
60 TECHNICAL JOURNAL 15, 1(2021), 60-68

ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) Original scientific paper
https://doi.org/10.31803/tg-20210204183323

Bio-Inspired Workflow Scheduling on HPC Platforms

Mandeep Kaur*, Sanjay Kadam

Abstract: Efficient scheduling of tasks in workflows of cloud or grid applications is a key to achieving better utilization of resources as well as timely completion of the user jobs.
Many scientific applications comprise several tasks that are dependent in nature and are specified by workflow graphs. The aim of the cloud meta-scheduler is to schedule the
user application tasks (and the applications) so as to optimize the resource utilization and to execute the user applications in minimum amount of time. During the past decade,
there have been several attempts to use bio-inspired scheduling algorithms to obtain an optimal or near optimal schedule in order to minimize the overall schedule length and to
optimize the use of resources. However, as the number of tasks increases, the solution space comprising different tasks-resource mapping sequences increases exponentially.
Hence, there is a need to devise mechanisms to improvise the search strategies of the bio-inspired scheduling algorithms for better scheduling solutions in lesser number of
iterations/time. The objective of the research work in this paper is to use bio-inspired bacteria foraging optimization algorithm (BFOA) along with other heuristics algorithms for
better search of the scheduling solution space for multiple workflows. The idea is to first find a schedule by the heuristic algorithms such as MaxMin, MinMin, and Myopic, and use
these as initial solutions (along with other randomly generated solutions) in the search space to get better solutions using BFOA. The performance of our approach with the existing
approaches is compared for quality of the scheduling solutions. The results demonstrate that our hybrid approach (MinMin/Myopic with BFOA) outperforms other approaches.

Keywords: BFOA; bio-inspired; cloud computing; HPC; makespan; scheduling; workflow

1 INTRODUCTION

High performance computing is about the use of high-

productivity computing resources to solve challenging

problems in scientific and engineering domains [1]. The HPC

platform could comprise workstations, desktop machines,

supercomputers, grid or cloud [2]. Grid computing is a kind

of HPC loosely coupled collection of heterogeneous

resources that are shared by the grid users for utilizing the

ideal and under-utilized capacity of the resources [3, 4]. On

the other hand cloud computing is a simplified form of grid

computing that provides virtual server instance on shared

resources based on user specifications [5].

Scientific computing is becoming more relevant in many

research disciplines. A typical application may contain

several dependent tasks specified as a workflow, which

requires efficient scheduling of the tasks. The scheduling of

workflows is a challenging task in HPC environment because

of inter-dependency of the tasks that needs to be taken care

of while scheduling the workflow tasks [6]. The grid/cloud

meta-schedulers are responsible for fetching the matched

resources that are capable to run the workflow application

and schedule these workflows on the available resources [7].

The most important scheduling criterion for HPC

environment is to produce a schedule with minimum

schedule length so as to optimize the utilization of the

resources [8].

During the past decade there have been several attempts

to use bio-inspired scheduling algorithms to obtain an

optimal or near optimal schedule of the tasks on a specified

set of resources in order to minimize the overall schedule

length and to optimize the use of resources. However, as the

number of tasks increases, the solution space consisting of

mapping of tasks to corresponding resources increases

exponentially. Hence, there is a need to devise mechanisms

to improvise the search strategies and/or mechanisms of the

bio-inspired scheduling algorithms for better scheduling

solutions in lesser number of iterations/time.

The objective of the research work in this paper is to use

bio-inspired bacteria foraging optimization algorithm

(BFOA) along with other heuristics algorithms for better

search of the scheduling solution space. The idea is to first

find a schedule by the deterministic or heuristic algorithms

such as MaxMin, MinMin, and Myopic, and use these as

initial solutions in the search space to get better solutions

using BFOA. The advantage of using BFOA over other

nature inspired evolutionary approaches is that it is

computationally efficient and has good global convergence

[9]. The performance of our approach with the existing

approaches is compared for quality of the scheduling

solutions. The results demonstrate that our hybrid approach

(MinMin/Myopic with BFOA) outperforms other

approaches.

The paper is organized into five sections. The first

section provides background details and motivation of the

research work. The second section provides overview of the

workflow scheduling mechanism and also provides insights

into the existing workflow scheduling approaches. The third

section describes our proposed workflow scheduling

approach and fourth section is about the experimental setup.

The fifth section provides detailed discussion on the results

and observations. The last section concludes the research

work presented in this paper.

2 WORKFLOW SCHEDULING PROBLEM

The dependent-task or workflow application in grid and

cloud environment is represented as a standard task graph

(STG) or directed acyclic graph (DAG) as shown in Fig. 1.

In DAG, graph vertices represent tasks and the edges

represent task dependencies [8]. There could be n number of

dependent tasks and m number of resources; it is very

difficult to predict the best schedule with respect to large

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

TEHNIČKI GLASNIK 15, 1(2021), 60-68 61

mapping combinations between the tasks and the resources.

Therefore, the workflow scheduling problem is a non-

deterministic polynomial (NP)-complete problem [10]. The

workflow scheduling problem can be solved by heuristic

methods but the complexity of producing an appropriate

schedule becomes high. Therefore, the metaheuristic

methods are adopted to produce the near optimal schedule in

heterogeneous distributed environment.

Figure 1 Workflow tasks

Let us assume workflow W(T, E) consists of a set of

tasks, T = {T1, T2, … , Tx, …, Ty, …, Tn}, and a set of

dependencies among the tasks, E = {< Ta, Tb >, ..., < Tx, Ty

>} , where Tx is the parent task of Ty. The set R = {R1, R2, …,

Rm} represents the set of suitable resources in the Cloud.

Therefore, the dependent task scheduling problem is the

mapping of workflow tasks to Cloud resources (T→R) so that

the makespan M is minimized. The overall timespan of a

complete schedule is known as total schedule length or

makespan [11].

Generally, a workflow is a set of dependent tasks. The

entry task does not have any predecessing task and exit task

does not have any successor task [7]. Each dependent task

can be executed after the completion of its parent tasks. If a

child task is dependent upon more than one parent than it has

to wait until all the predecessing tasks complete their

execution. The child task becomes a ready task when all the

parent tasks complete their execution. If the child task

executes upon the same resource where parent task has

finished its execution then data transfer time is considered to

be zero.

The multiple users can submit multiple workflows to the

meta-schedulers. The two important aspects that have been

taken care by our meta-scheduler for scheduling the

workflow applications are: (1) the parallel handling of

multiple workflow applications, and (2) the scheduling of

workflow applications on heterogeneous and distributed

resources.

3 CURRENT SOLUTIONS IN WORKFLOW SCHEDULING

The current HPC and cloud meta-schedulers use many

heuristic algorithms to schedule the workflow applications.

The most popular methods are described below.

Myopic-Myopic heuristic is based on the minimum time

to compute strategy, where each ready task is assigned to the

resource that is capable to complete the ready task at the

earliest. Myopic heuristic is one of the simplest scheduling

techniques for scheduling dependent tasks in grid

environment because it considers a single task while

allocating the resource for scheduling. The myopic heuristic

is implemented in some real HPC environments such as

Condor DAGMan [12]. The Myopic algorithm schedules the

ready tasks one after other until all the tasks in ready queue

get scheduled. It maps each task to the resource that can

process the task at the earliest.

MinMin-This scheduling heuristic prioritizes dependent

tasks according the task sizes and schedules the tasks based

on the sizes of the tasks [13]. The Min–Min scheduling

heuristic maps shortest task on the fastest. The task having

minimum expected time for execution over all tasks is

selected to be scheduled first on the fastest resource that takes

minimum time for execution during each iteration and it

keeps scheduling all the tasks until the ready queue is

exhausted. MinMin is implemented in real HPC environment

such as vGrADS[14] of Rice University USA.

MaxMin-The MaxMin [15] scheduling heuristic

prioritizes the dependent tasks according to the expected time

to compute, the task that requires the longest execution time

is allocated to the fastest resource that is capable to process

the task at the earliest. This heuristic arranges the workflow

tasks into multiple independent task groups and schedules

each group of tasks iteratively. In each iterative step, a task

with maximum time to compute is selected to be scheduled

on the fastest resource that can process the task at the earliest.

HEFT-Topcuoglu H. et al. proposed a list scheduling

method known as Heterogeneous Earliest Finish Time

(HEFT) [16], which sets higher priority to the dependent

tasks having higher rank value. The rank value is based on

the average execution time of each task and average data

transfer time between the predecessor and successor task,

where the tasks in the critical path have higher rank values.

Afterwards, this heuristic sorts the tasks by the descending

order of the rank values of the tasks and the task with a higher

rank value are set to higher priority. During actual

scheduling, tasks in a workflow are scheduled in the order of

their priorities, and each task is assigned to the fastest

resource that can process the task at the earliest.

PSO-Particle Swarm Optimization (PSO) is a random

based scheduling approach that searches the search space to

find the near optimal solution. The position of each particle

in search space represents a potential solution. The swarm

represents the total number of predefined particles. The

particle swarm optimization explores the search space by

using position vector and terminates when predefined

stopping criterion is met. The best particle that provides

minimum value for objective function, that is, makespan, is

selected as a final solution. In [17], authors have

implemented PSO based scheduling approach to minimize

the makespan.

GA- Genetic algorithm is also a metaheuristic approach

[18] that generates random solutions to achieve near optimal

solution. In GA, each individual represents a potential

solution. The search space is explored using crossover and

mutation operators. The GA terminates after a predetermined

stopping criterion is met. The best solution obtained during

evaluations is printed as a final solution. The final solution

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

62 TECHNICAL JOURNAL 15, 1(2021), 60-68

represents task-resource mapping and scheduling timing. In

[19], authors have presented workflow scheduling using GA

with the objective of minimization of overall schedule length.

GRASP-The Greedy methods randomized adaptive

search procedure (GRASP) [20] is an iterative approach that

searches the solution on random basis. In GRASP,

predetermined iterations are conducted to search a near

optimal solution for scheduling the tasks on available

resources. A new solution is generated in each iteration and

the best solution among all the iterations is taken as the final

solution. This method determines the minimum and

maximum time to compute for each task on the available

resources. The average time is determined by applying

GRASP equation for executing a ready task on the available

resources. All the resources that take lesser or equal time to

the average time (obtained from GRASP equation) are

considered for scheduling decision and any one resource is

allocated to the ready task on random basis.

3.1 Related Work

There exists many state-of-the-art works for scheduling

workflow tasks in HPC environment but most of the

approaches are capable to handle single workflow at a time

level-wise.

Rahman et al. [21] have presented a dynamic workflow

scheduling approach known as DCP-G that minimizes the

workflow execution time dynamically along with reducing

the scheduling overhead. Bogdan et al. [22] have introduced

an improved critical path using descendant prediction

method for workflow scheduling, which is known as ICPDP.

This approach performs well for minimizing makespan and

for balancing the load of HPC resources. It also minimizes

idle time of processing elements to enhance the resource

utilization. Wang et al. [23] have presented an extensive

approach named look-ahead genetic algorithm (LAGA),

which optimizes both makespan and reliability of workflow

tasks. LAGA uses an evolution and evaluation method as a

two phased methodology. In first phase, the evolution

operators of GA decide the task-resource mapping and

second phase allows the evaluation steps to govern the task

order of solutions using max-min strategy.

Amalarethinam and Selvi [24] have proposed minimum

makespan grid workflow scheduling (MMGWS) that mini-

mizes makespan of the workflows in HPC. This approach

makes advance reservation of the desired resources and

schedules the tasks on the basis of their respective priorities.

The results of proposed approach are compared with Min-

Min and HEFT scheduling algorithms. Garg et al. [25] have

presented an adaptive workflow scheduling (AWS) to opti-

mize makespan considering dynamic availability of the

resources. This algorithm also takes care of load balancing

by rescheduling the tasks to new resources form overloaded

resources.

The existing approaches have not explained that the

performance of bio-inspired algorithms deteriorates if the

search space is huge. The performance depends upon the

quality of scheduling solutions and the computational time to

obtain the near optimal schedule. Hence, we are proposing

bio-inspired hybrid BFOA approach for better search of the

scheduling solution that provides scheduling solutions of

better quality within less computational time. The idea is to

first find a schedule by the heuristic algorithms such as

MaxMin, MinMin, and Myopic, and use these as initial

solutions (along with other randomly generated solutions) in

the search space to get better solutions using BFOA. Most of

the existing workflow scheduling approaches are based on

single workflows whereas we have addressed scheduling

problem of multiple workflows which are to be scheduled in

parallel. The performance of our approach with the existing

approaches is compared for quality of the scheduling

solutions. The results demonstrate that our hybrid approach

(MinMin/Myopic with BFOA) outperforms other

approaches.

4 PROPOSED APPROACH

In this paper, a Bacterial foraging optimization algorithm

based workflow scheduling mechanism is presented with two

different aspects a) Starting with some random solution and

searching for the optimal or sub-optimal scheduling solution,

2) Starting with a solution generated by MaxMin, MinMin

and Myopic scheduling strategies and then searching for the

optimal or sub-optimal schedule from this starting solution.

4.1 Bacterial Foraging Optimization Algorithm (BFOA)

Kevin Passino proposed the Bacterial Foraging

Optimization Algorithm (BFOA) in 2002. BFOA provides

vigorous search techniques that let a high quality solution to

be achieved within a large search space [26].The bacterial

foraging algorithm explores the new regions of the search

space by chemotaxis and elimination-dispersal process and

BFOA exploits the best solutions from the past searches

through reproduction process. A bacterium is any solution in

the search space, which is represented by a set of parameters.

A bacteria foraging optimization algorithm maintains a

bacteria population consisting of a set of bacterium that

evolves over generations [26].The quality of a bacterium in a

bacteria population is determined by an objective function. A

typical Bacterial Foraging Optimization Algorithm consists

of the following steps:

Algorithm

1. Initialize B, p, Nc, Nre, Ns, Ned, Ped and S(i), (i = 1, 2, …,

B).

Choose the initial values randomly for θi where

i=1,2….B in the search space. B represents population of

bacteria;Nch represents number of chemotactix steps; Ns

represents swim length; Ned represents the probability of

removal of bacteria; S(i) specifies the size of the step

taken in diverse direction during tumbling. The position

p of each bacterium in bacteria population B is updated

automatically and the iterations stop after meeting the

stopping criteria.

2. Elimination loop: el= el+1.

3. Reproduction loop: r=r+1

4. Chemotactic loop: c =c +1

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

TEHNIČKI GLASNIK 15, 1(2021), 60-68 63

a) For i = 1, 2, …, B take a chemotactic step for ith

bacterium.

b) Compute fitness C(i, c, r, el).

c) Let C(i, c, r, el) = C(i, c, r, el) + Ccc(θi(c, r, el), θ(c, r, el))

d) Let Cprevious = C(i, c, r, el) to retain this value until a better

cost/fitness is found.

e) Tumble: Create a random vector Δ(i) ∈ ℜ𝑝𝑝 with each

element Δk(i) ∈ [−1, 1] (k = 1, 2, …, p).

f) Make a movement with a step of size S(i) for ith

bacterium in the direction of the tumble.

T

Δ()
(1, ,) (, ,) ()

Δ ()Δ()
i i i

c r el c r el S i
i i

θ θ+ = +

g) Compute C(i, c + 1, r, el)

h) Swim.

Let m = 0 (Initialize the swin length counter)

While m < Ns Let m = m + 1

If C(i, c + 1, r, el) < Cprevious (if there exists

improvement), let Cprevious = C(i, c + 1, r, el) and let

T

Δ()
(1, ,) (1, ,) ()

Δ ()Δ()
i i i

c r el c r el S i
i i

θ θ+ = + +

Use this θi(c + 1, r, el) to compute the new C(i, c + 1, r,

el).

Else, let m = Ns. End of while Loop.

i) Move to next bacterium (i + 1), if i ≠ B

5. If c < Nc go to step 3. In this case, repeat chemotaxis

steps, till the end of bacteria life.

6. Go for reproduction.

a. For the given reproduction r and elimination dispersal el,

and for each i = 1, 2, 3, …, B, let
1

health

1

(, , ,)
Nc

i

c

C C i c r el
+

=
= ∑ be the health of bacterium i.

Sort the bacteria in ascending order of health of bacteria

as Chealth.

b. The Br bacterium with poor Chealth values die and the

other Br bacteria with the best values split into two

bacteria to keep the population size same.

7. If r < Nre, move to step 2.

8. Go for Elimination-Dispersal with the pre-determined

probability Ped. If el < Ned, then go to step 1, otherwise

end.

4.2 Problem Definition

Using BFOA algorithm to solve the workflow

scheduling problem needs suitable representation of

bacterium in the given bacteria population. The problem

definition consists of the following:

• The problem consists of a set of resources and the tasks of

one or more workflows that need to be scheduled

• The task sequence is fixed, while the resource allocation to

the individual tasks varies

• A child task in any workflow can be scheduled only after

the completion of its parent tasks.

• The expected execution time (EET) of each task is

calculated on the basis of task size (specified in Millon

Instructions) and processor’s capacity (specified in MIPS

(Million instructions per second).

The aim of the proposed work is to minimize the overall

schedule length of the task-resource mapping explained in

subsequent sections.

4.3 Objective Function

The scheduling of dependent tasks in a workflow focuses

on some of the scheduling criteria such as minimizing the total

schedule length, minimizing flowtime, minimizing the overall

execution cost, executing the tasks within the user specified

deadline. The objective function is used to evaluate the current

bacteria (population) to produce quality solutions. In our

research work, we are taking total schedule length as objective

function, which is to be minimized to produce a potential

schedule.

Let T = {t1, t2, ..., tn} be the n tasks in a given set of

workflows that need to be scheduled on a set of m resources R

= {r1, r2, …, rm}. Let B be the start time of the first task, while

F be the finish time of the last task in a schedule. The schedule

length is defined as the total time span TSi between B and F for

ith schedule. The objective function is to minimize the total

schedule length TSi or makespan over all possible schedules,

that is, argi(min{TSi}, i ∈ Schedules) .

4.4 Initial Bacteria Population in BFOA

The initial population of the bacteria represents random

scheduling solutions. That is, the position of each bacterium

represents a possible schedule (possible solution in the

problem space). The position of each bacteria is an n–

dimensional vector, where the ith element of the vector

represents the resources ID on which the ith task is executed.

The task sequence remains constant, while the resource

allocation changes across different schedules. The total

number of bacterium is determined by the pre-decided bacteria

population size.

Figure 2 An example workflow

An example of Bacteria position is shown in Tab. 1,

where the tasks T0 to T7 have fixed order, while the resource

string varies across the tasks and also over different schedule

solutions. Fig. 2 displays an example of workflow.

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

64 TECHNICAL JOURNAL 15, 1(2021), 60-68

Table 1 Bacteria population sample
Position vector (R1, R2, …, R0) of a bacterium

T0 T1 T3 T2 T4 T5 T6 T7

R1 R2 R3 R1 R4 R5 R6 R0

The initial bacteria population in the bacterial foraging

optimization algorithm could comprise a) Random solutions

(positions), or b) Random solutions with a few bacteria

positions initialized with solutions obtained by MaxMin,

MinMin and Myopic scheduling strategies. The BFOA then

searches for the optimal or sub-optimal schedule from this

initial population.

The idea behind incorporating these heuristic strategies in

BFOA is to enhance the exploration capability of the proposed

approach. If there are n jobs and m resources, each job will

have nm combinations. For example, for 100 jobs and 10

resources, there would be 10010 combinations. This search

space is huge and it may not be computationally feasible to

find the near optimal solutions. With initial solutions obtained

from some heuristic techniques such as MaxMin, MinMin, and

Myopic, the exploration by the evolutionary algorithm would

start from these positions or solutions and the algorithms

would attempt to improve upon these solutions (find

optimal/sub-optimal solutions), if applicable, in relatively

lesser amount of time. The following sections describe the

steps involved in BFOA in the context of scheduling problem.

4.4.1 Chemotactic Process

Chemotaxis process allows the bacterium to move

towards the sources of food. The bacterium swims to change

directions during this process and follows the same direction if

it finds good fitness over the previously swimming steps. In

this process, the bacterium explores search space for better

solutions. The tasks are allocated to different combination of

resources to achieve better fitness values. The movement of the

ith bacterium at the cth chemotactic, rth reproductive, and elth

elimination dispersal step can be mathematically expressed as

follows:

Where ∆ indicates a vector in the random direction

whose elements lie in in [−1, 1].

The chemotaxis process allows the bacteria to explore the

search space to find better solutions for the given problem. For

example, task T1 is allocated to resource R1. The new

allocation is 2 (1 (previous resource id) + 0.99987 (value

achieved by tumbling process)). Table 1 shows the resource

allocation to workflow tasks before and after the chemotaxis

process. The task-resource mapping of each bacterium is

changed during chemotaxis process if each bacterium finds

better fitness; otherwise the previous solution is preserved.

4.4.2 Swarming

Swarming allows the population of bacteria gathers

together and moves as concentric patterns of swarms. The cost

or fitness of a bacterium position is affected by swarming. The

health of bacteria is needed during reproduction step where

bacteria with poor health die and bacteria with good health go

for reproduction.

The swarming equation of bacteria is affected by the cell-

to-cell signaling is given by Eq. (1), where ║║ is the Euclidean

norm, ωa and ωr are measures of the width of the attractant

and repellent signals respectively, M measures the magnitude

of the cell-cell signaling effect in the given swarming equation.

The swarming equation drives certain weight that is added to

cost (fitness value) of each bacterium to determine the health

of bacterium.

2 2

1 1

(,) e e .

i k i kB Ba r
i

cc

k k

C M
ω ϕ ϕ ω ϕ ϕ

ϕ ϕ
− − − −

= =

    = − −     
∑ ∑ (1)

For example, if the fitness value (makespan) of a

bacterium is 100 seconds, the swarming weight is 44.999, and

the health of the bacterium is 100 + 44.999 = 145. The better

the health, better would be the bacterium position. The health

of bacterium allows it to make decision for the swimming step,

that is, whether to swim in the same direction if the health is

improving or stay back at the previous position. The health of

the bacterium plays a crucial role in reproduction step, where

the bacterium with better health survives and bacterium with

poor health dies.

4.4.3 Reproduction

The reproduction step allows the bacteria to exploit the

search space. The objective here is to search a limited region

of the search space with the possibility of improving the local

solution. The existing solutions are refined here to improve the

fitness value. After chemotactic steps, a reproduction step is

followed. In reproduction, the bacteria with bad health die and

the bacteria with good health split into two bacteria to keep the

population size same [27]. The bacteria are sorted according to

their health. The scheduling solutions with higher or poor

makespan will be removed from the current bacteria

population.

However, this step generates duplicate bacterium

(scheduling solutions) in the bacteria population, but it is

mandatory to remove the worse population (with poor fitness)

from the current solutions.

4.4.4 Elimination-dispersal

This step allows the bacteria to search for the search space

to get newer and refined solutions (if any), that is, searching a

much larger portion of the search space with the possibility of

finding better solutions. In elimination process, a bacterium is

stochastically selected for elimination from the population and

is replaced by a new bacterium located at a random new

location within the search space, according to a predefined

probability Ped. For example if the elimination-dispersal

probability is 0.25 then 25% of the scheduling solutions or

bacteria will selected on random basis and will be replaced by

newly generated scheduling solutions or bacteria.

However, this process introduces new population and

removes redundant bacteria, which are generated in

reproduction step. But it may also kill the best scheduling

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

TEHNIČKI GLASNIK 15, 1(2021), 60-68 65

solutions found so far. In order to preserve the best population

elitism is applied during elimination-dispersal step. If the

elitism rate is 10% then the top 10% of bacterium with

minimum fitness or make span are preserved, while the rest

90% of bacteria undergo elimination dispersal process.

Tab. 8 is depicting the operational patameter values for

BFOA.

4.5 Genetic Algorithm

Each chromose represents a potential solution in the

problem space. The individual in population is generated in a

similar manner as each bacterium is generated in BFOA. The

total chromosomes are decided by the pre-determined

population size. The genetic operators are explained below.

4.5.1 Selection

For selecting chromosomes for reproduction from the

prevailing population, the tournament selection is applied.

Two tournaments are held to select potential parents for

mating. Parent 1 with better fitness value has been selected and

this method is repeated in the second tournament to obtain

second parent 2. The two parent chromosomes are selected for

the crossover. Fig. 3 depicts the binary tournament selection

procedure.

Table 2 Task resource assignment before chemotaxis

HPC task-resource assignment string

T0 T1 T3 T2 T4 T5 T6 T7

R2 R3 R1 R2 R3 R3 R0 R6

Table 3 Task resource assignment after chemotaxis

HPC task-resource assignment string

T0 T1 T3 T2 T4 T5 T6 T7

R1 R2 R3 R1 R4 R5 R6 R0

Table 4 Control operational parameters for BFOA

Sr. No Parameters Type/Values

1 Bacteria Population 50

2 Maximum number of steps, Ns 3

3 Number of chemo tactic steps, Nc 20

4 Number of reproduction steps, Nre 2

5 Number of elimination-dispersal steps, Ned z2

6 Probability, Ped 0.25

7 Size of the chemotaxis step, C(i) 0.8

Figure 3 The binary tournament selection

4.5.2 Crossover

The crossover operator allows the individuals to search for

new solutions. The parents selected in tournament selection go

for reproduction of Offsprings/children during crossover [29].

In The two-point Crossover is used in our proposed approach.

Tab. 5 and Tab. 6 are showing before and after crossover

points.

Table 5 Before two-point crossover

Parent 1 R1 R2 R3 R4 R3 R4 R5 R6

Parent 2 R0 R7 R5 R9 R1 R3 R2 R8

Table 6 After two-point crossover

Offspring 1: R1 R2 R3 R9 R1 R3 R5 R6

Offspring 2: R0 R7 R5 R4 R3 R4 R2 R8

4.5.3 Mutation

Next to crossover operation, the mutation operation is

applied to one chromosome based on the mutation probability.

The mutation operation helps to diversify the population and

to obtain new solutions. Replace Mutation is used in the

research work presented in this paper. When the mutation

probability of is decided by a chromosome with the selection

of two random points and the resources of those tasks are

interchanged.
Tab. 7 is depicting the controlled parameter values for GA.

The fine tuning of controlled parameters is based on the

empirical study of the GA based research outcome.

Table 7 Control operational parameters for GA

Sr. No Parameters Type/Values

1 Crossover Two-Point

2 Crossover Probability 0.8

3 Mutation Type Swap

4 Crossover Probability 0.2

5 Population Size 100

4.6 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is an intelligence technique

which is based on a swarm of particles moving in search space

and communicating with each other for determining a near

optimal solution [30]. Population of particles is known as

swarm in PSO. Each particle is represented in a similar manner

as a bacterium is represented in bacteria population. The

parameters used in the PSO algorithms are:

Velocity (vector): This vector determines the direction in

which a particle needs to fly in order to improve its current

position in the flock.

pbest (personal best): It is the personal best position

(solution) of a given particle found so far.

gbest (global best): Position of the best particle in the

entire swarm.

Inertia weight: Denoted by ω, the inertia weight is used to

control the impact of the previous history of velocities on the

current velocity of a given particle. It can be taken as random

value or constant value.

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

66 TECHNICAL JOURNAL 15, 1(2021), 60-68

Learning factors: There are two learning factors used in

PSO that is, C1 and C2. The parameter C1 represents the

attraction of a particle towards its own success, while

parameter C2 represents the attraction of a particle towards the

success of global best position.

Every particle gets updated during each iteration by its

personal best value, that is, pbest and the global best value,

that is, gbest. The particle modifies its position with the help

of velocity and position vector to explore the search space for

better solutions (Doctor Kennedy and Eberhart in 1995).

When the position of a particle is changed, the task-resource

mapping is changed. The tasks are assigned to different set of

resources as long as the position of each particle is updated.

Tab. 8 depicts the values of control parameters used for

workflow scheduling in our research work.

Table 8 Control parameters for PSO

Sr. No Parameters Values

1 C1 1.25

2 C2 1

3 ω 0.9

4 r1 0.1

5 r2 1

6 Swarm size 100

4.7 Multiple Workflows Scheduling

In multiple workflows scheduling, a group of tasks are

scheduled level-wise in the workflow trees using the heuristic

algorithms (MinMin, MaxMin, and Myopic). We explain the

multiple workflow scheduling mechanism that we have

implemented in our work with one such heuristic algorithm

namely, MinMin. We first take all the tasks on level one of

all the workflow trees and schedule them using the MinMin

algorithm. The task with minimum time to compute is picked

first and is scheduled on the fastest resource (the processor

which takes shortest time to execute the task). We then

schedule the tasks at second level of the workflows. The

shortest task is allocated to the fastest resource and this

process continues until all the tasks at all the levels are

scheduled. MinMin applies its scheduling strategy of shortest

job on fastest resource at each workflow level and schedule

the all the tasks in the workflows. The other heuristics such

as MaxMin and Myopic also perform scheduling according

to the levels of workflow. The only difference is their

scheduling strategies. MaxMin schedules the longest task on

the fastest resource at each workflow level, whereas, myopic

chooses the tasks in an arbitrary fashion and schedules them

on the fastest resources. The reverse is also true when meta-

heuristic algorithms (BFOA, PSO, and GA) allocate a set of

tasks to the corresponding resources.

4.8 Experimental Setup

The heterogeneous resources with different processing

capacities are simulated and defined in terms of MI/sec

(Million Instructions/sec). The size of each task is generated

between 8000 MI and 20,000 MI from a uniform distribution.

The total number of tasks in the workflow are N. Our workflow

generator can generate single workflows with many dependent

tasks and multiple workflows (with specific number of tasks in

each workflow). In our case study, 10 tasks have been

generated in each workflow. If there are 10 workflows then the

total number of tasks would be 100. The workflows for

evaluation are created using the following parameters:

• Type = Random workflows

• One workflow= 10 tasks each

• N = {50, 100, 200, 300, 400}

• M = {5}

Note that for GRASP, 500 iterations are considered and

the value of α is set to 0.01.

5 RESULTS AND OBSERVATIONS

The scheduling heuristics are evaluated on the basis of

total schedule length. The total schedule length for a set of

workflows or dependent tasks is defined by the time span

between the start of the first task and the end of the last task.

Two sets of scheduling simulations have been carried out. In

the first simulation, the search for scheduling solutions was

initiated with a random generation of solutions in the search

space. The exploitation and exploration of the solution space

has been performed in order to refine the existing solutions and

to search newer solutions using the metaheuristics algorithms

such as BFOA, PSO and GA.

In the second simulation, a hybrid approach is used where

heuristic algorithms such as MaxMin, MinMin, and Myopic,

have been used to get initial solutions in the search space.

These along with randomly generated solutions serve as the

starting solutions in the search space to the metaheuristics

algorithms for possible improvements in the scheduling

solutions. The performance of our hybrid approach is

compared with the existing approaches for quality of the

scheduling solutions. The results demonstrate that our hybrid

approach (MinMin/Myopic with BFOA) outperforms other

approaches.

The space complexity increases exponentially with

increase in task-resource combinations. For 200 tasks and 5

resources, there exist 5200 scheduling solutions. The

evolutionary techniques perform well when the search space is

small (less number of tasks and lesser number of task-resource

combinations). As the search space complexity increases, it is

difficult to determine the near optimal solution.

Tab. 9 and Fig. 4 depicts that heuristic algorithm perform

well even if the number of workflows with number of tasks go

on increasing while the quality of solutions obtained by BFOA

and other evolutionary techniques such as GA and PSO starts

deteriorating as the search space increases.

Table 9 Metaheuristic Hybrid Approach Vs Heuristic Approaches

Tasks MaxMin MinMin Myopic GRASP GA PSO BFOA

50 165 145 139 138 134 132 126

100 290 244 226 233 243 242 228

200 602 518 504 501 519 516 509

300 765 633 643 607 677 681 665

400 996 822 811 840 957 925 913

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

TEHNIČKI GLASNIK 15, 1(2021), 60-68 67

Figure 4 Heuristic approaches vs Metaheuristic approaches

Table 10 Metaheuristic vs Heuristic Approaches

Tasks MaxMin MinMin Myopic GRASP GA PSO BFOA

50 165 145 139 138 121 120 115

100 290 244 226 233 218 225 202

200 602 518 504 501 476 496 446

300 765 633 643 607 587 581 575

400 996 822 811 840 793 796 774

Figure 5 Heuristic approaches Vs Metaheuristic Hybrid Approach

Tab. 10 and Fig. 5 depicts that the hybrid approach

improves the quality of scheduling solutions and minimizes

the computational time to obtain the near optimal solution. If

the metaheuristic algorithms start with solutions obtained by

heuristic solution along with some randomly generated

solutions, then the quality of solution improves significantly,

because the exploration of the search space is guided in a better

direction. The solutions generated by hybrid BFOA are

improved by 8% for 50 tasks, 11% for 100 tasks, 12% for 200

tasks, 13% for 300 tasks and 15% for 400 tasks, respectively.

6 CONCLUSION

In this paper, we have used the bio-inspired bacteria

foraging optimization algorithm (BFOA) together with other

heuristic algorithms to find scheduling solutions for multiple

workflows. Starting with a random schedule for the multiple

workflows, the BFOA attempts to find a scheduling solution.

However, this may not always result in optimal or sub-

optimal solution and sometimes may take large amount of

computation time to get to a desired scheduling solution.

Hence, we have used a hybrid approach where heuristic

algorithms such as MaxMin, MinMin, and Myopic have been

used to get initial solutions in the search space, which then

serve as starting points (along with other randomly generated

solutions) for getting better solutions using bacteria foraging

optimization algorithm. The performance of our hybrid

approach presented in this paper is compared with the

existing approaches. The results demonstrate that our hybrid

approach (MinMin/Myopic with BFOA) outperforms other

approaches.

Acknowledgement

The work has been carried out at Centre for Development

of Advanced Computing (C-DAC), SPPU Campus using

PARAM-HPC setup and we would also like to thank KPIT

R & D, Pune to help us in handling of multiple workflows in

parallel environment.

Notice

This paper was presented at IC2ST-2021 – International

Conference on Convergence of Smart Technologies. This

conference was organized in Pune, India by Aspire Research

Foundation, January 9-10, 2021. The paper will not be

published anywhere else.

7 REFERENCES

[1] Kaur, M. & Kadam, S. S. (2017). Discovery of resources using

MADM approaches for parallel and distributed computing,

Engineering Science and Technology, 20(3), 1013-1024.

https://doi.org/10.1016/j.jestch.2017.04.006
 [2] Rankin, S. (2016). An Introduction to HPC.

http://www.hpc.cam.ac.uk/getting-help/introtohpc-course

[3] http://www.ianfoster.org/wordpress/wp-content/uploads/2014/

01/History-of-the-Grid-numbered.pdf

[4] Kaur, M. (2012)- Semantic Resource Discovery with Resource

Usage Policies in Grid Environment, Int. J. Comput. Sci.

Issues, 9(5), 301-307.

[5] Shawish, A. & Salama, M. (2013). Cloud Computing :
Paradigms and Technologies. Inter-cooperative Collective

Intelligence: Techniques and Applications, 39-68.

 https://doi.org/10.1007/978-3-642-35016-0_2
[6] http://escience2015.mnm-team.org/wp-content/uploads/2015/

09/deelman_escience_2015_keynote.pptx.pdf

[7] Rahman, M., Hassan, R., Ranjan, R., & Buyya, R. (2013).

Adaptive workflow scheduling for dynamic grid and cloud

computing environment. Concurrency and Computation:

Practice and Experience, 25, 1816-1842.

 https://doi.org/10.1002/cpe.3003
[8] Yu, J., Buyya, R., & Ramamohanarao, K. (2008). Workflow

Scheduling Algorithms for Grid Computing. Metaheuristics

for Scheduling in Distributed Computing Environments, 173-

214. https://doi.org/10.1007/978-3-540-69277-5_7
[9] Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009).

Bacterial Foraging Optimization Algorithm : Theoretical

Kaur Mandeep, Kadam Sanjay: Bio-Inspired Workflow Scheduling on HPC Platforms

68 TECHNICAL JOURNAL 15, 1(2021), 60-68

Foundations, Analysis, and Applications. Foundations of

Computational Intelligence, 3(1), 23-55.

 https://doi.org/10.1007/978-3-642-01085-9_2
[10] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L.,

Maheswaran, M., Reuther, A. I., Robertson, J. P. et al. (2001).

A Comparison of Eleven Static Heuristics for Mapping a Class

of Independent Tasks onto Heterogeneous Distributed

Computing Systems. Journal of Parallel and Distributed

Computing, 61(6), 810-837.

 https://doi.org/10.1006/jpdc.2000.1714
[11] Kaur, M. (2016). FastPGA based scheduling of dependent tasks

in grid computing to provide QoS to grid users. IEEE

International Conference on Internet of Things and

Applications (IOTA), Pune, 418-423.

https://doi.org/10.1109/IOTA.2016.7562764
[12] Couvares, P., Kosar, T., Roy, A., Weber, J., & Wenger, K.

(2007). Workflow Management in Condor. research.cs.wisc.

edu/htcondor/doc/workflow_condor_2007.pdf

[13] Kaur, M. & Kadam, S. (2018). A novel multi-objective bacteria

foraging optimization algorithm (MOBFOA) for multi-

objective scheduling. Applied Soft Computing, 66, 183-195.
https://doi.org/10.1016/j.asoc.2018.02.011

[14] Kennedy, K., Cooper, K., Koelbel, C., Tapia, R., & Torczon,

L. (2009). The VGrADS Project, http://vgrads.rice.edu/

[15] Kaur, M. & Kadam, S. (2019). Discovery of resources over

Cloud using MADM approaches. International Journal for

Engineering Modelling, 32, 83-92.

https://doi.org/10.31534/engmod.2019.2-4.ri.02m
[16] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-

effective and low-complexity task scheduling for

heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.,

13(3), 260-274. https://doi.org/10.1109/71.993206

[17] Lei Zhang, B. Y. & Chen, Y. (2006) Task Scheduling Based on

PSO Algorithm in Computational Grid, Sixth Int. Conf. Intell.

Syst. Des. Appl., 2, 696-704.

 https://doi.org/10.1109/ISDA.2006.253921
[18] Carretero, J., Xhafa, F., & Abraham, A. (2007). Genetic

Algorithm Based Schedulers for Grid Computing Systems. Int.

J. Innov. Comput. Inf. Control, 3(6), 1-19.

[19] Wang, X., Shin, C., Buyya, R., & Su, J. (2011). Optimizing

Makespan and Reliability for Workflow Applications with

Reputation and Look-ahead Genetic Algorithm. J. Futur.

Gener. Comput. Syst., 27(8), 1124-1134.

 https://doi.org/10.1016/j.future.2011.03.008
[20] Resende, M. G. C. & Ribeiro, C. C. (2002). Greedy randomized

adaptive search procedures. DIMACS Series on Discrete

Mathematics and Theoretical Computer Science, 50, 1-29.

[21] Rahman, M., Hassan, R., Ranjan, R., & Buyya, R. (2013).

Adaptive workflow scheduling for dynamic grid and cloud

computing environment. Concurr. Comput. Pract. Exp., 25(3),

1816-1842. https://doi.org/10.1002/cpe.3003

[22] Bogdan, S., Catalin, L., Florin, P., & Valentin, C. (2007). A

Hybrid Algorithm for Scheduling Workflow Applications in

Grid Environments. Lect. Notes Comput. Sci., 4804, 1331-

1348. https://doi.org/10.1007/978-3-540-76843-2_15
[23] Wang, X., Shin, C., Buyya, R., & Su, J. (2011). Optimizing

Makespan and Reliability for Workflow Applications with

Reputation and Look-ahead Genetic Algorithm. Futur. Gener.

Comput. Syst., 27(8), 1124-1134.

 https://doi.org/10.1016/j.future.2011.03.008
[24] Amalarethinam, D. & Selvi, F. (2012). A Minimum Makespan

Grid Workflow Scheduling algorithm. 2012 International

Conference on Computer Communication and Informatics,

Coimbatore, India, 2012, 1-6.

https://doi.org/10.1109/ICCCI.2012.6158777

[25] Garg, R. & Singh, A. K. (2015). Adaptive work flow

scheduling in grid computing based on dynamic resource

availability. Eng. Sci. Technol. an Int. J., 18(2), 256-269.

 https://doi.org/10.1016/j.jestch.2015.01.001
[26] Kaur, M. (2016). Elitist Multi-Objective Bacterial Foraging

Evolutionary Algorithm for Multi-Criteria based Grid

Scheduling Problem. IEEE International Conference on

Internet of Things and Applications(IOTA’ 2016), 431-436.

https://doi.org/10.1109/IOTA.2016.7562767
[27] Dang, J., Brabazon, A., Neill, M. O., & Edelman, D. (2008).

Option Model Calibration Using a Bacterial Foraging

Optimization Algorithm. Springer-Verlag Berlin Heidelb., vol.

LNCS 4974, 113-122.

 https://doi.org/10.1007/978-3-540-78761-7_12
[28] Bhandari, D., Murthy, C. A., & Pal, S. K. (2012). Variance as

a Stopping Criterion for Genetic Algorithms with Elitist Model.

Fundam. Informaticae, 120, 145-164.

 https://doi.org/10.3233/FI-2012-754
[29] Maheswaran, M., Ali, S., Siegel, H. J., & Hensgen, D. (1999).

Dynamic Mapping of a Class of Independent Tasks onto

Heterogeneous Computing Systems. Journal of Parallel and

Distributed Computing, 59, 107-131.

 https://doi.org/10.1006/jpdc.1999.1581
[30] Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A

Particle Swarm Optimization-Based Heuristic for Scheduling

Workflow Applications in Cloud Computing Environments.

2010 IEEE International Conference on Advanced Information

Networking and Applications, 400-407.

https://doi.org/10.1109/AINA.2010.31

Authors’ contacts:

Mandeep Kaur
(Corresponding author)
Dept. of Comp. Sc., Savitribai Phule Pune University,
SPPU Campus, Ganeshkhind Road, Pune, Maharashtra 411007, India
mandeep.gondara@gmail.com

Sanjay Kadam
Centre for Development of Advanced Computing,
SPPU Campus, Ganeshkhind Road, Pune, Maharashtra 411007, India
sskadam@cdac.in

	4.3 Objective Function
	4.4 Initial Bacteria Population in BFOA
	4.4.1 Chemotactic Process
	4.4.2 Swarming
	4.4.3 Reproduction
	4.4.4 Elimination-dispersal
	4.5.1 Selection
	4.5.2 Crossover
	4.5.3 Mutation
	4.6 Particle Swarm Optimization (PSO)
	4.8 Experimental Setup
	6 CONCLUSION
	Acknowledgement

