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Abstract  

 

Biomass-derived jet (bio-jet) fuel has become a key element in the aviation industry’s strategy to reduce 

operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation 

industry, government, biofuel companies, agricultural organizations, and academia are working toward 

developing a commercially viable and sustainable process that produces a long-lasting renewable jet fuel 

with low production costs and low greenhouse emissions. This jet fuel, additionally, must meet ASTM 

International specifications and potentially be a 100% drop-in replacement for current petroleum jet fuel. 

In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, 

oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed. The main challenges for each technology 

pathway, including conceptual process design, process economics and life-cycle assessment of 

greenhouse gas emissions are discussed. Although the feedstock price and availability and energy 

intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a 

significant portion of conventional jet fuel required to meet commercial and military demand. 
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Acronyms 
ABE  acetone-butanol-ethanol 

AFRL   U.S. Air Force Research Laboratory 

APR  aqueous phase reforming 

ASTM  ASTM International  

ATJ  alcohol-to-jet  

BIRD                   Binational Industrial Research and Development 

BTL  biomass-to-liquid 

CH  catalytic hydrothermolysis  

CLEEN  Continuous Lower Energy, Emissions and Noise 

CO carbon monoxide 

CO2 carbon dioxide 

CTL  coal-to-liquid 

DARPA               Defense Advanced Research Projects Agency 

DCN                    Derived Cetane Number 

DMF  2,5-dimethylfuran 

DOE  U.S. Department of Energy 

DSH  Direct Sugar to Hydrocarbons 

E. coli  Escherichia coli  

FAA  Federal Aviation Administration 

FFA  free fatty acid 

F-T  Fischer-Tropsch 

gCO2e grams carbon dioxide equivalent 

GGE  gallon of gasoline equivalent 

GHG  greenhouse gas 

GJ  gigajoules 

GTJ  gas-to-jet 

GTL  gas-to-liquid 

H2 hydrogen 

HDCJ hydrotreated depolymerized cellulosic jet 

HEFA  hydroprocessed esters and fatty acids 

HMF  5-hydroxymethylfurfural 

HRJ  hydroprocessed renewable jet 

LCA  life-cycle assessment 

LHV                     lower heating value 

MIL  military 

MJ megajoules 

NAWCWD Naval Air Warfare Center Weapons Division 

NOx oxides of nitrogen 

NETL                  National Energy Technology Laboratory 

NRC                     National Research Council Canada 

NREL  National Renewable Energy Laboratory 

OTJ  oil-to-jet 

READI  renewable, aromatic, and drop-in 

RTP                     rapid thermal processing 

SPK  synthetic paraffinic kerosene 

STJ  sugar-to-jet 

TTW  tank-to-wake 

WTT  well-to-tank 

WTW  well-to-wake 
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1 Introduction  

1.1 Background  

Fuel is one of the biggest operating costs for the aviation industry. Aviation fuel, a petroleum-based fuel 

used to power aircraft, has stricter quality requirements than fuels used in road transport. Jet fuel, a type 

of aviation fuel designed specifically to power the gas-turbine engines, will be the primary subject of this 

review. According to a report from the U.S. Department of Energy’s (DOE’s) Bioenergy Technologies 

Office [1], out of one barrel of crude oil, 4 gallons are used to produce jet fuel. The worldwide aviation 

industry consumes approximately 1.5 to 1.7 billion barrels (47.25 to 53.55 billion gallons) of 

conventional jet fuel per year [2, 3]. The challenges of crude oil prices, national security, environmental 

impact, and sustainability make it difficult to have a long term plan and budget for operating expenses. 

Sustainable biofuels produced globally offer a solution to these issues. Biomass-derived jet fuels (bio-jet 

fuels) are a potential alternative to petroleum jet fuel.  

Many process technologies that convert biomass-based materials into jet fuel substitutes are available. 

Some are available at commercial or pre-commercial scale, and others are still in the research and 

development stage. These technologies are varied and depend strongly on the type of feedstock. Oil-based 

feedstocks are converted into bio-jet fuels through hydro-processing technologies, including hydro-

treating, deoxygenation, and isomerization/hydrocracking. Processes such as catalytic hydro-thermolysis 

(CH) have also been developed to treat triglyceride-based oils. Solid-based feedstocks are converted into 

biomass derived intermediate through gasification, into alcohols through biochemical or thermochemical 

processes, into sugars through biochemical processes, and into bio-oils through pyrolysis processes. 

Syngas, alcohols, sugars, and bio-oils can be further upgraded to bio-jet fuel via a variety of synthesis, 

fermentative, or catalytic processes. So far, bio-jet fuels from Fischer-Tropsch (F-T) synthesis and oil 

hydro-processing  technologies have been approved by ASTM International (ASTM) Method D7566 [4] 

for blending into jet at levels up to 50%. Hydro-processing technologies using vegetable and waste oils 

represent the only conversion pathways ready for large-scale deployment [5]. Industries are currently 

working on developing optimal processes that utilize sustainable feedstocks and can be produced 

economically.  

Production cost is a key parameter of the commercial feasibility of a bio-jet fuel. U.S. passenger and 

cargo airlines require more than 18 billion gallons of jet fuel annually. Therefore, every penny increase in 

the price of jet fuel results in an additional $180 million in annual fuel costs for U.S. airlines [6]. The 

price of petroleum-derived jet fuel is directly correlated with the price of crude oil [7]. Changes in crude 

oil price make it difficult to plan and budget long-term operating expenses for jet fuel refining. In 2012, 

the annual fuel cost for all airlines was around $47 billion [8]. It is predicted that by 2030, the bio-jet fuel 

production cost may drop to as low as $2.54/gal due to improved conversion technology [9], and 30% of 

annual airline fuel consumption can be replaced by bio-jet fuel [2]. Following the same pattern for 

bioethanol production [10], the variation in the bio-jet production cost would be highly dependent on the 

following parameters: (1) composition and cost of feedstock; (2) process design; (3) conversion efficiency 

or product yield; (4) valorization of co-products; and (5) energy conservation. Therefore, decreasing the 

production cost of bio-jet fuel depends on synergistic efforts in all areas, including improvements in the 

areas of feedstock productivity, extraction yield of oil or sugar yield from the crops, process energy 

conservation, and balance between jet fuel product and value-added co-products.  

In addition, there is a growing awareness of important environmental issues, including improving air 

quality in and around airports and determining the aviation industry’s contribution to greenhouse gas 

(GHG) emissions globally.  It has been estimated that commercial aviation has contributed approximately 

2%–6% to total global carbon emissions [11]. Jet fuels derived from renewable resources may offer the 

potential to reduce the GHG emissions from aviation. A life-cycle assessment (LCA) that considers 

emissions from the field where the feedstock is harvested to the wake behind the aircraft can provide the 

change in GHG emissions due to the use of alternative fuels [3], usually known as well-to-wake (WTW) 

analysis. The WTW analysis can be split into two parts: well-to-tank (WTT) and tank-to-wake (TTW) 
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[12]. To compare the GHG emissions due to bio-jet fuels with that of conventional jet fuels, it is 

necessary to consider emissions from the whole production chain. In the WTT portion, feedstock 

production, land use change, and conversion processes contribute significantly to GHG emissions. In the 

TTW portion, emissions from burning jet fuels are considered [12]. The WTW GHG emissions from 

conventional jet fuel are reported to be 87.5 grams carbon dioxide equivalent per megajoule (gCO2e/MJ) 

[13], including 14.3 gCO2e/MJ WTT GHG emissions and 73.2 gCO2e/MJ TTW GHG emissions [14]. 

When bio-jet fuel is used for aviation, the GHG emissions can be reduced to 1.5 gCO2e/MJ (open pond 

algal oil case), a 98% reduction relative to conventional jet fuel [15]. Different conversion technologies 

may result in different amounts and types of GHG emissions due to the variety of feedstocks and reaction 

processes. Reviewing the GHG emissions data from the conversion pathways will help determine the 

optimal platforms for producing bio-jet fuel.   

Groups such as aircraft manufacturers, airline companies, academic institutions, fuel refining companies, 

agricultural companies, farmers groups, and local/regional/national departments of agriculture, defense, 

transport, economic development, and enterprise are working together to develop commercially feasible 

bio-jet fuel [16]. The level of bio-jet fuel commercialization depends on feedstock availability, conversion 

technology development, reduction of GHG emissions, and policy. Conversion technologies for 

transportation biofuels such as ethanol [17] and biodiesel [18] have been reviewed and compared 

extensively. For future development and deployment of bio-jet fuel, it is important to review and 

understand the maturity and uncertainty of all pathways to assess impacts on commercialization.  

1.2 Jet Fuel Specifications  

In addition to define target compositions, jet fuel specifications and requirements are mostly defined in 

terms of required performance properties. The specifications required for jet fuels are (1) acceptable 

minimum energy density by mass, (2) maximum allowable freeze point temperature, (3) maximum 

allowable deposits in standard heating tests, (4) maximum allowable viscosity, (5) maximum allowable 

sulfur and aromatics content, (6) maximum allowable amount of wear in standardized test, (7) maximum 

acidity and mercaptan concentration, (8) minimum aromatics content, (9) minimum fuel electrical 

conductivity, and (10) minimum allowable flash point [19]. There are three standards for certifying 

aviation fuel : ASTM D1655 [20, 21], International Air Transport Association Guidance Material 

(Kerosene Type) [20, 21], and the United Kingdom Ministry of Defence, Defence Standard (Def Stan) 

91-91 [22]. ASTM Specification D7566 (Standard Specification for Aviation Turbine Fuel Containing 

Synthesized Hydrocarbons), which targets alternative jet fuel, lists the fuel properties and criteria required 

to control the production and quality of a renewable fuel for aviation safety [23]. There might be other 

fuel standards, and Table 1 shows the specifications for two typical jet fuels for commercial and military 

aircraft. Jet fuel requires a high flash point due to the fire-hazard consideration [24]. Major fuel properties 

are similar across different standards, but there are some differences. For instance, D7566 is an expansion 

of D1655 to include fuel specifications required of the SPK blendstocks. In addition, jet fuel needs good 

cold flow properties, such as a lower freezing point, to ensure the fuel can flow at high altitude [25].  
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Table 1. Jet Fuel Specifications [19, 22-24, 26] 
Jet A-1 JP-8 

  

ASTM D1655-

04a IATA 

Def Stan 

91-91 ASTM D7566  

MIL-DTL-

83133E 

specification 

Composition           

Acidity, Total (mg KOH/g) 0.1, max 0.015, max 0.012, max 0.1, max 0.015, max 

Aromatics (vol %) 25, max 25, max 25, max 25, max (8, min) 25, max 

Sulphur, Total (wt %) 0.3, max 0.3, max 0.3, max 0.3, max 0.3, max 

Volatility           

Distillation Temperature: 

   
 

    10% Recovery (°C) 205, max 205, max 205, max 205, max 205, max 

   20% Recovery (°C) --- --- --- --- --- 

   50% Recovery (°C) --- --- --- --- (15, min) --- 

   90% Recovery (°C) --- --- --- ---(40, min) --- 

   Final BP (°C) 300, max 300, max 300, max 300, max 300, max 

Flash Point (°C) 38, min 38, min 38, min 38, min 38, min 

Density @ 15°C (kg/m3) 775-840 775-840 775-840 775-840 775-840 

Fluidity           

Freezing Point (°C), max -47 -47 -47 

–40 Jet A ; –47 Jet 

A-1  -47 

Viscosity @ -20°C (cSt) 8, max 8, max 8, max 8, max 8, max 

Combustion           
Net Heat of Comb. (MJ/kg) 42.8, min 42.8, min 42.8, min 42.8, min 42.8, min 

Smoke Point (mm) 25, min 25, min 25, min 25, min 25, min 

Smoke Point (mm) and 

Naphthalenes (vol%) 

19 (min), 3 

(max) 

19 (min), 3 

(max) 

19 (min), 3 

(max) 
18 (min), 3 (max) 

19 (min), 3 (max) 

Thermal Stability           
JFTOT Delta P @ 260 °C 

(mm Hg) 
25, max 25, max 25, max 25, max 25, max 

Tube Deposit Rating 

(Visual) <3 <3 <3 <3 <3 

Conductivity  

    Conductivity (pS/m) 50-450 50-450 50-600 --- --- 

Lubricity           
BOCLE Wear Scar 

Diameter (mm) --- 0.85, max 0.85, max 0.85, max --- 
(Note: MIL-DTL-83133E is the standard specifically for JP-8 fuel) 
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1.3 Bio-Derived Jet Fuel Conversion Pathways 

Biomass-derived jet fuel can provide a near-term and even long-term solution to the airline industry and 

the military with a lower environmental impact than petroleum fuels. Many bio-jet fuel conversion 

technologies, whether in the research and development, demonstration, or commercial stages, are 

described in the literature. Jet fuel blended with up to 50% bio-jet fuel from an F-T process was certified 

in August 2009 [12, 27-29]. Bio-jet fuels from hydro-processing technologies, such as hydro-treated 

esters and fatty acids (HEFA) or hydro-processed renewable jet (HRJ), were also studied extensively [30-

33]. Conversion of alcohol to jet fuel, called alcohol-to-jet (ATJ), has also been developed at commercial 

scale and was flight-tested by the U.S. Air Force in July 2012 [34-38]. Fuel produced by two recently 

proposed sugar-to-jet (STJ) fuel processes, fermentation of sugars to hydrocarbons [39] and catalytic 

conversion of sugars to fuels [40], have been developed in joint ventures by biofuel and oil companies 

[41-48]. Two recently proposed processes, CH and hydro-treated depolymerized cellulosic jet (HDCJ), 

also called pyrolysis, have not yet been approved by ASTM, but several companies and research institutes 

are working on this technology [49-52]. Currently bio-jet fuels from ATJ, HRJ, and F-T synthesis have 

been used for commercial and military flights, as shown in Table 2.   

Some of the technologies that convert bio-based feedstocks to jet fuel have been reviewed in the literature 

in areas including feedstock availability, upgrading technology, process economics, lifecycle GHG 

analysis, and commercial progress [5, 11, 12, 21, 53-57]. Most literature has focused on approved 

technologies such as F-T synthesis and HRJ processes; few literature references are available for either 

ATJ or STJ processes because they are still in the development stage. To fully understand current 

biomass-to-jet fuel development, it is necessary to have an overview of all of the upgrading technologies, 

both approved and pending approval, from laboratory to commercial scale. In this review, the upgrading 

pathways are classified as one of four types, based on the feedstocks and conversion processes: (1) 

alcohol-to-jet (ATJ), (2) oil-to-jet (OTJ), (3) gas-to-jet (GTJ), and (4) sugar-to-jet (STJ) (shown in Table 

3). Detailed information and literature data, such as potential feedstocks, process technologies, cost 

analysis comparisons, life-cycle assessment studies, and pre-commercial or commercial demonstrations 

for each pathway, are described in this report in the following sections.  

Table 2a. Flight Tests with Bio-jet Fuels Through Different Conversion Pathways [58] by 

Commercial Airlines. 
Commercial 

Airline Aircraft Partners Year Feedstocks 
Bio-jet Fuel 

Content 
Conversion 

Pathway 

Virgin Atlantic B747-400 Boeing, GE Aviation 2008 Coconut & Babassu 20% Oil to Jet 
Air New Zealand B747-400 Boeing Ralls-Royce, UOP 2008 Jatropha 50% Oil to Jet 

Continental 
Airlines 

B737-800 Boeing, GE Aviation, CFM, 
Honeywell UOP 

2009 2.5% Algae & 47.5% 
Jatropha 

50% Oil to Jet 

JAL B747-400 Boeing , Pratt & Whitney, 
Honeywell UOP, Nikki Universal 

2009 42% Camelina, 8% 
Jatropha/Algae 

50% Oil to Jet 

KLM B747-400 GE, Honeywell UOP 2009 Camelina 50% Oil to Jet 
KLM B737-800  2011 Waste cooking oil 50% Oil to Jet 

TAM Airlines A-320 Airbus, CFM 2010 Jatropha  50% Oil to Jet 
Jet Blue Airways A-320 Airbus, IAE, Honeywell UOP 2010 TBC  Oil to Jet 

Boeing B747-8F  2011 Camelina 15% Oil to Jet 
Interjet A-320 CFM, Safran, EADS, Airbus, 

Honeywell UOP 
2011 Jatropha, Halophyte 30% Oil to Jet 

Air France A-321  2011 Waste cooking oil 50% Oil to Jet 
Honeywell Gulfstream G450  2011 Camelina 50% Oil to Jet 

Finnair A-319  2011 Waste cooking oil 50% Oil to Jet 
Air Mexico B777-200  2011 Jatropha  Oil to Jet 
Thomson 
Airways 

B757-200 SkyNRG 2011 Waste cooking oil  Oil to Jet 

Porter Airlines Bombardier Q400   2012 Camelina  Oil to Jet 
Air China B747-400 Boeing, PetroChina 2012 Jatropha 50% Oil to Jet 

NRC Canada Falcon 20, T-33 Aemetis, AFRL, Rolls-Royce, 
FAA-CLEEN, Agrisoma 

Biosciences, Applied Research 
Assoc., Chevron Lummus Global 

2012 Carinata 100% Oil to Jet (CH) 
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Lufthansa A-321 Neste Oil 2011 Jatropha, camelina & 
animal fats 

50% Oil to Jet 

Azul Airlines E195 Jet Amyris, Embraer, GE 2012 Sugarcane  Sugar to Jet 
Continental 

Airlines 
B737-800 Solazyme, United Airlines 2011 Algae  Alcohol to Jet 

Alaska Airlines B737, Bombardier 
Q400 

Dynamic Fuels, Horizon Air 2011 Algae & waste cooking 
oil 

20% Oil to Jet 

Virgin Atlantic  Lanza Tech, Swedish Biofuels 2011 Industrial waste gas  Gas to Jet 
(gas 

fermentation) 
Etihad Airways B777-300ER  2012 vegetable oil  Oil to Jet 
British Airways TBD Solena TBD Factory waste TBD Gas to Jet (F-

T) 
Paramus Flying 

Club 
Cessna 182  2013 Waste cooking oil 50% Oil to Jet 

 

Table 2b. Flight Tests with Bio-jet Fuels Through Different Conversion Pathways [58] by Military 

Aircrafts Types. 

Military Aircraft Aircraft Partners Year Feedstocks 

Bio-jet Fuel 

Content 

Conversion 

Pathway 

U.S. Navy F/A-18  Honeywell UOP 2010 Camelina 50% Oil to Jet 

U.S. Air Force A-10C  Honeywell UOP 2010 Camelina, waste 

cooking oil 

50% Oil to Jet 

U.S. Air Force F-22 Honeywell UOP 2011 Camelina 50% Oil to Jet 

U.S. Navy MH60S Seahawk 
Helicopter 

 2010 Camelina  50% Oil to Jet 

U.S. Navy MH60S Seahawk 

Helicopter 

Solazyme 2011 Algae 50% Oil to Jet 

U.S. Navy T-45  2011 Camelina 50% Oil to Jet 

U.S. Navy AV-8D  2011 Camelina  Oil to Jet 

Netherland Air 

Force 

AH-64D Apache 

Helicopter  

Honeywell UOP 2010 Waste cooking oil 50% Oil to Jet 

U.S. Air Force A-10C Gevo 2012 cellulose-derived 
alcohol 

 Alcohol to Jet 

U.S. Air Force B-52 Syntroleum 2006 natural gas 50% Gas to Jet (F-T) 

U.S. Air Force TBD Swedish Biofuels TBD Biomass-derived sugar 100% Alcohol to Jet 

NASA DC-8  2011 Chicken and beef tallow  Oil to Jet 

Dutch Military Ah-64 Apache 

helicopter 
 2010 Waste cooking oil  Oil to Jet 

EADs Diamond D42   2010 Algae   Oil to Jet 

 

Table 3. Summary of Jet Fuel Production Pathways Reviewed in This Work 

Category Pathways Companies 
U.S. or International 

Agencies 
Airline Companies/Manufacturers 

Alcohol 

to Jet 

Ethanol to Jet Terrabon/MixAlco; Lanza 

Tech/Swedish Biofuels ; Coskata 

Defense Advanced Research  

Projects Agency, FAA 

Boeing, Virgin Atlantic 

Butanol to Jet Gevo; Byogy; Albemarle/Colbalt; 
Solazyme 

Navy/NAWCWD, AFRL, DLA, 
USAF 

Continental Airlines ; United Airlines 

Oil-to-

Jet 

Hydro-processed 

Renewable Jet (HRJ) 

UOP; SG Biofuels; AltAir Fuels; 

Agrisoma Biosciences; Neste Oil; 

PetroChina; Sapphire Energy, 
Syntroleum/Tyson Food; PEMEX ; 

ASA 

U.S. Navy, USAF, Netherland 

Air Force, NASA, Dutch 

Military, EADs 

Boeing, Lufthansa, Virgin Atlantic, Virgin 

Blue, GE Aviation, Air New Zealand, 

Rolls-Royce, Continental , CFM, JAL, 
Airbus, KLM, Interjet, Pratt & Whitney, Air 

China, TAM Airlines, Jet Blue Airways, 

IAE, United Airlines, Air France, Finnair, 
Air Mexico, Thomson Airways, Porter 

Airlines, Alaska Airlines, Horizon Air, 

Etihad Airways, Romanian Air, Bombardier 

Catalytic Hydro-

thermolysis (CH) 

Applied Research Assoc., 

Aemetis/Chevron Lummus Global 

FAA CLEEN, NRC Canada, 

AFRL 

Rolls-Royce, Pratt & Whitney 

Hydro-treated 

Depolymerized 
Cellulosic Jet (Pyrolysis) 

Kior/Hunt Refining/Petrotech,  

Envergent, GTI, Dynamotive 

FAA N/A 
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(HDCJ) 

Gas to 

Jet 

Fischer-Tropsch 

Synthesis 

Syntroleum; SynFuels; Rentech; 

Shell; Solena 

U.S. DOE, U.S. DOD, USAF, 

Ontario government 

Qatar Airways, United Airlines, Airbus, 

British Airways 

Gas Fermentation Coskata; IneosBio/Lanza Tech; 
Swedish Biofuels  

N/A Virgin Atlantic 

Sugar to 

Jet 

Catalytic Upgrading of 

Sugar to Jet 

Virent/Shell, Virdia AFRL, U.S. DOE N/A 

Direct Sugar to 
Hydrocarbons 

Amyris/Total, Solazyme, LS9 Navy, FAA Boeing; Embraer; Azul Airlines; GE; Trip 
Airlines 

 

2 Conversion Pathways to Bio-jet Fuel 

2.1 Alcohol-to-Jet (ATJ) Fuel   

ATJ fuel, also called alcohol oligomerization, is fuel converted from alcohols, such as methanol, ethanol, 

butanol, and long-chain fatty alcohols. The maximum use of ethanol is 10-15% for the majority of 

gasoline-powered vehicles on the road today, which creates a blend wall that makes it difficult to achieve 

further market penetration of ethanol as a blend stock for gasoline. Therefore, upgrading ethanol to jet 

fuel blend stock presents a potential pathway for developing drop-in or fungible fuels for the jet fuel 

market. In this review, ethanol and butanol are the two primary alcohols discussed for jet fuel conversion.  

2.1.1 Process Description 

To make drop-in alternative jet fuel from alcohols, the differences in the physical and chemical properties 

between alcohols and conventional jet fuel have to be minimized. In the United States, anhydrous ethanol, 

at 99.5%–99.9% purity, is required to blend with gasoline to avoid separation [59]. However, for 

upgrading to jet fuel products, the necessity of high-purity ethanol is still uncertain. A typical three-step 

ATJ process that converts alcohols to jet fuel has been demonstrated [35]. The process includes alcohol 

dehydration, oligomerization, and hydrogenation.  The overall process diagram for ethanol to jet fuel is 

shown in Figure 1.  The advantage is that all of these process steps have been demonstrated on a 

commercially relevant scale and the risk of scale-up is expected to be reduced. However, the development 

and demonstration of the integrated process on biomass derived intermediates is necessary. [35].   

Catalysts for upgrading alcohols to hydrocarbons are important. Studies on dehydration catalysis started 

with alumina and transition metal oxides and moved to silicoaluminophosphates (SAPO), H-ZSM-5 

zeolite catalyst, and heteropolyacid catalysts [60]. The most promising case was found to be the 0.5% La-

2%P H-ZSM-5 catalyst. Approximately 100% conversion and 99.9% ethylene selectivity are approached 

at 250°C and 2 h
-1

 weight hourly space velocity [61, 62]. The dehydrated ethylene can be turned into 

linear α-olefins via a catalytic oligomerization process [63]. Current commercial processes for making α-

olefins are focused on both homogeneous and heterogeneous catalysts [35]. Catalysts such as a Ziegler 

Natta-type catalyst [64], chromium diphosphine catalyst [65], and zeolites [35] have been studied 

extensively. With a temperature of 90°C–110°C and a pressure of 89 bar over a Ziegler Natta-type 

catalyst, 96%–97% yield of linear α-olefins was produced with a carbon range of C4–C20 [64]. In 

industrial oligomerization processes, broader carbon number distributions are produced, such as 5% C4; 

50% C6–C10; 30% C12 and C14; 12% C16 and C18; and 3% C20 and C20+ [63], at 200°C and 250 bar. The 

resulting olefins are distilled to diesel- and jet-range fuels and light olefins [66]. Light olefins (C4–C8) 

separated by distillation are recycled back to the oligomerization step, shown in Figure 1a. Jet fuel range 

products (C9–C16) can be subjected to hydrogenation, which operates at temperatures of 370°C and 

WHSV of 3 h
-1 

with feeding hydrogen over 5% by weight of palladium or platinum on activated carbon 

catalyst [67] The C9–C16 alkanes produced from the hydrogenation step are suitable for renewable jet 

fuels.  

N-butanol can be dehydrated to 1-butene at 380°C and 2.1 bar over the γ-alumina catalyst [68]. The 

highest yield of biobutenes is 98%, with 95% selectivity of 1-butene [68]. The rest of the product is 2-

butene isomerized from 1-butene. The 1-butene is subjected to the oligomerization process to produce 

olefins ranging from C8 to C32 with the conversion of 97% [69]. The product distributions of the mixed 

olefins are 26.46% C8, 25.48% C12, 17.64% C16, 11.76% C20, 7.84% C24, 4.9% C28 and 3.92% C32 [38]. 
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The reaction is operated at ambient temperature with stirring for 16 hours over the Group 4 transition-

metal catalysts in the presence of methylaluminoxane (Cp2ZrCl2/MAO) [70]. The 2-butene, containing 

cis- and trans-2-butenes, are considered as unreacted olefins and separated by temperature controlled 

distillation[71]. The C8 olefin, 2-ethyl-1-hexene, is distillated and sent to the dimerization reactor [69, 

72]. The dimerization is operated at 116°C for 2 hours over Nafion catalyst. The C8 olefin is 100% 

converted, yielding to 90% of C16H32 [72]. The products from 1-butene oligomerization, ranging from C12 

to C32, together with C16 olefins produced from dimerization, are sent to hydrogenation process [72] over 

0.08 wt% PtO2 catalyst. The resulting C12-C16 paraffins can be blended with jet fuel and the C20-C32 

alkanes are separated and sold as lubricants [69]. In addition, n-butanol from ABE fermentation can be 

dehydrogenated over a Pd/C-K3PO4 catalyst, producing C5–C11 ketones [73]. These ketones can be 

deoxygenated to produce normal paraffins, similar to the components of jet, gasoline, and diesel fuels.  

Iso-butanol produced from a process such as E. coli fermentation is dehydrated to a mixture of isobutene, 

n-butene (1-butene), and 2-butene (cis-2-butene and trans-2-butene) [74]. Acidic catalyst such as ZSM-5 

zeolites, Y-type zeolites, and Amberlyst acidic resins can be used to catalyze a dehydration reaction, and 

different catalysts affect the selectivity of isobutene and the overal
1
l linear butenes[74]. With the overall 

isobutanol dehydration yield of 99.1%, the selectivity is reported to be 95.1% isobutene, 1.6% 1-butene, 

0.5% trans-2-butene, and 1.9% cis-2-butene at 325°C using ZSM-5 catalyst at 2 h
-1

 WHSV [74]. In 

addition, Armstrong reports that isobutanol can be converted into isobutylene through the dehydration 

process operated at 310°C over γ-Alumina catalyst, resulting in 98% isobutanol conversion and 92 mole% 

isobutylene selectivity [75]. The isobutene can be converted to oligomers, trimmers, and tetramers at 

100°C using an Amberlyst-35 catalyst at a WHSV of 2 h
-1

, producing 20%, 70%, and 10% for C8, C12, 

and C16 olefins, respectively [66, 67]. The 1-butene is converted into 25%, 24%, 17%, and 25% to C8, C12, 

C16, and C20 olefins, respectively, resulting in an overall 1-butene yield of 96% with 4% unreacted. To 

increase the jet and diesel yields, the C8 olefins can be distilled and sent to one additional dimerization 

process, operating at 116°C over a Nafion catalyst [72]. Alternatively, C8 olefins can be either converted 

into C16H32 through dimerization or reacted with butenes to produce C12 olefins, leading to the increase of 

C12 and C16 for the jet-range chemicals [66].  

Another source for producing 1-butene reported by researchers at the University of Wisconsin–Madison 

is γ-valerolactone [76]. The γ-valerolactone produced from biomass-derived carbohydrates is converted 

into 96% butene and CO2 through the decarboxylation process over a silica/alumina catalyst at a pressure 

of 36 bar and temperature of 375°C. The resulting butene is subsequently oligomerized over an 

Amberlyst- 70 catalyst at 170°C and 17 bar, resulting in 99% conversion of butene and 71% yield of C8–

C16 alkenes, which can be targeted for jet fuel application.  

Ethanol Dehydration Oligomerization
α-olefins  

Distillation 

Hydrogenation 

Jet Blendstock

Ethylene

Ethanol

C9-C16 Olefins>C16 Olefins

Diesel Blendstock

C4-C8 Olefins

 

                                                      

 
1
 Unless specified, all selectivities are mass %.  
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Fig. 1. Alcohol to jet processes: (1a) ethanol to jet; (1b) n-butanol to jet; (1c) iso-butanol to jet 

 [35, 38, 60-63, 65-69, 71, 72, 74, 77-81]. 

2.1.2 Economic Analysis 

To evaluate the production cost for the bio-jet fuel derived from alcohols, the cost of making alcohols, 

such as ethanol and butanol (n-butanol and iso-butanol) needs to be determined. The techno-economic 

analysis of both biochemical and thermochemical processes [82, 83] for ethanol production(from starch or 

cellulosic feedstocks) has been studied extensively [10, 82-90]. Most reports calculate a minimum selling 

price of the fuel based on a number of economic assumptions. The minimum ethanol selling price for the 

biochemical conversion of lignocellulosic biomass was recently reported to be $2.15/gal or $3.27/gal of 

gasoline equivalent (GGE) in 2007 US dollars ($2.76/gal or $4.18/GGE in 2011 US dollars) [83]. The 

minimum ethanol selling price for the thermochemical route was reported to be $2.05/gal or $3.11/GGE 

in 2007 US dollars ($2.5/gal or $3.8/GGE on 2011 US dollars) [85].  

The selling price of butanol from ABE fermentation is projected to be $0.34/kg ($1.04/gal) based on the 

corn feedstock cost of $79.23/ton [91]. For cellulosic biomass, the price becomes $3.7/gal or $4.1/GGE 

(2011 US dollars) [92]. According to the current market demand and the fluctuation of agricultural prices, 

cheaper feedstocks such as agricultural waste or algal biomass [93] are desired due to their renewability 

and non-competition with food. The substrate cost [91], credit for by-products [94], solvent recovery 

technology [91], and product molar ratio [95] are important  factors for economic evaluation of butanol 

production.  

To evaluate the overall ATJ conversion pathway and estimate the commercial feasibility, the economics 

of the fuel upgrading processes such as dehydration, oligomerization, dimerization, and hydrogenation 
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also have to be considered. Because these processes are still under development, more research efforts are 

required to complete this target.  

2.1.3 Life-Cycle Assessment  

LCA studies for the ATJ process are primarily focused on production of ethanol [96] [97], n-butanol [98], 

and iso-butanol [92]. The LCA for fuel alcohol production can be categorized into four areas [92]: (1) 

feedstock (land-use-change), (2) on-site enzyme production, (3) biorefinery process, and (4) biorefinery 

co-product credits. If different pathways are considered, the biochemical process has slightly different 

performance from the thermochemical process with respect to GHG emissions, fossil fuel consumption 

and water consumption. [99].  

For n-butanol and iso-butanol conversion, studies have focused on emissions, consumptive water use, 

global warming potential, and fossil energy consumption [92]. The n-butanol production process releases 

more direct emissions, such as CO2, nitrogen dioxide, and sulfur dioxide, than the iso-butanol production 

process does. CO2 is produced during the cellulase (or enzyme) production and cellulase seed 

fermentation, but is largely from combustion [92]. Nitrogen dioxide is formed through high temperature 

oxidation of the diatomic nitrogen in the combustion air. Sulfur dioxide emissions strongly depend on the 

amount of sulfuric acid used in the pretreatment process. However, the bio-refining of n-butanol 

consumes more water than iso-butanol refining does. The biomass feedstock  is responsible for most of 

the global warming potential and fossil energy consumption [92]. Conversion of iso-butanol consumes 

5.15 MJ/GGE more fossil fuel than n-butanol conversion does.  

The LCA of the ATJ fuel upgrading processes is still unknown and requires more attention in future 

studies. 

2.2 Oil-to-Jet (OTJ) Fuel 

In this review, three processes are classified into the OTJ conversion pathway: HRJ, also known as 

HEFA; catalytic hydro-thermolysis (CH), also termed hydrothermal liquefaction; and hydro-treated 

depolymerized cellulosic jet (HDCJ), also known as fast pyrolysis with upgrading to jet fuel. Currently, 

only products from the HRJ pathway have been approved for blending and have a defined ASTM 

specification.   

2.2.1 Process Description 

Both HRJ and CH processes employ triglyceride-based feedstocks, but the free fatty acids (FFAs) are 

produced differently. FFAs in the HRJ process are made by propane cleavage of glycerides, whereas in 

the CH process FFAs are formed by thermal hydrolysis. The bio-oil in the HDCJ process is produced by 

pyrolyzing the biomass feedstock. The downstream hydro-treating processes are similar in all three 

processes. The HRJ, CH, and HDCJ processes are discussed separately below.   

2.2.1.1 Hydroprocessed Renewable Jet (HRJ) 

HRJ conversion technology is at a relatively high maturity level, is commercially available, and was 

recently used to produce jet fuel for military flights [57]. HRJ fuel is equivalent to conventional 

petroleum in properties, but has the advantages of higher cetane number, lower aromatic content, lower 

sulfur content, and potentially lower GHG emissions [100].  

Over the past 60 years, a large variety of catalytic hydrogenation, deoxygenation, hydro-isomerization, 

and hydrocracking processes have been successfully developed and commercialized. A representative 

process flow diagram is shown in Figure 2. Renewable fats and oils that have different degrees of 

unsaturation require the hydrogenation process to completely saturate the double bonds [32]. Catalytic 

hydrogenation could be used to convert liquid-phase unsaturated fatty acids or glycerides into saturated 

ones [32] with the addition of hydrogen. The next step is to cleave the propane and produce three moles 

of FFAs [100]. The glycerol portion of the triglyceride molecule is turned into propane by adding H2. 

Alternative route to convert the glycerides to FFAs is thermal hydrolysis [101-103]. Oils and fats that 

contain mostly triglycerides are converted into three moles of FFAs and one mole of glycerol by 
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processing the feedstocks with three moles of water. The hydrogen ion from the water is attached on the 

glycerol backbone and forms one mole of glycerol, where the hydroxyl ion from the water is added to the 

ester group and produces three moles of FFAs. High temperature (250°C–260°C) is required for water to 

dissolve in the oil phase. High pressure is also necessary to maintain the reactants in liquid phase. The by-

product glycerol has many pharmaceutical, technical, and personal care product applications. The 

glycerol purification process is energy intensive, adding cost to overall process, but might be offset by 

glycerol selling value [104].  
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Fig. 2. Hydro-processed renewable jet (HRJ) process 

 

To meet the jet fuel specification, the produced bio-jet fuel has to have not only a high flash point, but 

also good cold flow properties. Therefore, it is required to hydrocrack and hydro-isomerize the normal 

paraffins produced from deoxygenation to a synthetic paraffinic kerosene (SPK) product with carbon 

chains ranging from C9 to C15 [100]. The cracking and isomerization reactions are either concurrent or 

sequential [32]. Studies have shown that isomerization of straight-chain alkanes occurs first and cracking 

is a consecutive reaction. The isomerization process takes the straight-chain hydrocarbons and turns them 

into the branched structures to reduce the freeze point to meet the jet fuel standard [105]. It is 

accompanied by a hydrocracking reaction, which results in more or less yield from the isomerized 

species. The hydrocracking reactions are exothermic and result in the production of lighter liquids and gas 

products. They are relatively slow reactions; thus, most of the hydrocracking takes place in the last 

section of the reactor. The hydrocracking reactions primarily involve cracking and saturation of paraffins. 

Overcracking will result in low yields of jet-fuel-range alkanes and high yields of light species ranging 

from C1 to C4 and naphtha ranging from C5 to C8. Both of these are out of jet fuel range and also have 

lower economic value than diesel or jet fuel.  

Bifunctional catalysts containing metallic sites for hydrogenation/dehydrogenation and acid sites for 

skeletal isomerization via carbenium ions are used in isomerization. In a typical isomerization reaction, 

normal paraffins are dehydrogenated on the metal sites of the catalyst and reacting on the acid sites to 

produce olefins protonate with formation of the alkylcarbenium ion. The alkylcarbenium ion is rearranged 

to monobranched, dibranched, and tribranched alkylcarbenium ions on the acid site. The branched 

alkylcarbenium ions are deprotonated and hydrogenated to produce the corresponding paraffins [106]. 

The choice of catalyst will result in variation of cracking at the end of the paraffin molecule and therefore 

adjust the yield of jet fuel range product [32]. The hydro-isomerization and hydrocracking processes are 
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followed by a fractionation process to separate the mixtures to paraffinic kerosene (HRJ SPK), paraffinic 

diesel, naphtha, and light gases.  

2.2.1.2 Catalytic Hydrothermolysis (CH) 

Catalytic hydro-thermolysis (CH), also named hydrothermal liquefaction, is a novel process that has been 

developed and patented by Applied Research Associates, Inc., for producing ―renewable, aromatic, and 

drop-in‖ fuels (known as ReadiJet or ReadiDiesel) from plant or algal oils [51]. The hydrothermal process 

(Figure 3), contains a series of reactions, including cracking, hydrolysis, decarboxylation, isomerization, 

and cyclization, that turn triglycerides into a mixture of straight chain, branched, and cyclic hydrocarbons 

[107]. The CH reaction is conducted at temperatures from 450°C to 475°C and pressures of 210 bar with 

water and a catalyst (or without a catalyst). The resulting products—including carboxylic acids, 

oxygenated species, and unsaturated molecules—are sent to decarboxylation and hydro-treating processes 

for saturation and oxygen removal. The treated products, ranging from 6 to 28 carbon numbers, contain n-

alkanes, iso-alkanes, cyclo-alkanes, and aromatics, which require a fractionation step for separation to 

naphtha, jet fuel, and diesel fuel. The jet fuel made from the CH process meets ASTM and military (MIL) 

specifications and has excellent combustion quality, cold flow properties, and stability [50]. Research has 

shown that through the CH process, bio-jet fuels can be produced from a variety of triglyceride-based 

feedstocks such as soybean oil, jatropha oil, camelina oil, and tung oil (shown in Table 4) [107, 108].  
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Fig. 3. Catalytic hydro-thermolysis to jet fuel [107, 108]. 

 

Table 4. Bio-jet Fuels from the CH Process [107, 108] 

 
JP-8 

From 

Soybean 

From 

Jatropha 

From 

Tung 

From 

Camelina 

From 

Carinata 

MIL-DTL-83133H 

Spec Requirement 

Aromatics 18.8 (vol%) 2.6 (wt %) 10.8 (wt%) 61.7 (wt%) 24.2 (vol%) 
16.8 

(vol%) 
≤ 25.0 

Paraffins (normal + iso) N/A 40.0 (vol%) 32.8 (wt%) 16.2  (wt%) N/A N/A N/A 

Olefins 0.8 (vol%) N/A N/A N/A 1.3 (vol%) 1.8 (vol%) ≤ 5.0 (vol%) 

Cycloparaffins N/A 52.0 (vol%) 39.2 (wt%) 16.7 (wt%) N/A N/A N/A 

Dicycloparaffins, vol% N/A 5.9 (vol%) N/A N/A N/A N/A N/A 

Heat of Combustion, MJ/kg 43.3 43.4 43.4 42.3 42.9 43.2 ≥ 42.8 

Smoke Point, mm 22 > 30 28 N/A 22 26 ≥ 19 

Freeze Point, C -51 < -47 -39 < -66 -54 -57 ≤ -47 

Flash Point, C 51 > 38 45 39 48 46 ≥ 38 

Distillation (D2887, D86) N/A pass 195-229 187-252 N/A N/A N/A 

Density, kg/L 0.804 >0.775 0.804 0.839 0.818 0.802 0.775-0.840 
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JP-8 

From 

Soybean 

From 

Jatropha 

From 

Tung 

From 

Camelina 

From 

Carinata 

MIL-DTL-83133H 

Spec Requirement 

Acid Number, mg of KOH/g 0.003 < 0.010 < 0.010 N/A 0.011 0.012 ≤ 0.015 

Hydrogen, wt% 13.8 N/A 14 13.3 13.8 
 

≥ 13.4 

Viscosity at -40C, cSt 9.9 N/A N/A N/A 7.4 6.5 ≤ 12.0 

Cetane Index N/A N/A 43.9 34.2 N/A N/A N/A 

2.2.1.3 Hydro-treated Depolymerized Cellulosic Jet (fast pyrolysis with upgrading to jet fuel) 

Hydro-treated depolymerized cellulosic jet (HDCJis a recent technology developed by Kior to convert the 

cellulosic biomass into renewable gasoline, diesel, and jet fuels [52]. The HDCJ jet fuel has not yet been 

approved by ASTM. Bio-oils from the pyrolysis process undergo a series of hydro-treating processes to 

produce jet-fuel-range products. If no further catalytic upgrading is applied, pyrolysis oils undergo hydro-

treating and fractionation to form jet blend stocks, as shown in Figure 4. In addition, UOP LLC, PNNL, 

Ensyn, and Tesoro have been working on upgrading pyrolysis oil to hydrocarbon fuels, including jet fuel, 

through integrated pyrolysis and hydro-conversion [109-111]. Utilizing feedstocks including corn stover, 

cane bagasse, switchgrass, guinea grass, algae biomass, and forest residue, this integrated biorefinery 

system combines commercial RTP (Rapid Thermal Processing) pyrolysis technology with catalytic 

hydro-conversion. Approximately 42.4–44.2 wt% jet fuel was separated by batch vacuum distillation 

[109-111].  
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Fig.4. Pyrolysis-to-jet process [52] 

2.2.2 Economic Analysis 

An economic analysis of HRJ fuel is described in the literature [112]. The HEFA fuel price was found to 

be $3.85/gal ($4.1/gal or $3.6/GGE on 2011 U.S. dollars) for the plant capacity of 98.28 MM gal/yr and 

$4.46/gal ($4.8/gal or $4.2/GGE on 2011 U.S. dollars) for the plant capacity of 30.16 MM gal/yr. 

Additional $0.27/gal –$0.31/gal is required to produce maximum jet fuel because of the increased 

hydrogen use and decreased yields of jet and diesel fuels. The economic analysis of bio-jet fuels from 

microalgae and pongamia oils are also studied [113]. The minimum selling prices for jet fuels derived 

from microalgae and pongamia oils are estimated to be $31.98/gallon or $28.3/GGE and $8.9/gallon or 

$7.9/GGE (2011 U.S. dollars), respectively. The development of technology and market will decrease the 

prices to be $9.2/gallon or $8.1/GGE and $6.07/gallon or $5.4/GGE (2011 U.S. dollars), respectively. 

Unlike biodiesel production through transesterification, HRJ biofuel production requires hydrogen to 

hydro-treat the biomass. It is suggested that the capital cost for HRJ is 20% higher than that of biodiesel 

production due to the hydro-treating process. However, the by-products from HRJ—naphtha, liquefied 

petroleum gas, propane, and diesel—have more credits than glycerol from the transesterification process 

[55]. Feedstock costs contribute a significant part of the production cost. For example, 70%–80% of the 

total production cost for biodiesel production results from the cost of feedstocks [114-117]. Edible and 

non-edible oils are becoming promising alternatives to biofuel because they are renewable in nature and 

can be produced locally and in environmentally friendly ways. Table 5 shows the unit oil prices for plant 

oils, algae oil, waste cooking oil, and pyrolysis oil. Obviously, higher oil yield leads to lower operating 

cost.  
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Table 5. Oil Selling Price [118-123] 

  Jatropha Palm Camelina Algae Waste Cooking 

Oil 

Soybean Rapeseed Pyrolysis Oil 

Oil Price 

($/kg) 

0.50 0.79 1.75 3.55 0.115~0.472 1.14 1.72 0.26 

By-products from the HRJ process can be upgraded to increase overall yield or sold as a high-value-added 

co-product. Depending on the conversion technology, the by-products include:  

1. Propane, which is created by breaking the carbon backbone of the triglyceride or formed in the 

fractionation step. It accounts for 4% of the products [100]. The current residential propane price 

is $2.48/gal [124].  

2. Liquefied natural gas (LNG), which is produced in the product separation step. LNG will increase 

to 6% if the diesel fuel is cracked down to the jet fuel range [100]. The current price of LNG is 

$4.58 per thousand cubic feet [125].  

3. Naphtha, which is also formed in the distillation step. The price of naphtha is $2.03/gal [100].  

4. Diesel, which is separated in the fractionation step. The current price of biodiesel is around 

$3.64/gal [126].  

2.2.3 Life-Cycle Assessment 

Several research groups have developed a GHG emissions analysis on a life cycle basis [3, 56, 100, 127]. 

The GHG emissions for soybean oil are about 40% to 80% of those of conventional jet fuel (89 

gCO2e/MJ for Jet A fuel ) [56], resulting from the soybean yield, N2O emissions from fertilizer, liming 

emissions, and H2 requirements in the hydro-treating process. The GHG emissions increase when land use 

change is considered. One study shows low soybean yield from tropical rainforest results in 800% more 

emissions than conventional jet fuel [56]. The emissions of the palm oil to jet fuel process are about 30% 

to 40% of those of conventional jet fuel production processes, resulting from palm fresh-fruit-bunch yield 

per acre, farming energy, methane emissions from palm oil-mill effluent treatment, H2 requirements in the 

hydro-treating process, and hydro-processing fuel yield. GHG emissions increase to the range of 40% to 

800% of those of conventional jet fuel when accounting for land use change [3]. For rapeseed oil, the 

emissions are around 45% to 87% of those of conventional jet fuels [3] and increase to 87% to 147% 

when considering land use change. For jatropha oil, the emissions are 36% to 52% of those from 

conventional jet fuel, and N2O emissions represent more than 20% of the total emissions. Zero emissions 

from land use change are assumed due to the assumption that marginal land will be used. Other research 

shows the emissions from jatropha OTJ conversion were 40 gCO2e/MJ of fuel produced [127], 

approximately 45% of that of conventional jet fuel. For algal oil, the emissions range from 16% to 220% 

of those from conventional jet fuel. The wide range results from the uncertainty of emissions from CO2 

injection and dewatering and drying processes [3]. For salicornia oil, the emissions range from 35% to 

76% of those from conventional jet fuel [3]. The GHG emissions of liquid fuel production via fast 

pyrolysis of cellulosic biomass have been studied by researchers at Argonne National Laboratory [128]. 

When hydrogen is generated from natural gas and bio-char is used to support the process energy, the 

GHG emissions are reduced by 45% relative to conventional fuels. When hydrogen is produced from 

reforming of pyrolysis oil and bio-char is applied as the fertilizer, the GHG emissions are reduced by 

103% relative to conventional fuels [128]. 

2.3 Gas-to-Jet (GTJ) Fuel 

The GTJ pathway presented here describes the conversion processes that turn biogas, natural gas, or 

syngas into bio-jet fuel. The F-T and gas fermentation processes are classified in this pathway and are 

reviewed here.  
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2.3.1 Process Description 

2.3.1.1 Fisher Tropsch Biomass to Liquid (FT-BTL) Process 

The F-T process is capable of producing liquid hydrocarbon fuels from syngas. F-T fuels are typically 

free of sulfur and contain very few aromatics compared to gasoline and diesel, which leads to lower 

emissions when used in jet engines [12]. Some recent studies point out that the use of the F-T technology 

to convert biomass to synthetic fuels may provide a promising carbon-neutral alternative to conventional 

diesel, kerosene, and gasoline [129-131]. The process reviewed here is the FT-BTL process. 

In the FT-BTL process (Figure 5), biomass feedstocks are first dried to reduce the particle sizes during 

pretreatment [132]. Multiple gasification technologies exist to convert the biomass to syngas. In a high- 

temperature (slagging) gasification process, the dried biomass is pressurized and converted into raw 

synthesis gas during gasification at temperatures around 1300C in the presence of high purity oxygen and 

steam. A combustor is included to provide heat to dry the biomass. The direct-quench syngas cooling 

system next to the gasifier removes ash and tars. A water-gas-shift system after quench is applied to 

adjust the H2:CO ratio to 2.1:1 [132]. NREL has conducted an investigation on indirect gasification and 

tar reforming [85]. In this design, the endothermic gasification process is indirectly-heated by the 

circulation of hot olivine and the material in the gasifier is fluidized by the steam. Gasification occurs at 

atmospheric conditions and at 880*C. The syngas is further conditioned such that the residual tars, 

methane and light hydrocarbons are reformed to syngas in a fluid catalytic cracker. Water gas shift also 

occurs in the reformer.  Compared to the high temperature gasification, this design has the benefits of 

energy self-sufficient, improved capital cost associated with the smaller process scale, and neutral 

electrical energy [86]. 

After syngas is produced, it is polished with zinc oxide and an activated carbon sorbent and compressed 

to 25 bar, the F-T operating pressure. H2 used in hydro-processing stage can be purified through a 

pressure swing adsorption. The syngas is then processed by F-T synthesis to produce liquid fuel [129, 

131], as illustrated in Figure 5. 
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Fig. 5. FT-BTL process [133] 

 

F-T synthesis is a set of catalytic processes for converting syngas into liquid hydrocarbons. There are two 

well-known F-T operating modes [134]; high temperature and low temperature. The high-temperature 
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process runs at 300°–350°C with iron-based catalysts. Gasoline and linear low-molecular-mass olefins are 

produced in this process. The low-temperature process operates at 200°–240°C with either iron or cobalt 

catalysts. Linear waxes produced in the low-temperature process have higher molecular mass than those 

produced in the high-temperature process. In the F-T process, the products range from methane to long-

chain hydrocarbons. Besides alkanes and alkenes, oxygenated compounds such as alcohols, aldehydes, 

and carboxylic acids are also formed. Aromatics and ketones are also produced in the high temperature 

process. The F-T process is a highly exothermic process; therefore, the heat of reaction has to be removed 

quickly to avoid overheating and deactivating the catalyst and also to prevent production of undesired 

methane [135]. Traditional F-T catalysts, such as iron-, cobalt-, nickel- and ruthenium-based catalysts, 

have been extensively studied in the literature [130, 134, 136-143]. Product selectivity and product 

distribution depend strongly on the operating temperature and the partial pressure of the gases that contact 

the catalyst.  

After F-T synthesis, a portion of the unconverted syngas is returned to the F-T reactor, and part of it is 

sent to the acid gas removal system [131]. The remaining portion flows into the power generation area, 

providing power for the air separation unit [131]. Conventional refinery processes, such as hydrocracking, 

isomerization, hydrogenation, and fractionation, can be applied to upgrade the F-T synthesis product to 

high-quality, low-aromatic, and almost zero-sulfur-content fuels [144]. Hydrocracking/isomerization is 

used to convert the wax into lighter products with shorter chain length and lower boiling points. Products 

from the hydrocracking/isomerization reactor are heated and distilled to produce jet fuel, diesel fuel, and 

lubricants. Hydrogenation is applied to produce naphtha from the F-T liquid. The F-T tail gas, which 

contains H2, water, methane, CO, CO2, nitrogen, argon, and heavier hydrocarbons, is recycled back to the 

syngas generation system. H2 in the tail gas can be purified through the pressure swing absorber and can 

be further used in the hydrocracking/isomerization process.  

2.3.1.2 Gas Fermentation Process 

Instead of catalytically upgrading F-T syngas to bio-jet fuel, it is also possible to ferment syngas to liquid 

biofuels (Figure 6). If lignocellulosic biomass is used as the feedstock, it is first converted into syngas via 

gasification. The cooled syngas can be fermented to ethanol or butanol by acetogenic bacteria [145]. The 

acetogenic bacteria Clostridium is used to consume CO and H2 to produce ethanol and 2,3-butanediol 

[145]. Other products such as acetate, acetone, isopropanol, and butanol can be produced by other 

biosynthetic pathways with different microbe strains [146]. The mixed alcohol, ethanol, or 2,3-butanediol 

can be upgraded into jet fuel via the ATJ technology described in Section 2.1.2, which includes 

dehydration, oligomerization, distillation, and hydrogenation processes [147]. Gas fermentation has 

several potential advantages. It is able to produce more products than the traditional biochemical or 

thermochemical pathways can [148], and it has an overall energy efficiency of 57%, while the F-T 

process has a relative overall energy efficiency of 45% [146]. The process requires lower temperature and 

pressure, as well as less expensive enzymes [148]. Gas fermentation can convert not only energy crops 

and typical agricultural wastes, but also municipal and industrial organic waste [148].  
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Fig. 6. Gas fermentation to bio-jet fuel 

2.3.2 Economic Analysis 

The production cost of BTL jet fuel has been reported based on BTL diesel production due to the 

similarity of the processes [12]. The feedstock price, as shown in the report, has a significant effect on the 

cost of the BTL fuel. High-cost energy crops contribute about 70 % more to the cost of the fuel than high-

cost forestry residues and wastes [12]. In addition, production costs are reduced with the reduction of the 

conversion cost and improvement of the energy crop yield. It is estimated that the conversion cost will be 

reduced by 26 % from 2012 to 2026 [12]. The unit production cost of BTL is expected to be higher than 

that of CTL due to the lower energy efficiencies with smaller plants and the higher capital cost of 

gasification [56]. The jet fuel production cost of CTL is estimated as $1.70 to $2.04/gal ($2.26 to 

$2.72/gal on 2011 U.S. dollars), whereas for CBTL it is estimated as $1.99/gal to $2.34/gal ($2.65 to 

$3.11/gal on 2011 U.S. dollars) [56]. The temperature of gasification also has a high impact on the cost 

analysis of the BTL F-T process [90, 149]. A low-temperature gasifier has several constraints, such as the 

limitation of reaction kinetics and the formation/flow of slag [90]. Based on processing 2,000 metric tons 

per day of corn stover, the total capital investment for the high-temperature (1,300°C), slagging, entrained 

flow gasification process, including feedstock handling, solids feeding, gasification, amine scrubbing, 

sour water-gas-shift, pressure swing adsorption, F-T synthesis, hydrocracking, and air separation/power 

generation, is $500 million (2007 basis) [149]. The total capital investment for the low temperature 

(870°C), non-slagging, direct fluidized bed gasification process is $610 million. With the same capacity, 

high-temperature (1,300°C) indirect gasification has total capital investment of $516 million (2007 basis) 

[85]. Compared to the pyrolysis and biochemical processes, gasification has the highest capital cost [150]. 

Followed by catalytic F-T synthesis and hydro-processing to naphtha-range and distillate-range liquid 

fractions, the product values for the high temperature and low temperature direct gasifiers are $4.50/GGE 

and $5.00/GGE ($5.50/GGE and $6.10/GGE on 2011 US dollars), respectively. Tijmensen et al. [151], 

pointed out that the pretreatment, gasification with oxygen, and gas cleaning sections account for 

approximately 75% of total capital cost. The production cost of F-T liquids in this study ranged from 

$9/GJ to $16/GJ ($1.86/gal to $3.30/gal on 2011 US dollars).  

2.3.3 Life-Cycle Assessment 

In the syngas production and fuel synthesis processes, the GHG emissions considered are [152] (1) CO2 

emissions from gasification, F-T synthesis, fossil fuel combustion, and venting from natural gas 

production; (2) methane emissions from fugitive plant and pipeline emissions, incomplete combustion, 

and coal bed methane releases; and (3) N2O emissions from fuel combustion and the cultivation of 

biomass. The F-T CTL and F-T GTL processes have high life-cycle GHG emissions [152, 153]. The F-T 

CTL process has GHG emissions 10% higher than those of conventional jet fuel with carbon capture and 

120% higher without carbon capture. GHG emissions from the F-T BTL process are 92%–95% less than 

those of conventional jet fuel because the feedstock for F-T BTL, either woody biomass or forestry 

residues, has a very low contribution [12]. This is also because 48% of the energy consumed for the 

conversion processes, either gasification or F-T synthesis, comes from the biomass itself [12]. The life-

cycle GHG emissions from the use of corn stover, forest residue, and switchgrass are 9.0, 12.2, and -2.0  

gCO2e/MJ, respectively (with a soil carbon-change credit, the CO2 sequestration arising from land use 

change dominates the GHG emissions), which are about 10%, 14%, and -2% of those of conventional jet 

fuel, respectively [3]. It is also suggested that identifying strategies and technologies, such as carbon 

sequestration, co-production of fuels and power, co-processing of coal and biomass, and improved vehicle 

technology will help reduce GHG and other emissions from the F-T process [154]. When switchgrass is 

used as the feedstock, the WTW GHG emissions range from 11.9 gCO2e/MJ to 26 gCO2e/MJ without soil 

carbon sequestration and from -1.7 gCO2 to -4.4 gCO2e/MJ with soil carbon sequestration [3]. HRJ fuel 

has higher GHG emissions, about 62%–92% more than F-T BTL [21] due to higher fertilizer and 

chemical use. The effect of carbon capture and storage on climate, estimated in terms of radiative forcing 
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of the production and utilization chains of the F-T fuel based on GHG emissions, has been studied [155]. 

It is concluded that without carbon capture and storage, the climate impacts of F-T fuel from peat are 

30%–40% lower than from petroleum fuels. With carbon capture and storage, the climate impacts of peat-

based F-T fuels are 50%–84% lower than petroleum diesel.  

2.4 Sugar-to-Jet Fuel  

The biological and catalytic conversion of sugars to hydrocarbons provide a biochemical route to the 

production of liquid transportation fuels and chemicals [17, 43-48, 156, 157]. According to reports by 

DOE’s Office of Energy Efficiency & Renewable Energy Bioenergy Technologies Office [39, 40], STJ 

fuel can be processed via two pathways:  

1. Catalytic upgrading of sugars or sugar intermediates to hydrocarbons: sugars are separated from 

biomass (e.g., milled corn stover) through a series of chemical and biochemical processes and 

upgraded into hydrocarbon fuels through aqueous phase reforming (APR). The process has been 

operated by companies such as Virent and Virdia. The jet fuel produced from the process has 

been tested in AFRL and passed the relevant specifications of Jet A1 fuel.  

2. Fermentation of sugars to hydrocarbons: the sugars from biomass are fermented directly to 

hydrocarbon fuels or hydrocarbon intermediates, recovered, purified, and further upgraded to 

drop-in hydrocarbon fuels. This process has been operated by companies such as LS9 and 

Amyris, and the renewable jet fuel produced by the process from a sugarcane feedstock has been 

used in an Embraer E195 jet operated by Azul Brazilian Airline [158].  

2.4.1 Process Description 

The STJ processes include (1) catalytic upgrading of sugars to hydrocarbons, (2) fermentation of sugars to 

hydrocarbons, and (3) sugar-to-sugar intermediate and upgrading to fuel.   

2.4.1.1 Catalytic Upgrading of Sugars to Hydrocarbons 

Lignocellulosic sugars are typically produced by pretreatment and enzymatic hydrolysis of biomass 

feedstocks. A certain level of purification and concentration of biomass sugars is often needed before 

catalytically upgrading sugar to hydrocarbons, which converts sugar or its intermediates to a range of 

hydrocarbon molecules and hydrogen in an APR process. The hydrocarbon molecules are separated in a 

fractionation process to jet, gasoline, and diesel fuels. Bio-derived chemicals, such as para-xylene for 

polyethylene-terephthalate-saturated polyester polymers, are also produced [40] and can be credited as 

co-products. Closed loop processes that recover and recycle the unreacted species are significant to 

improve the process economics [17], but separation of the product mixtures can be technically 

challenging. 

Virent’s BioForming platform is one example of a process that turns the plant sugars into high-energy 

hydrocarbon mixtures (Figure 7) [44, 48, 144, 159]. Following the pretreatment and fractionation 

processes, lignocellulosic biomass is converted and separated to cellulose, hemi-cellulose, and lignin. 

Lignin, in this process, is sent to the combustor to provide process heat. Using enzymatic or acid 

hydrolysis, the fractionated cellulose and hemicellulose are turned into sugars with five and six carbons. 

The carbohydrates are converted into polyhydric alcohols via hydrogenation [160] or short-chain 

oxygenates via hydrogenolysis [161]. The key step in the BioForming platform is APR. Through APR, 

the product stream from the hydro-treating step is reacted with water over a proper heterogeneous catalyst 

at temperatures of 450 to 575 K and pressures of 10 to 90 bar. The APR reaction includes reforming to 

produce hydrogen, dehydrogenation of alcohols/hydrogenation of carbonyls, deoxygenation, 

hydrogenolysis, and cyclization [161]. Products that form in APR are hydrogen, carbon dioxide, alcohols, 

ketones, alkehydes, alkanes, organic acids, and furans [162]. Hydrogen produced from APR will support 

the hydro-treating process before the APR step and hydro-refining processes after the APR step. The 

lighter alkanes from APR, such as C1–C4 hydrocarbons, are sent to the combustor to provide additional 

process heat [163].  
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Based on the available open literatures, there are three potential routes to convert the oxygenates from the 

APR step into jet-fuel-range hydrocarbons. As shown in Figure 7, the first route is acid condensation, 

which turns the oxygenates into alkanes, iso-alkanes, and aromatics with a zeolite ZSM-5 catalyst. The 

reactions include dehydration of oxygenates to alkenes, oligomerization of the alkenes to heavier alkenes, 

cracking, cyclization and dehydrogenation of heavier alkenes to aromatics, alkane isomerization, and 

hydrogen-transfer to form alkanes [162, 164, 165]. The heavier species of the products can be distilled 

and blended into jet fuel. The second route is direct catalytic condensation over multifunctional solid-base 

catalysts [81, 166]. There are several condensation reactions occurring: (1) aldol condensation to produce 

a β–hydroxyketone or β–hydroxyaldehyde, (2) dehydration of β–hydroxyketone or β–hydroxyaldehyde to 

produce a conjugated enone, (3) hydrogenation of the conjugated enone to produce ketone or aldehyde, 

and (4) removal of hydroxyls by dehydration/hydrogenation or hydrogenolysis to form alkanes [81, 166]. 

The products from this route are mostly in the jet fuel range. The third route is to convert the oxygenates 

from APR to alkanes and alkenes via dehydration and hydrogenation-dehydration reactions. The alkenes 

are oligomerized to produce kerosene with solid phosphoric or zeolite catalysts [167, 168].      

To obtain high selectivity to fuels, a catalyst that helps generate hydrocarbons with low oxygen content 

and with the appropriate amount of branching, cyclic, and aromatic content is needed [17]. The catalyst 

should be able to deal with a wide range of sugars and contaminants, including sulfur, nitrogen and ash. 

In addition, the ideal catalyst should be able to handle lignin and its decomposed products with high 

carbon efficiency and long catalyst lifetime [17].    

Researchers at the University of Wisconsin-Madison developed a two-stage process that converts sugar 

derived from biomass into 2,5-dimethylfuran (DMF) [169]. The fructose, obtained directly from biomass 

or by isomerizing of glucose, was dehydrated to form 5-hydroxymethylfurfural (HMF) by removing five 

oxygen atoms over an acid catalyst. HMF was then turned into DMF through hydrogenolysis over a CuRu 

catalyst. The resulting DMF has higher energy density by 40% and a higher boiling point by 20 K than 

ethanol, and it is not water soluble [169]. This study created a new path for the production of DMF as a 

replacement for traditional petroleum transportation fuels.  
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2.4.1.2 Direct Sugar to Hydrocarbons (DSH)  

In the direct sugar-to-hydrocarbons process, biomass cell walls are broken down and hemicellulose sugars 

are released. After enzymatic hydrolysis, which removes solid materials, liquid sugars are often 

concentrated by removing 50% of the water. Hydrocarbon intermediates are produced by processing 

concentrated sugars through an aerobic fermentation process using fed-batch or continuous fermentation. 

The resulting products are then sent to a phase separation stage to recover the hydrocarbon fuels [39].  

The processes developed by Amyris and LS9 successfully transforms sugars to hydrocarbon fuel [170, 

171]. There are two pathways to produce isopentenyl pyrophosphate (IPP), the precursor of liquid fuel: 

the mevalonic acid (MVA) pathway and the deoxyxylulose-5-phosphate (DXP) pathway [172]. The three-

carbon compound pyruvate derived from glycolysis of glucose is turned into three moles of acetyl-CoA. 

The mevalonate pathway employs three moles of acetyl-CoA and produces the five-carbon IPP [17]. The 

DXP pathway produces IPP via condensing pyruvate and D-glyceraldehyde-3-phosphate from glycolysis 

[17]. The DXP pathway has higher carbon efficiency (83%) than the MVA pathway does (56%) [17]. The 

terpenes, assembled by condensing IPP and its isomer dimethylallyl pyrophosphate, represent the 

candidates of biologically-derived fuel [17]. Large terpenes can be cracked to liquid fuel and the branched 

olefins can be hydrogenated to isoparaffins [17, 171]. Figure 8 shows an example of sugar fermentation to 

hydrocarbons in which the sugar syrup is processed through the MVA and converted into artemisinic 

acid, isopentenyl pyrophosphate, and jet/gasoline precursors. The artemisinic acid is then turned into an 

anti-malarial drug, and isopentenyl pyrophosphate is further transformed into farnesenyl pyrophosphate 

and C15 isoprenoids, which are the precursors of diesel and chemicals [170]. The fermentation waste 

could be optionally processed with anaerobic digestion to reduce the effluent. After purification, through 

downstream hydro-processing, the jet/gasoline precursors can be turned into bio-jet fuel.  

An engineered E. coli fatty acid pathway has been developed to produce fatty esters, fatty alcohols, and 

waxes from sugars [17, 173]. Through combining the thioesterase-catalyzed hydrolysis of fatty acyl-ACP, 

with fatty acyl-CoA-synthase-catalyzed reactivation of the fatty acid carboxylate group, fatty acyl-CoA 

was converted from fatty acid metabolism. Fatty esters were produced by applying an acyltransferase 

with an alcohol-forming pathway; fatty alcohols were produced from fatty acyl-CoAs by expressing fatty 

acyl-CoA reductases; and wax was produced through the fatty alcohol pathway [173]. Through the 

pathway consisting of acyl-acyl carrier protein reductase and an aldehyde decarbonylase, the C13–C17 

mixtures of alkanes and alkenes, part of the component of jet fuel, are produced from these intermediates 

of fatty acid metabolism [171]. This invention, developed by LS9, enables the conversion of biomass into 

jet fuels without the need for chemical conversion technologies such as distillation or hydrogenation.  

Scientists in Berkeley have developed a novel process that integrates ABE fermentation and chemical 

catalysis to selectively produce jet, diesel, and gasoline products from lignocellulosic and cane sugars 

[73]. Glyceryl tributyrate has been used to efficiently separate acetone and n-butanol from ethanol and to 

remove several inhibitors of fermentation found in acid-pretreated lignocellulosic biomass, such as 

furfural, p-coumaric acid, and ferulic acid. Acetone and butanol from ABE fermentation are converted 

into ketone through a condensation reaction over K3PO4 and a palladium catalyst. The resulting products, 

a C11 compound with a ketone in the middle, can be fed into the refinery infrastructure as a feedstock to 

produce renewable jet fuel [73].    
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Fig. 8. Direct sugar-to-jet fuel  

2.4.2 Economic Analysis 

When analyzing the process economics of STJ, separation of the sugar and sugar intermediates from other 

compounds needs more attention [17]. Separation of decomposed biomass slurries sometimes accounts 

for 50%~70% of capital and operating costs at a biorefinery [174]. Decreasing viscosities, increasing 

fluxes, and avoiding formation of precipitants are ways to increase the efficiency of separation at high 

temperatures [174]. NREL and Virent are currently conducting a process economic analysis for Virent’s 

BioForming technology [144]. Four main process steps, (1) pretreatment/fractionation, (2) hydrogenation, 

(3) APR, and (4) acid catalyzed dehydration/condensations, are considered to affect the production cost 

significantly [144]. Additionally, researchers from Iowa State University and the University of 

Wisconsin-Madison conducted a techno-economic study of DMF and HMF production [175]. Based on 

the process capacity of 300 metric ton/day of fructose and an operating period of 20 years, the resulting 

minimum selling prices for HMF and DMF were estimated to be $5.03/gal ($6.2/gal or $4.8/GGE on 

2011 US dollars) and $7.63/gal ($9.4/gal or $9.9/GGE on 2011 US dollars), respectively. The cost of the 

copper-ruthenium-carbon catalyst used in the DMF process might play an important role in the final 

production cost. This study provides a single point on the TEA associated with catalytic upgrading of a 

pure expensive clean sugar to a single product at a small scale. Other comparative analysis shows that the 

production of levulinic acid from biomass costs approximately $4.31/GGE [176]. For the DSH pathway, 

the techno-economic analysis is conducted to evaluate the selling price of bio-jet fuel derived from 

sugarcane, resulting in $7.16/gallon ($7.2/gal or $6.3/GGE on 2011 US dollars) for the base case and 

$4.00/gallon ($4.0/gal or $3.5/GGE on 2011 US dollars) with the development of the technology and the 

market [113]. NREL in support of the NABC efforts, in collaboration with Virent and Amyris, is also 

conducting process economics studies for a direct sugar to fuel process [144]. The target is to find the 

low-cost routes for biomass hydrolysate streams and low-cost mitigation strategies for fermentation 

inhibitors that are compatible with the current state of the art. Future work should consider the catalytic 

upgrading of biomass-derived sugars to a slate of fuel components, specifically jet fuel.   

2.4.3 Life-Cycle Assessment 

The Institute for International Trade Negotiations conducted a study of life-cycle GHG emissions of bio-

jet fuel produced from sugarcane sugars based on the Amyris process parameters [43]. The results showed 

that the life-cycle GHG emissions are around 15 gCO2e/MJ, an approximate 82% reduction compared 

with conventional Jet A/A-1 fuels [43]. However, sugarcane could induce land use change, which was not 

considered in the study above. The GHG emissions associated with sugarcane production and transport, 

according to the study, are primarily dominated by farm input and the emissions of N2O from the soil, 

which contribute 32 gCO2e/MJ and 45 gCO2e/MJ, respectively [41]. This research helps improve the 

knowledge of the carbon footprint of a renewable aviation fuel derived from sugarcane.    
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3 Summary of all bio-jet fuel production pathways 
Production yields, including intermediate and jet fuel yields, production costs and GHG emissions for the 

conversion technologies reviewed in this work are summarized in Table 6 for yields (details explained in 

Supplementary Materials), Table 8 for production cost and Figure 9 for GHG emission.  

Feedstock is the most important parameter when considering the commercial feasibility of bio-jet fuel 

production. Agricultural and forest feedstocks as well as algal biomass are major feedstocks for producing 

alcohol fuels, able to provide large amounts of alcohols for converting into jet fuel. Plant oils, animal fats, 

waste cooking oils, algal oil, and pyrolysis oils are the predominant feedstocks for oil-related conversion 

processes such as HRJ, CH, and HDCJ. Agricultural and forest residues can serve as major feedstocks for 

producing syngas or biogas. There is an abundance of sources of sugars (lignocellulosic or grain sugar) to 

ferment or synthesize to jet fuels via the STJ process. From the variable feedstocks, the sum of all the 

intermediates per dry ton biomass for each pathway is demonstrated in Table 6, using energy basis, i.e., 

GGE per dry ton biomass (BDT). Based on these literature data, ethanol from syngas fermentation has the 

highest reported yield (306.8 GGE/BDT) due to the 90% carbon conversion. On the other hand, algal oil 

has relatively low yield (22.5-29.9 GGE/BDT) because of the low oil content reported. Table 6 not only 

reports the yields of intermediates, but also summarizes the jet fuel yield after upgrading intermediates to 

finished products. The jet fuel yields demonstrate the jet fuel production from literature reported data or 

several assumptions for the calculating intermediates to jet productions. Detailed analyses can be found in 

the Supplementary Materials. For example, the jet fuel yield from palm seed results from the calculation 

of the product yield from palm oil through deoxygenation and hydro-treating processes. The jet fuel yield 

from corn stover derived isobutanol comes from the estimation of the product yield through dehydration, 

oligomerization and hydro-treating processes. For consistent purpose, the units are normalized from 

volumetric basis (gallon) to energy basis (GGE) by dividing the lower heating value (LHV) of the 

products (Table 7) by the LHV of gasoline. The yield values provide a general idea of the 

pathway/feedstock that most final products can be obtained from. The HRJ process with palm seed as the 

feedstock has the highest conversion from intermediate to final products (67.8%) due to the high carbon 

conversion. The CH process with jatropha seed as the feedstock has the lowest intermediate-to-jet 

conversion (8.0%) because most of the carbon distributes out of the jet fuel pool.   

The maturity of a conversion process controls the process economics. FT-to-jet fuel (as an example of 

GTJ) has first been proved by ASTM as a promising technology. Product selection, which leads to the 

yield of jet fuel, is strongly dependent upon the operating temperature, partial pressure of syngas, and the 

applied catalyst. The HRJ process is also an approved process, representing one of the OTJ technologies. 

The use of hydrogen and selection of a catalyst contribute to a significant part of the production costs. 

ATJ and STJ processes are at the R&D stage, and may be the next processes being approved. The jet fuel 

product yield, which depends on the catalyst or enzyme used, has attracted more and more interest and 

driven more research efforts.  

The production cost for intermediates and final jet fuel from each pathway are summarized in Table 8. If 

the feedstock costs, financial assumptions, and analysis methodologies are not normalized, the cost 

numbers cannot be compared consistently. Both volumetric basis and energy basis units are presented in 

the table for consistency. All the cost numbers are adjusted to 2011 US dollars. Both the feedstock cost 

and conversion technology contribute a significant portion of each production cost. The STJ pathway has 

higher intermediate cost due to the early stage of technology development and the HDCJ (one of the OTJ 

technologies) has a lower intermediate cost because the selling price of pyrolysis oil is reported to be very 

low in the literature. As seen in the table, only HRJ and DSH processes have some reported numbers for 

jet fuel blendstock production cost. HRJ fuel can be produced for $4.3–$9.2/gal (equivalent to $3.8-

$8.1/GGE in 2011 US dollars) [112, 113], which is expected to decrease once the technology can be 

further improved. STJ fuel through DSH process was evaluated to be $7.2/gal (equivalent to $6.3/GGE in 

2011 US dollars) [113] and this can be reduced when the technology and market are further developed. 

As seen in Table 8, the production costs from intermediates to final products increase slightly for HRJ 

process and increase significantly for DSH process. The credits obtained from the co-products in the HRJ 
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process lowers the cost of the upgrading processes from intermediates to jet fuel and benefits the entire 

conversion process. The cost estimates for the other upgrading processes are not available and require 

future investigation.  

The GHG emissions of jet fuels from the reviewed pathways are compared in Figure 9, using gCO2/MJ 

basis.  The GHG emission of ATJ pathway is currently not available, so only the data for process to make 

alcohols is reported here. A potential penalty, expected for upgrading alcohols to jet fuels, is roughly 

estimated based on the environmental impact of the refinery processes, including dehydration, 

oligomerization and hydro-treating. It is presented as a dashed line box, shown in Figure 9. GHG 

emissions primarily come from the farm input, land use change, and biorefinery processes. The GHG 

emissions from HRJ pathways range from 16% to 800% of those from conventional jet fuel depending on 

the feedstocks as well as coproducts [3]. For F-T BTL, the life-cycle GHG emissions are -2–12.2 

gCO2e/MJ from the use of corn stover, forest residue, and switchgrass, approximately -2%–14% of those 

of conventional jet fuel [3]. The STJ process through the direct sugar-to-hydrocarbons process contributes 

15 gCO2e/MJ GHG emissions [43], about an 82% reduction from conventional jet fuel. Apparently the 

GHG emissions are reduced when using the bio-jet fuel and STJ pathway has the highest reduction.  
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Table 6. Production Yields from Various Biomass Feedstocks Using Various Pathways 

 
Pathway Biomass 

Intermediate 

Yield 

[GGE/BDT] 

Jet FuelA Yield 

[gal/BDT]/ 

[GGE/BDT] 
Ref. 

A
lc

o
h

o
l 

to
 J

et
 

Ethanol to Jet 

Dry Mill --- --- [38, 61, 63, 

64, 71, 83, 

85, 177, 

178] 

CornQ 77.5 39.6/44.7 

Unrefined SugarQ 13.9 7.1/8.0 

SwitchgrassQ 55.9 28.5/32.2 

N-butanol to Jet 

(Dehydrated over a Pd/C- 

K3PO4 catalyst) 

Corn StoverR 120.9 74.1/83.7 

[73, 179-

185] 

 

Corn FiberR 57.2 34.2/38.6 

GlucoseR 112.7 69.0/78 

Wheat StrawR 112.7 69.0/78 

Liquefied Corn StarchR 112.7 69.0/78 

SwitchgrassR 101.6 62.3/70.4 

Barley StrawR 118.1 72.4/81.8 

Sweet Potato SlurryR 53.5 32.8/37.1 

Whey PermeateR 120.9 74.1/83.7 

N-Butanol to Jet 

(Oliomerization Reaction) 

Corn FiberR 57.2 10.0/11.3 

[38, 68, 71, 

72, 80, 179-

185] 

 

GlucoseR 112.7 19.5/22 

Wheat StrawR 112.7 19.5/22 

Liquefied Corn StarchR 112.7 19.5/22 

SwitchgrassR 101.6 17.6/19.9 

Corn StoverR 120.9 21.0/23.7 

Barley StrawR 118.1 20.5/23.2 

Sweet PotatoR 53.5 9.3/10.5 

Whey PermeateR 120.9 21.0/23.7 

Isobutanol to Jet 

Dry Mill --- --- 
[38, 68, 71, 

72, 77, 92, 

133, 178, 

181] 

CornS 163.6 51.9/58.6 

Unrefined SugarcaneS 29.4 9.3/10.5 

SwitchgrassS 118.4 14.4/16.3 

Methanol to Jet Woody BiomassT 79.2 45.4/51.3 [83, 186-

189] 

O
il

 t
o

 J
et

 

HRJ  

Vegatable Oil --- --- 

[3, 21, 100, 

190-199] 

 

Palm SeedE,U (22% Oil) 58.3 41.9/47.3 

RapeseedE,U (45% Oil) 127.9 75.2/85 

SoybeanE, U (18% Oil) 49.8 29.9/33.8 

Jatropha SeedE, U (35% Oil) 92.0 59.9/67.7 

Camelina SeedE, U (29% Oil) 85.9 47.2/53.3 

Camelina SeedE,U (41% Oil) 121.4 66.2/74.8 

AlgalE,U (25% Oil) 61.9 44.3/50 

Salicornia SeedE, U (28.2% Oil) 61.6 45.0/50.8 

CH  
Soybean (18% Oil) 28.7 7.6B/8.6 [3, 107, 

200] 

 
Jatropha Seed (35% Oil) 56.0 8.9B/10.1 
Tung Seed (40.4% Oil) 102.1 15.2B/17.2 

HDCJ  

Dry WoodV 93.5 41.1B/46.4 

[201-209] 

 

Corn StoverV 71.8 36.4B/41.1 
SwitchgrassV 74.8 37.9B/42.8 

Sugarcane BagasseV 62.3 31.6B/35.7 

Algae 18% Oil ContentV 22.5 11.4B/12.9 
Algae 24% Oil ContentV 29.9 15.2B/17.2 

Forest Residue LowV 74.8 37.9B/42.8 
Forest Residue HighV 81.1 41.1B/46.4 
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                                 Notes:    
A 

Unless otherwise stated ―Jet Fuel‖ is defined as C9-C15 n-alkanes 
B
 Jet range based off of boiling point 

C 
Using Ethanol to Jet Pathway to create Jet Fuel C9-C15 alkanes 

D
 Using Isobutanol to Jet Pathway, Jet Fuel C9-C15 alkanes 

E
 Uses the decarboxylation pathway 

F 
Catalytic Upgrading Using Virent Pathway 

H
 Coal to Liquid Fuel (CTL), unknown ranges of gasoline, diesel, and jet 

I
 The average of several design cases for hardwood gasification 

J
 The average of six notable sources for the production of CTL fuel from coal 

K
 Catalytic Upgrading Condensation to HMF to Jet 

L
 Catalytic Upgrading non-fermentation of biomass 

M
 Direct Sugar to Jet Mevalonic (MVA) Pathway 

N 
Direct Sugar to Jet Deoxysylulose-5-phosphate (DXP) Pathway 

O
 90% of Carbon Conversion to Syngas 

P
 76% of Carbon Conversion to Syngas

  

Q
 Starting Intermediate: Ethanol 

R
 Starting Intermediate: A:B:E (Acetone:Butanol:Ethanol) 

S 
Starting Intermediate: Ethanol→ Isobutanol 

T
 Starting Intermediate: Methanol 

U
 Starting Intermediate: Triglyceride Oil 

V
 Starting Intermediate: Liquid Pyrolysis Oil 

W
 Starting Intermediate: Glucose : Xylose  

X
 Starting Intermediate: Sucrose 

Y
 Starting Intermediate: Fructose 

Z
 Starting Intermediate: Glucose : Xylose : Fructose 

---  Data not available 

 

Pathway Biomass 

Intermediate 

Yield 

[GGE/BDT] 

Jet FuelA Yield 

[gal/BDT]/[GGE/BDT] 
Ref. 

G
a

s 
to

 J
et

 

F-T to Jet 

Natural Gas --- 156.4/176.7 

[3, 55, 131, 210-

215] 

CoalJ --- 84.1H/95 

HardwoodI --- 63.9/72.2 

Switchgrass 
--- --- 

Gas Fermentation  

Natural GasO, Q 306.8 139.5C/157.6 

[38, 61, 63, 64, 

68, 71, 72, 77, 

133, 143, 145, 

146, 177, 178, 

181, 216-218] 

  204.5D/231 
Natural GasP, Q 259.1 117.8C/133.1 

  172.7D/195.1 
BiomassQ 

Feedstock/Softwood 

From Coskata 

65.8 29.9C/33.8 
  43.8D/39.8 

HardwoodQ 77.3 35.2C/39.8 
  51.5D/58.2 

Biomass FeedstockQ 52.7 23.9C/27 
  35.1D/39.7 

Biomass FeedstockQ 46.8 21.3C/24.1 
  31.2D/35.2 

S
u

g
a

r 
to

 J
et

 

Catalytic Upgrading 

Corn StoverF,W 91.8 52.7/59.5 

[162, 219-222] 

 

Sugarcane Bagasse 62.8 49.0/55.4 

HardwoodF, W 75.3 41.7/47.1 

SwitchgrassF, W 81.5 48.1/54.3 

SugarcaneF, X 65.8 44.5/50.3 

Sugar BeetF, X 54.8 37.1/41.9 

Cellulosic MassK, Y 26.9 13.8/15.6 [81, 175] 

Corn StoverL, W 91.8 21.9/24.7 [162, 223] 

Direct Sugar to Jet 
 

Corn StoverM, W 91.8 36.9/41.7 

[172, 220] 

Corn StoverN,Z 56.4 18.5/20.9 
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Table 7. Lower Heating Values of the Intermediates 

Lower Heating Value MMBTU/gal Ref. 

  Gasoline heating value 0.12 [83] 

 Ethanol heating value 0.08 [83] 

 Acetone heating value 0.08 [224] 

  n-butanol heating value 0.10 [95] 

Isobutanol heating value 0.10 [92] 

Methanol heating value 0.06 [224] 

  Palm oil heating value  0.12 [225] 

  Rapeseed oil heating value  0.13 [225] 

  Soybean oil heating value  0.13 [225] 

  Jatropha oil heating value 0.12 [226] 

  Camelina oil heating value 0.14 [227] 

  Algal oil heating value 0.12 [228] 

  Salicornia oil heating value 0.12 [3] 

 Tung oil heating value 0.12 [229] 

  Pyrolysis oil heating value 0.07 [230] 

  Glucose heating value 0.09 [231] 

  Xylose heating value 0.08 [83] 

Sucrose heating value 0.09 [83] 

Fructose heating value 0.09 [232] 

 Jet fuel heating value 0.13 [20]  
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Table 8. Production costs of Jet Fuel from Various Pathways 

 

Category Pathways Intermediate 
Interm. CostA ($/gal) 

[($/GGE)] 

Final jet fuel cost ($/gal) 

[(($/GGE)] 
Ref. 

ATJ 

Ethanol to Jet EthanolB 2.5-2.6 (3.8-4.0) 

Not Available 

[83, 85] 

n-Butanol to Jet N-butanolB 3.7 (4.1) [92] 

Iso-Butanol to Jet IsobutanolB 3.6 (4.0) [92] 

Methanol to Jet Methanol 1.5 (3.0) [233] 

OTJ 

HRJ Bio-OilC 4.3-8.5 (4.0-8.2) 4.3-9.2 (4.0-8.5) 
[100, 112, 113, 

234] 

CH Bio-OilD 1.7-4.3 (1.6-3.9) 
Not Available 

[113, 235] 

HDCJ Pyrolysis Oil 1.0-1.5 (1.8-2.6) [118, 201, 236] 

GTJ 

F-T to Jet (BTL) 
Syngas derived 

diesel 
6.4-6.7 (6.0-6.2) 

Not Available 

[56] 

Gas Fermentation 
Ethanol from 

syngas fermentation 
2.8-3.1 (4.3-4.8) [237, 238] 

STJ 

Catalytic 

Upgrading of Sugar 

to Jet 

HMF and DMF 6.2-9.4 (4.8-9.9) Not Available [175] 

DSH HydrocarbonsE 4.6F (4.4) 7.2 (6.6) [113, 239] 

                       Note: 
A
 The cost numbers are inflated to 2011 U.S. dollars using the industrial inorganic Chemical Index for SRI Consulting [240]  

                                   
B
 The alcohol intermediates are produced from cellulosic biomass 

                                   
C
 Soybean and algal oils are selected for the lower and higher end bio-oils 

                                   
D
 Jatropha and soybean oils are selected for the lower and higher end bio-oils 

                                   
E 

Pentadecane 

                                   
F 

Target value of the product 

  
Fig. 9. GHG emissions of jet fuel from various pathways  

([3, 12, 14, 21, 33, 43, 55-57, 92, 127, 128, 199, 241-243]) 
Note:  

A
 For ATJ pathway, the higher and lower end uncertainties represents GHG emissions of n-butanol and ethanol, respectively 

                               
B
 For OTJ pathway, the higher and lower end uncertainties represents GHG emissions of rapeseed and palm oils, respectively 

                               
C 

 For the GHG emissions of OTJ and GTJ pathways, without land use change is considered 
                               

D
 For GTJ pathways, switchgrass is selected as the feedstock; without soil carbon sequestration is considered  
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4 Conclusion 
 

The issues of jet fuel cost, energy supply, energy security, and aviation emissions have driven the 

development of aircraft and engine technologies throughout the history of flight. Sustainable biomass-

derived bio-jet fuel represents a major opportunity to resolve these issues. Many conversion technologies 

that turn biomass into jet fuels have been developed, and some of them are commercially viable. In this 

review, most of the current technologies have been classified into four major categories: ATJ, OTJ, GTJ, 

and STJ. Each category has been described and reviewed with regard to feedstocks, upgrading processes, 

production costs when available, sustainability, and commercial readiness.  

Sustainable bio-jet fuel not only brings environmental benefits for aviation, but helps the development of 

a new industry. There is still a considerable way to proceed before renewable aviation fuels become 

economically viable. Through the combination of expertise of the aviation industry, government, biofuel 

companies, agriculture organizations, and academic systems, along with encouragement from regional 

banks, progress is being made toward an optimal process that utilizes the most effective feedstock 

sources, is amenable with current infrastructure, and produces renewable aviation fuels.   
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