is any solution in 

the search space, which is represented by a set of parameters. 

A bacteria foraging optimization algorithm maintains a 

bacteria population consisting of a set of bacterium that 

evolves over generations [26].The quality of a bacterium in a 

bacteria population is determined by an objective function. A 

typical Bacterial Foraging Optimization Algorithm consists 

of the following steps: 

Algorithm 

1. Initialize B, p, Nc, Nre, Ns, Ned, Ped and S(i), (i = 1, 2, …, 

B). 

Choose the initial values randomly for θi where 

i=1,2….B in the search space. B represents population of 

bacteria;Nch represents number of chemotactix steps; Ns 

represents swim length; Ned represents the probability of 

removal of bacteria; S(i) specifies the size of the step 

taken in diverse direction during tumbling. The position 

p of each bacterium in bacteria population B is updated 

automatically and the iterations stop after meeting the 

stopping criteria. 

2. Elimination loop: el= el+1. 

3. Reproduction loop: r=r+1 

4. Chemotactic loop: c =c +1 
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a) For i = 1, 2, …, B take a chemotactic step for ith 

bacterium.  

b) Compute fitness C(i, c, r, el). 

c) Let C(i, c, r, el) = C(i, c, r, el) + Ccc(θi(c, r, el), θ(c, r, el)) 

d) Let Cprevious = C(i, c, r, el) to retain this value until a better 

cost/fitness is found. 

e) Tumble: Create a random vector Δ(i) ∈ ℜ𝑝𝑝 with each 

element Δk(i) ∈ [−1, 1] (k = 1, 2, …, p). 

f) Make a movement with a step of size S(i) for ith 

bacterium in the direction of the tumble.  

 
T

Δ( )
( 1, , ) ( , , ) ( )

Δ ( )Δ( )
i i i

c r el c r el S i
i i

θ θ+ = +  

g) Compute C(i, c + 1, r, el) 

h) Swim. 

Let m = 0 (Initialize the swin length counter) 

While m < Ns   Let m = m + 1 

If C(i, c + 1, r, el) < Cprevious (if there exists 

improvement), let  Cprevious = C(i, c + 1, r, el) and let 

T

Δ( )
( 1, , ) ( 1, , ) ( )

Δ ( )Δ( )
i i i

c r el c r el S i
i i

θ θ+ = + +  

Use this θi(c + 1, r, el) to compute the new C(i, c + 1, r, 

el). 

Else, let m = Ns. End of while Loop. 

i) Move to next bacterium (i + 1), if i ≠ B 

5. If c < Nc go to step 3. In this case, repeat chemotaxis 

steps, till the end of bacteria life. 

6. Go for reproduction. 

a. For the given reproduction r and elimination dispersal el, 

and for each i = 1, 2, 3, …, B, let  
1

health

1

( , , , )
Nc

i

c

C C i c r el
+

=
= ∑  be the health of bacterium i. 

Sort the bacteria in ascending order of health of bacteria 

as  Chealth.  

b. The Br bacterium with poor Chealth values die and the 

other Br bacteria with the best values split into two 

bacteria to keep the population size same. 

7. If r < Nre, move to step 2.  

8. Go for Elimination-Dispersal with the pre-determined 

probability Ped. If el < Ned, then go to step 1, otherwise 

end. 

 

4.2 Problem Definition 
 

Using BFOA algorithm to solve the workflow 

scheduling problem needs suitable representation of 

bacterium in the given bacteria population. The problem 

definition consists of the following: 

• The problem consists of a set of resources and the tasks of 

one or more workflows that need to be scheduled 

• The task sequence is fixed, while the resource allocation to 

the individual tasks varies  

• A child task in any workflow can be scheduled only after 

the completion of its parent tasks. 

• The expected execution time (EET) of each task is 

calculated on the basis of task size (specified in Millon 

Instructions) and processor’s capacity (specified in MIPS 

(Million instructions per second). 

 

The aim of the proposed work is to minimize the overall 

schedule length of the task-resource mapping explained in 

subsequent sections. 

 

4.3 Objective Function  
 

The scheduling of dependent tasks in a workflow focuses 

on some of the scheduling criteria such as minimizing the total 

schedule length, minimizing flowtime, minimizing the overall 

execution cost, executing the tasks within the user specified 

deadline.  The objective function is used to evaluate the current 

bacteria (population) to produce quality solutions. In our 

research work, we are taking total schedule length as objective 

function, which is to be minimized to produce a potential 

schedule. 

Let T = {t1, t2, ..., tn} be the n tasks in a given set of 

workflows that need to be scheduled on a set of m resources R 

= {r1, r2, …, rm}. Let B be the start time of the first task, while 

F be the finish time of the last task in a schedule. The schedule 

length is defined as the total time span TSi between B and F for 

ith schedule. The objective function is to minimize the total 

schedule length TSi or makespan over all possible schedules, 

that is, argi(min{TSi}, i ∈ Schedules) . 

 

4.4  Initial Bacteria Population in BFOA 
  

The initial population of the bacteria represents random 

scheduling solutions. That is, the position of each bacterium 

represents a possible schedule (possible solution in the 

problem space). The position of each bacteria is an n–

dimensional vector, where the ith element of the vector 

represents the resources ID on which the ith task is executed.  

The task sequence remains constant, while the resource 

allocation changes across different schedules.  The total 

number of bacterium is determined by the pre-decided bacteria 

population size. 

 

 
Figure 2 An example workflow 

 

An example of Bacteria position is shown in Tab. 1, 

where the tasks T0 to T7 have fixed order, while the resource 

string varies across the tasks and also over different schedule 

solutions. Fig. 2 displays an example of workflow. 
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Table 1 Bacteria population sample 
Position vector (R1, R2, …, R0) of a  bacterium 

T0 T1 T3 T2 T4 T5 T6 T7 

R1 R2 R3 R1 R4 R5 R6 R0 

 

The initial bacteria population in the bacterial foraging 

optimization algorithm could comprise a) Random solutions 

(positions), or b) Random solutions with a few bacteria 

positions initialized with solutions obtained by MaxMin, 

MinMin and Myopic scheduling strategies.  The BFOA then 

searches for the optimal or sub-optimal schedule from this 

initial population. 

The idea behind incorporating these heuristic strategies in 

BFOA is to enhance the exploration capability of the proposed 

approach. If there are n jobs and m resources, each job will 

have nm combinations. For example, for 100 jobs and 10 

resources, there would be 10010 combinations. This search 

space is huge and it may not be computationally feasible to 

find the near optimal solutions. With initial solutions obtained 

from some heuristic techniques such as MaxMin, MinMin, and 

Myopic, the exploration by the evolutionary algorithm would 

start from these positions or solutions and the algorithms 

would attempt to improve upon these solutions (find 

optimal/sub-optimal solutions), if applicable, in relatively 

lesser amount of time. The following sections describe the 

steps involved in BFOA in the context of scheduling problem.  

 

4.4.1 Chemotactic Process 
 

Chemotaxis process allows the bacterium to move 

towards the sources of food. The bacterium swims to change 

directions during this process and follows the same direction if 

it finds good fitness over the previously swimming steps. In 

this process, the bacterium explores search space for better 

solutions. The tasks are allocated to different combination of 

resources to achieve better fitness values. The movement of the 

ith bacterium at the cth chemotactic, rth reproductive, and elth 

elimination dispersal step can be mathematically expressed as 

follows: 

Where ∆ indicates a vector in the random direction 

whose elements lie in in [−1, 1]. 

The chemotaxis process allows the bacteria to explore the 

search space to find better solutions for the given problem. For 

example, task T1 is allocated to resource R1. The new 

allocation is 2 (1 (previous resource id) + 0.99987 (value 

achieved by tumbling process)). Table 1 shows the resource 

allocation to workflow tasks before and after the chemotaxis 

process. The task-resource mapping of each bacterium is 

changed during chemotaxis process if each bacterium finds 

better fitness; otherwise the previous solution is preserved. 

 

4.4.2 Swarming 
 

Swarming allows the population of bacteria gathers 

together and moves as concentric patterns of swarms. The cost 

or fitness of a bacterium position is affected by swarming. The 

health of bacteria is needed during reproduction step where 

bacteria with poor health die and bacteria with good health go 

for reproduction.  

The swarming equation of bacteria is affected by the cell-

to-cell signaling is given by Eq. (1), where ║║ is the Euclidean 

norm, ωa and ωr are measures of the width of the attractant 

and repellent signals respectively, M measures the magnitude 

of the cell-cell signaling effect in the given swarming equation.  

The swarming equation drives certain weight that is added to 

cost (fitness value) of each bacterium to determine the health 

of bacterium. 

 

2 2

1 1

( , ) e e .

i k i kB Ba r
i

cc

k k

C M
ω ϕ ϕ ω ϕ ϕ

ϕ ϕ
− − − −

= =

    = − −     
∑ ∑  (1) 

 

For example, if the fitness value (makespan) of a 

bacterium is 100 seconds, the swarming weight is 44.999, and 

the health of the bacterium is 100 + 44.999 = 145.  The better 

the health, better would be the bacterium position. The health 

of bacterium allows it to make decision for the swimming step, 

that is, whether to swim in the same direction if the health is 

improving or stay back at the previous position. The health of 

the bacterium plays a crucial role in reproduction step, where 

the bacterium with better health survives and bacterium with 

poor health dies. 

 

4.4.3 Reproduction 
  

The reproduction step allows the bacteria to exploit the 

search space. The objective here is to search a limited region 

of the search space with the possibility of improving the local 

solution. The existing solutions are refined here to improve the 

fitness value. After chemotactic steps, a reproduction step is 

followed. In reproduction, the bacteria with bad health die and 

the bacteria with good health split into two bacteria to keep the 

population size same [27]. The bacteria are sorted according to 

their health. The scheduling solutions with higher or poor 

makespan will be removed from the current bacteria 

population. 

However, this step generates duplicate bacterium 

(scheduling solutions) in the bacteria population, but it is 

mandatory to remove the worse population (with poor fitness) 

from the current solutions. 

 

4.4.4 Elimination-dispersal 
 

This step allows the bacteria to search for the search space 

to get newer and refined solutions (if any), that is, searching a 

much larger portion of the search space with the possibility of 

finding better solutions. In elimination process, a bacterium is 

stochastically selected for elimination from the population and 

is replaced by a new bacterium located at a random new 

location within the search space, according to a predefined 

probability Ped. For example if the elimination-dispersal 

probability is 0.25 then 25% of the scheduling solutions or 

bacteria will selected on random basis and will be replaced by 

newly generated scheduling solutions or bacteria. 

However, this process introduces new population and 

removes redundant bacteria, which are generated in 

reproduction step.  But it may also kill the best scheduling 



Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms 

TEHNIČKI GLASNIK 15, 1(2021), 60-68                                     65 

solutions found so far. In order to preserve the best population 

elitism is applied during elimination-dispersal step. If the 

elitism rate is 10% then the top 10% of bacterium with 

minimum fitness or make span are preserved, while the rest 

90% of bacteria undergo elimination dispersal process. 

Tab. 8 is depicting the operational patameter values for 

BFOA. 

 

4.5  Genetic Algorithm 
 

Each chromose represents a potential solution in the 

problem space. The individual in population is generated in a 

similar manner as each bacterium is generated in BFOA. The 

total chromosomes are decided by the pre-determined 

population size. The genetic operators are explained below. 

 

4.5.1 Selection 
 

For selecting chromosomes for reproduction from the 

prevailing population, the tournament selection is applied. 

Two tournaments are held to select potential parents for 

mating. Parent 1 with better fitness value has been selected and 

this method is repeated in the second tournament to obtain 

second parent 2. The two parent chromosomes are selected for 

the crossover. Fig. 3 depicts the binary tournament selection 

procedure. 

 
Table 2 Task resource assignment before chemotaxis 

HPC task-resource assignment string 

T0 T1 T3 T2 T4 T5 T6 T7 

R2 R3 R1 R2 R3 R3 R0 R6 

 
Table 3 Task resource assignment after chemotaxis 

HPC task-resource assignment string 

T0 T1 T3 T2 T4 T5 T6 T7 

R1 R2 R3 R1 R4 R5 R6 R0 

 
Table 4 Control operational parameters for BFOA 

Sr. No Parameters Type/Values 

1 Bacteria Population 50 

2 Maximum number of steps, Ns 3 

3 Number of chemo tactic steps, Nc 20 

4 Number of reproduction steps, Nre 2 

5 Number of elimination-dispersal steps, Ned z2 

6 Probability, Ped 0.25 

7 Size of the chemotaxis step, C(i) 0.8 

 

 
Figure 3 The binary tournament selection 

 

4.5.2 Crossover 
 

The crossover operator allows the individuals to search for 

new solutions. The parents selected in tournament selection go 

for reproduction of Offsprings/children during crossover  [29]. 

In The two-point Crossover is used in our proposed approach. 

Tab. 5 and Tab. 6 are showing before and after crossover 

points. 

 
Table 5 Before two-point crossover 

Parent 1 R1 R2 R3 R4 R3 R4 R5 R6 

Parent 2 R0 R7 R5 R9 R1 R3 R2 R8 

 

Table 6 After two-point crossover 

Offspring 1: R1 R2 R3 R9 R1 R3 R5 R6 

Offspring 2: R0 R7 R5 R4 R3 R4 R2 R8 

 

4.5.3 Mutation 
 

Next to crossover operation, the mutation operation is 

applied to one chromosome based on the mutation probability. 

The mutation operation helps to diversify the population and 

to obtain new solutions. Replace Mutation is used in the 

research work presented in this paper. When the mutation 

probability of is decided by a chromosome with the selection 

of two random points and the resources of those tasks are 

interchanged.  
Tab. 7 is depicting the controlled parameter values for GA. 

The fine tuning of controlled parameters is based on the 

empirical study of the GA based research outcome.  

 
Table 7 Control operational parameters for GA 

Sr. No Parameters Type/Values 

1 Crossover Two-Point 

2 Crossover Probability  0.8 

3 Mutation Type Swap  

4 Crossover Probability 0.2 

5 Population Size 100 

 

4.6  Particle Swarm Optimization (PSO) 
 

Particle Swarm Optimization is an intelligence technique 

which is based on a swarm of particles moving in search space 

and communicating with each other for determining a near 

optimal solution [30]. Population of particles is known as 

swarm in PSO. Each particle is represented in a similar manner 

as a bacterium is represented in bacteria population.  The 

parameters used in the PSO algorithms are:  

Velocity (vector): This vector determines the direction in 

which a particle needs to fly in order to improve its current 

position in the flock.  

pbest (personal best): It is the personal best position 

(solution) of a given particle found so far.  

gbest (global best): Position of the best particle in the 

entire swarm.  

Inertia weight: Denoted by ω, the inertia weight is used to 

control the impact of the previous history of velocities on the 

current velocity of a given particle. It can be taken as random 

value or constant value.  
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Learning factors: There are two learning factors used in 

PSO that is, C1 and C2.  The parameter C1 represents the 

attraction of a particle towards its own success, while 

parameter C2 represents the attraction of a particle towards the 

success of global best position. 

Every particle gets updated during each iteration by its 

personal best value, that is, pbest and the global best value, 

that is, gbest. The particle modifies its position with the help 

of velocity and position vector to explore the search space for 

better solutions (Doctor Kennedy and Eberhart in 1995).  

When the position of a particle is changed, the task-resource 

mapping is changed. The tasks are assigned to different set of 

resources as long as the position of each particle is updated. 

Tab. 8 depicts the values of control parameters used for 

workflow scheduling in our research work.  

 
Table 8 Control parameters for PSO 

Sr. No Parameters Values 

1 C1 1.25 

2 C2  1 

3 ω 0.9 

4 r1 0.1 

5 r2 1 

6 Swarm size 100 

 

4.7 Multiple Workflows Scheduling 
 

In multiple workflows scheduling, a group of tasks are 

scheduled level-wise in the workflow trees using the heuristic 

algorithms (MinMin, MaxMin, and Myopic). We explain the 

multiple workflow scheduling mechanism that we have 

implemented in our work with one such heuristic algorithm 

namely, MinMin. We first take all the tasks on level one of 

all the workflow trees and schedule them using the MinMin 

algorithm. The task with minimum time to compute is picked 

first and is scheduled on the fastest resource (the processor 

which takes shortest time to execute the task). We then 

schedule the tasks at second level of the workflows. The 

shortest task is allocated to the fastest resource and this 

process continues until all the tasks at all the levels are 

scheduled. MinMin applies its scheduling strategy of shortest 

job on fastest resource at each workflow level and schedule 

the all the tasks in the workflows. The other heuristics such 

as MaxMin and Myopic also perform scheduling according 

to the levels of workflow. The only difference is their 

scheduling strategies. MaxMin schedules the longest task on 

the fastest resource at each workflow level, whereas, myopic 

chooses the tasks in an arbitrary fashion and schedules them 

on the fastest resources. The reverse is also true when meta-

heuristic algorithms (BFOA, PSO, and GA) allocate a set of 

tasks to the corresponding resources.  

 

4.8  Experimental Setup 
 

The heterogeneous resources with different processing 

capacities are simulated and defined in terms of MI/sec 

(Million Instructions/sec). The size of each task is generated 

between 8000 MI and 20,000 MI from a uniform distribution.  

The total number of tasks in the workflow are N. Our workflow 

generator can generate single workflows with many dependent 

tasks and multiple workflows (with specific number of tasks in 

each workflow). In our case study, 10 tasks have been 

generated in each workflow. If there are 10 workflows then the 

total number of tasks would be 100. The workflows for 

evaluation are created using the following parameters: 

• Type = Random workflows 

• One workflow= 10 tasks each 

• N = {50, 100, 200, 300, 400} 

• M = {5} 

 

Note that for GRASP, 500 iterations are considered and 

the value of α is set to 0.01.  

 

5 RESULTS AND OBSERVATIONS 
 

The scheduling heuristics are evaluated on the basis of 

total schedule length. The total schedule length for a set of 

workflows or dependent tasks is defined by the time span 

between the start of the first task and the end of the last task. 

Two sets of scheduling simulations have been carried out. In 

the first simulation, the search for scheduling solutions was 

initiated with a random generation of solutions in the search 

space. The exploitation and exploration of the solution space 

has been performed in order to refine the existing solutions and 

to search newer solutions using the metaheuristics algorithms 

such as BFOA, PSO and GA.  

In the second simulation, a hybrid approach is used where 

heuristic algorithms such as MaxMin, MinMin, and Myopic, 

have been used to get initial solutions in the search space. 

These along with randomly generated solutions serve as the 

starting solutions in the search space to the metaheuristics 

algorithms for possible improvements in the scheduling 

solutions. The performance of our hybrid approach is 

compared with the existing approaches for quality of the 

scheduling solutions. The results demonstrate that our hybrid 

approach (MinMin/Myopic with BFOA) outperforms other 

approaches. 

The space complexity increases exponentially with 

increase in task-resource combinations. For 200 tasks and 5 

resources, there exist 5200 scheduling solutions. The 

evolutionary techniques perform well when the search space is 

small (less number of tasks and lesser number of task-resource 

combinations). As the search space complexity increases, it is 

difficult to determine the near optimal solution.  

Tab. 9 and Fig. 4 depicts that heuristic algorithm perform 

well even if the number of workflows with number of tasks go 

on increasing while the quality of solutions obtained  by BFOA 

and other evolutionary techniques such as GA and PSO starts 

deteriorating as the search space increases.  

 
Table 9 Metaheuristic Hybrid Approach Vs Heuristic Approaches 

Tasks MaxMin MinMin Myopic GRASP GA PSO BFOA 

50 165 145 139 138 134 132 126 

100 290 244 226 233 243 242 228 

200 602 518 504 501 519 516 509 

300 765 633 643 607 677 681 665 

400 996 822 811 840 957 925 913 
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Figure 4 Heuristic approaches vs Metaheuristic approaches 

 
Table 10 Metaheuristic vs Heuristic Approaches 

Tasks MaxMin MinMin Myopic GRASP GA PSO BFOA 

50 165 145 139 138 121 120 115 

100 290 244 226 233 218 225 202 

200 602 518 504 501 476 496 446 

300 765 633 643 607 587 581 575 

400 996 822 811 840 793 796 774 

 

 
Figure 5 Heuristic approaches Vs Metaheuristic Hybrid Approach 

 

Tab. 10 and Fig. 5 depicts that the hybrid approach 

improves the quality of scheduling solutions and minimizes 

the computational time to obtain the near optimal solution. If 

the metaheuristic algorithms start with solutions obtained by 

heuristic solution along with some randomly generated 

solutions, then the quality of solution improves significantly, 

because the exploration of the search space is guided in a better 

direction. The solutions generated by hybrid BFOA are 

improved by 8% for 50 tasks, 11% for 100 tasks, 12% for 200 

tasks, 13% for 300 tasks and 15% for 400 tasks, respectively.    

 

6  CONCLUSION  
 

In this paper, we have used the bio-inspired bacteria 

foraging optimization algorithm (BFOA) together with other 

heuristic algorithms to find scheduling solutions for multiple 

workflows. Starting with a random schedule for the multiple 

workflows, the BFOA attempts to find a scheduling solution. 

However, this may not always result in optimal or sub-

optimal solution and sometimes may take large amount of 

computation time to get to a desired scheduling solution. 

Hence, we have used a hybrid approach where heuristic 

algorithms such as MaxMin, MinMin, and Myopic have been 

used to get initial solutions in the search space, which then 

serve as starting points (along with other randomly generated 

solutions) for getting better solutions using bacteria foraging 

optimization algorithm. The performance of our hybrid 

approach presented in this paper is compared with the 

existing approaches. The results demonstrate that our hybrid 

approach (MinMin/Myopic with BFOA) outperforms other 

approaches. 
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