
Wayne State University

Wayne State University Associated BioMed Central Scholarship

2011

BIO::Phylo-phyloinformatic analysis using perl
Rutger A. Vos
School of Biological Sciences, University of Reading, R.A.Vos@reading.ac.uk

Jason Caravas
Wayne State University, jason.caravas@wayne.edu

Klaas Hartmann
University of Tasmania, Australia, Klaas.Hartmann@utas.edu.au

Mark A. Jensen
Fortinbras Research, jensen@fortinbras.us

Chase Miller
Columbia University, chmille4@gmail.com

This Article is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University
Associated BioMed Central Scholarship by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Vos et al. BMC Bioinformatics 2011, 12:63
doi:10.1186/1471-2105-12-63

Available at: http://digitalcommons.wayne.edu/biomedcentral/76

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/biomedcentral
http://dx.doi.org/10.1186/1471-2105-12-63

SOFTWARE Open Access

BIO::Phylo-phyloinformatic analysis using perl
Rutger A Vos1*, Jason Caravas2, Klaas Hartmann3, Mark A Jensen4, Chase Miller5

Abstract

Background: Phyloinformatic analyses involve large amounts of data and metadata of complex structure.
Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps
that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and
persist phylogenetic data and metadata as objects with programmable interfaces.

Results: This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and
methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to
install) and features a richer API and a data model that is better able to manage the complex relationships
between different fundamental data and metadata objects in phylogenetics. It supports commonly used file
formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic
data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that
BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape,
and tree visualization are provided.

Conclusions: Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on
a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and
UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo

Background
Recent years have seen the emergence of the field of
phyloinformatics [1]. At a practical level this is research
where much of the organizational challenge lies in
managing data, including character state matrices or
multiple sequence alignments, phylogenetic trees and
the relationships between these, and metadata, includ-
ing cross references to molecular sequence databases,
taxonomies, character state descriptions, biodiversity
data, and literature references. At the nexus of the rela-
tionships between character state data and phylogenies
lies the operational taxonomic unit (OTU), i.e. the bio-
logical entity on which observations are made (e.g. by
measuring morphological traits or by sequencing DNA)
and which is placed as a terminal node in a phylogeny.
In the course of a phyloinformatic analysis, data and

metadata are collected or generated, transformed, fil-
tered, analyzed and summarized before they can be
interpreted to answer meaningful biological questions.
Based on first principles of good science such steps

should be reproducible; and, in practice, analysis steps
often need to be redone by the researcher multiple
times [2] and are too error-prone, tedious and time-con-
suming to perform manually. Hence, environments that
allow such analyses to be scripted programmatically can
greatly improve the efficiency and reproducibility of
phyloinformatics.
Some of these facilities are provided by DendroPy

[3], ETE [4] and BioPython [5] for the Python pro-
gramming language, by the Ape package [6] for the R
environment, and by BioPerl [7] for the Perl program-
ming language. However, some of these (DendroPy,
Ape), while strong on tree shape simulation and analy-
sis, do not integrate easily in workflows that include
external software for sequence alignment and phyloge-
netic inference or database or web service access, while
others (BioPython, BioPerl, ETE) are strong in that
respect but are lacking in tree shape simulation and
analysis. In addition, none of these toolkits have a
facility for managing the syntax and semantics of
metadata. This can cause confusion when integrating
and sharing metadata from disparate sources. For
example, if an OTU is annotated with a taxonomic

* Correspondence: R.A.Vos@reading.ac.uk
1School of Biological Sciences, University of Reading, UK
Full list of author information is available at the end of the article

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

© 2011 Vos et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://search.cpan.org/dist/Bio-Phylo
mailto:R.A.Vos@reading.ac.uk
http://creativecommons.org/licenses/by/2.0

identifier, where (e.g. which database) does the identi-
fier come from? What is the relation between the
OTU and the database record (e.g. is the relationship
established by a simple string match or something
else)?
The Bio::Phylo toolkit addresses these issues, allowing

researchers to read and write previously unsupported
data formats, generate and transform data in a variety of
ways, compute heretofore unimplemented topological
indices, apply heretofore unavailable sampling and
resampling algorithms and visualize the results in publi-
cation-ready graphics, while allowing phylogenetic
knowledge to be managed, represented and shared in
ways that preserve its meaning and its relation to meta-
data, regardless of its origin or context.
Due to its implementation in the Perl programming

language and its compatibility with the BioPerl [7]
toolkit, the operations supplied by Bio::Phylo are easily
integrated in larger analysis workflows that take advan-
tage of the operations supplied by BioPerl and that
interface with command-line executables and web ser-
vices, e.g. for database access or for computationally
intensive analysis steps. However, BioPerl is very large
and for many users difficult to install, whereas Bio::
Phylo has no required dependencies. This makes deploy-
ment much easier for users who only require Bio::Phy-
lo’s functionality-orientated towards phyloinformatics
per se-but not BioPerl’s.

Implementation
Data and object model
Bio::Phylo’s design follows the data model shown in
Figure 1. A phylogenetic project (Bio::Phylo::Project
object) contains zero or more sets of trees (Bio::Phylo::
Forest objects), zero or more sets of OTUs (Bio::Phylo::
Taxa objects) and zero or more character state matrices
(Bio::Phylo::Matrices::Matrix objects). Each forest object
and each character state matrix may refer to a set of
OTUs; however, this is not compulsory throughout the
life cycle of these objects. For example, a tree parsed
from a simple Newick [8] tree description contains
terminal nodes-which may imply associated OTUs-but
OTUs for these terminal nodes might only be instan-
tiated when the tree is used in a context that explicitly
requires them, such as when writing the tree to a file
format that uses the OTU concept (e.g. as in NEXUS
[9] “taxa blocks”).
Each forest object contains zero or more tree (Bio::

Phylo::Forest::Tree) objects, which contain zero or more
nodes (Bio::Phylo::Forest::Node). Each of these nodes may
have a reference to an OTU (Bio::Phylo::Taxa::Taxon)
object, which, conversely, may have references to many
nodes. For example, if a NEXUS file with multiple trees
for the same set of species is read, the terminal nodes for
the same species in the different trees will all hold a refer-
ence to the same OTU object, and that OTU object will
hold references to all terminal nodes that reference it.

Bio::Phylo::Forest::Node

Bio::Phylo::Forest::Tree

Bio::Phylo::Taxa::Taxon

Bio::Phylo::Forest Bio::Phylo::Taxa Bio::Phylo::Matrices::Matrix

Bio::Phylo::Matrices::Datum

Bio::Phylo::Project

zero or one
zero or more

Figure 1 Data model of core Bio::Phylo objects. Cardinality relationships between the objects are shown as “crow’s feet” notation; for
example, a Bio::Phylo::Project has references to zero or more Bio::Phylo::Forest objects.

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 2 of 9

Each character state matrix contains zero or more
datum (Bio::Phylo::Matrices::Datum) objects, which
represent a character state observation. An observation
could be a single character state-such as a morphologi-
cal state-or a character state sequence, such as a DNA,
RNA, amino acid, restriction site, categorical state or
continuous state sequence. In addition to holding raw
character state symbols, datum objects also manage the
semantics of the data, e.g. which symbols are ambiguity
symbols for sets of others (as per the IUPAC single
character symbols [10]) including “missing” (which
means an ambiguity symbol for the set of all possible
states) and “gap” (which means an ambiguity symbol for
the set of none of the possible states, i.e. “does not
apply”). Each of these datum objects may reference an
OTU object, which conversely may reference many
datum objects.
OTU objects are used in Bio::Phylo to remap the rela-

tionships between tree nodes and datum objects from
many-to-many to one-to-many from OTU to both
nodes and data. This conceptualization is also implied
in the NEXUS format and in software projects oriented
towards data-management and data-exploration built on
top of NEXUS such as Mesquite [11] and TreeBASE
[12]. Similarly, containers of OTU objects (the Bio::
Phylo::Taxa class) are implemented as objects from
which one-to-many relationships exist to character state
matrices and to sets of trees.
To implement the functionality implied by the data

model (Figure 1) and described here, Bio::Phylo has
been designed in object-oriented Perl 5, making use of
abstractions and helper classes that have been omitted
here for clarity, but which are documented exhaustively
in the software release [see http://search.cpan.org/dist/
Bio-Phylo].

NeXML
All phylogenetic data objects in Bio::Phylo can be read
from, and written to, NeXML http://www.nexml.org, a
new XML format that is conceptually similar to
NEXUS. The data objects all can hold references to zero
or more Bio::Phylo::NeXML::Meta objects, which repre-
sent RDFa [13] annotations. This allows Bio::Phylo
objects to be serialized as the subjects of “triples” [14]
where the predicates and objects can be obtained from
any controlled vocabulary or ontology (such as CDAO
[15], SKOS [16] or DarwinCore http://rs.tdwg.org/dwc/
index.htm), providing a flexible, semantic web-ready
facility to attach metadata to phylogenetic data objects.
NeXML represents a considerable advance in the

structured representation of phylogenetic data because
these RDFa annotations allow phylogenetic data objects
to be enriched with flexible predicates and objects, yet
constrains these to explicit definitions in controlled

vocabularies or ontologies. This is different from Phy-
loXML annotations and the NEXUS “notes block”
because the predicates (or “keys”, if viewed from the
perspective of key/value annotations) in those formats
are based on convention, not explicit definition, which
is a situation that can cause ambiguities when integrat-
ing data from multiple sources.
A simple example may demonstrate this point: con-

sider reading a file, matching the OTU names read from
that file against names in the NCBI taxonomy, then
sharing the results of this process. There is no non-
ambiguous way to express in machine-readable form in
NEXUS or PhyloXML why and how, for example, Homo
sapiens became associated with the identifier 9606.
Using NeXML with RDFa annotations, it can be
expressed that the OTU with the name Homo sapiens
(the subject of the triple) has a match, expressed using,
for example, the closeMatch predicate from the SKOS
vocabulary, with the taxonomy database record identi-
fied by http://purl.uniprot.org/taxonomy/9606. The defi-
nition of closeMatch in the SKOS vocabulary then
clarifies unambiguously what the relationship is between
the subject (the OTU) and the object (the database
record). The key difference between this approach and
others in use in phyloinformatics is the usage of for-
mally defined predicates from any knowledge represen-
tation to describe the relation between objects and their
annotations. (It is for this reason that the TreeBASE
project [12] has adopted NeXML as its output format of
choice to represent the wealth of metadata that Tree-
BASE contains.)
Due to NeXML’s OTU-oriented data model, Bio::

Phylo, which has a similar model, is a suitable target for
NeXML I/O, whereas BioPerl, which lacks a notion of
OTUs, is not. In addition, NeXML and Bio::Phylo sup-
port categorical and continuous character states,
whereas BioPerl does not. By implementing Bio::Phylo
with its level of support for NeXML, complex, richly
annotated phyloinformatic data objects become amen-
able to processing in scriptable workflows while persist-
ing more of their context and provenance than
heretofore possible.

Results and discussion
Object manipulation and transformation
Bio::Phylo provides a toolkit for the manipulation of rich
phylogenetic data objects. The objects can be annotated
and labeled, and have any number of arbitrary other
objects attached to them. The objects can be traversed
in various ways, including depth-first, breadth-first or
level-order traversal of tree shapes and through iterator
or visitor access [17] to all objects that are lists of things
(e.g. a Bio::Phylo::Taxa object is a list of OTU objects).
Traversals can move from node objects to the OTU

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 3 of 9

http://search.cpan.org/dist/Bio-Phylo
http://search.cpan.org/dist/Bio-Phylo
http://www.nexml.org
http://rs.tdwg.org/dwc/index.htm
http://rs.tdwg.org/dwc/index.htm
http://purl.uniprot.org/taxonomy/9606

objects that define them (and back) and from OTU
objects to character state observations that were made
for the OTU objects (and back). The objects can be
tested for various predicates, e.g. whether a tree is
rooted, whether it is binary, whether it is ultrametric;
whether a set of tips is monophyletic with respect to a
given outgroup, whether a set of tips forms a complete
clade; whether a node object is a tip, an internal node
or the root node; whether it is the ancestor, parent, sib-
ling, child or descendant of another node.
Using these traversal methods and tests, simple calcu-

lations are easily implemented. Bio::Phylo provides a
number of these, e.g. the sum of all branch lengths on a
tree; the average, minimum, maximum and cumulative
root-to-tip path length; the amount of redundancy (i.e.
the amount of shared, ancestral evolutionary history
along all lineages on the total amount of evolutionary
history, including along terminal branches). In addition,
a number of more sophisticated tree shape methods
useful for biodiversity informatics is provided:

▪ calc_ltt - Calculates lineage-through-time
points [18].
▪ calc_symdiff - Calculates the symmetric dif-
ference metric [19] between two trees.
▪ calc_fiala_stemminess - Calculates stemmi-
ness measure [20].
▪ calc_rohlf_stemminess - Calculates stemmi-
ness measure [21].
▪ calc_imbalance - Calculates Colless’s coeffi-
cient of tree imbalance [22].
▪ calc_gamma - Calculates g-statistic [23].
▪ calc_i2 - Calculates I2 imbalance [24].
▪ calc_fp - Calculates the Fair Proportion value
[25,26] for each tip.
▪ calc_es - Calculates the Equal Splits value
[27,28] for each tip.
▪ calc_pe - Calculates the Pendant Edge [29]
value for each tip.
▪ calc_shapley - Calculates the Shapley [30]
value for each tip.

Likewise, calculations applicable to sets of trees (e.g.
split frequencies) and to character state matrices (e.g.
state frequencies, G/C content) are provided.
Bio::Phylo also provides methods for the transforma-

tion of phylogenetic data objects. For example, phyloge-
netic trees can be re-rooted, pruned or ultrametricized,
nodes can be collapsed or inserted, branch lengths can
be exponentiated or log-transformed. Sets of trees can
be summarized in consensus trees or represented as
pseudo-character-state MRP [31,32] matrices. Character
state data can be manipulated directly, or transformed
through bootstrapping and jackknifing [33].

Input/output
A number of file formats is used for phylogenetic data.
The Bio::Phylo::IO module supports the most commonly
used ones: trees can be written and read in Newick for-
mat [8]; projects, taxa, trees and matrices can be written
and read in NEXUS format and in NeXML http://www.
nexml.org; character state matrices can be read from
CSV, FASTA, PHYLIP and tab-delimited files; trees can
be read from the Tree of Life Web Project [34] XML
service; trees and character state matrices can be written
in the legacy format for the CONTINUOUS [35,36],
DISCRETE [37] and MULTISTATE [37] programs and
in PHYLIP format
If BioPerl [7] is present, the wealth of data formats

supported by Bio::SeqIO, Bio::AlignIO and Bio::TreeIO
is also available because BioPerl objects can be con-
verted to Bio::Phylo objects (using the new_from_-
bioperl constructors), and Bio::Phylo objects can be
passed to the write methods of BioPerl. However, dif-
ferent from BioPerl is Bio::Phylo’s concept of a “project”
object, which is a collection of fundamental data objects
(OTUs, trees and matrices) that reference each other.
Whereas in BioPerl, NEXUS files are treated as flat con-
tainers of records of the same type (i.e. either trees or
alignments, which are read sequentially by a tree file
reader or an alignment reader, respectively), Bio::Phylo
can optionally treat NEXUS and NeXML files as con-
taining a project of related data of different types, in the
same way as the informatics-oriented applications Mes-
quite [11] and TreeBASE [12] do. The compatibility
with BioPerl is optional: Bio::Phylo doesn’t require Bio-
Perl to be installed or vice versa (they don’t share code),
but if Bio::Phylo detects BioPerl’s presence, it enables a
compatibility mode to make trees, nodes, character state
matrices and sequences implement the interfaces that
BioPerl defines.
Beyond BioPerl, interaction with other toolkits (e.g.

ETE, DendroPy, BioPython, Ape) and combination in
larger workflows is confined to the extent to which they
can read the same data formats as Bio::Phylo. This func-
tionality is usually confined to NEXUS and Newick file
exchange, although DendroPy has support for NeXML
as well, allowing more fine-grained data and metadata
sharing, and similar functionality is in development for
BioRuby [38].

Visualization
Bio::Phylo can draw trees where only the branching
order and direction, but not the branch lengths are sig-
nificant (“cladograms”), as trees with branch lengths
proportional to time or some other metric such as
inferred change (“phylograms”) or as trees where branch
lengths and distance are significant, but no direction or
nesting is implied (“unrooted”). These trees can be

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 4 of 9

http://www.nexml.org
http://www.nexml.org

drawn with rectangular, curved or diagonal branches.
Branch thickness, branch color, node color, node radius
and node pie diagrams (e.g. for “likelihood pies” [sensu
[39]]) can all be set per node and branch individually.
Clades can be represented in a view that shows them
collapsed into triangles whose width and color can be
set per clade individually. This programmatic access to

the visualization of individual objects in large trees
allows users to superimpose their data on trees in a
variety of ways (for an example, see Figure 2).
The visualizations produced by the tree drawer mod-

ule can be serialized to various bitmap formats (GIF,
JPEG, PNG) and vector formats (PDF, SVG, SWF and
the new HTML5 Canvas used by modern web browsers

MONOTREMATA

DIDELPHIMORPHIA

PAUCITUBERCULATA

PERAMELEMORPHIA

NOTORYCTEMORPHIA

DASYUROMORPHIA

MICROBIOTHERIA

DIPROTODONTIA

PROBOSCIDEA

SIRENIA

HYRACOIDEA

TUBULIDENTATA

MACROSCELIDEA

AFROSORICIDA

XENARTHRA

EULIPOTYPHLA

PHOLIDOTA

CARNIVORA

PERISSODACTYLA

CETARTIODACTYLA

CHIROPTERA

SCANDENTIA

DERMOPTERA

PRIMATES

LAGOMORPHA

RODENTIA

Figure 2 Visualization example: mammal rates. This tree was generated using Bio::Phylo by (i) reading a 3185 taxon phylogeny; (ii) collapsing
the major clades; (iii) converting branch-specific speciation rates (read from a separate file, blue indicates low rates, purple and burgundy
indicate higher rates) to RGB color codes; (iv) applying these colors to the branches and the average color within each collapsed clade to the
triangles (data and use case kindly provided by Mark Pagel and Chris Venditti).

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 5 of 9

and by the iPhone and iPad), some of which can be used
to create interactive graphics and animations (SVG,
SWF and Canvas). Using the XML-based SVG output
format, the resulting serialization can be further pro-
cessed programmatically, as was done by the authors of
a recent study [40] that used Bio::Phylo (Florent Angly,
pers. comm.). Any serialization can of course be
manipulated further by hand using vector drawing or
graphics editing software to prepare it for publication;
however, the most useful application of Bio::Phylo’s tree
drawing capabilities is probably in the creation of inter-
active graphics for the web, e.g. within the dynamic ser-
ver environment of a web application that serves trees
from a database.

Sampling and simulation
Bio::Phylo can simulate tree topologies under the follow-
ing models of cladogenesis: pure birth under the model
of Hey [41]; pure birth under the Yule model [42]; equi-
probable topologies [sensu [43]]; constant rate birth-
death, evolving speciation rate and beta binomial models
implemented using novel algorithms [44]. The tree sam-
pling interface in Bio::Phylo can also be used to sample
from arbitrarily complex user specified models using the
algorithms in [44].

Conclusions
Bio::Phylo is a software library written in Perl 5 that cur-
rently consists of about 33,000 lines of code spread out
over 59 software modules. A manual that is part of the
release provides the principal documentation. On a
command line, this manual can be displayed by issuing
the command perldoc Bio::Phylo::Manual. (The
document is also available online http://search.cpan.org/
dist/Bio-Phylo/lib/Bio/Phylo/Manual.pod). In addition,
more documentation - about 14,000 lines as of revision
1204-can be found as embedded documentation in the
individual classes of the release. For example, to learn
more about reading and writing phylogenetic data, issue
the command perldoc Bio::Phylo::IO. Bio::Phylo
uses inheritance to a great extent, such that any one
object may inherit additional methods from a number of
super classes. In such cases, this will be noted in the
“SEE ALSO” section of that class’s documentation. The
Bio::Phylo documentation system rewards the methodi-
cal reader who follows these document links.
Because Bio::Phylo implements the same interfaces in

its core data objects, it is optionally compatible with
BioPerl [7], filling a niche left open for phyloinformatic
analysis in Perl. For example, the authors are aware of
Bio::Phylo having been used for phylogenomic research
[40], cladogenesis simulations [44], and the evaluation of
biodiversity metrics [45]. Similar to Bio::NEXUS [46],
Bio::Phylo implements more exhaustive implementation

of the NEXUS data format than BioPerl does, however,
Bio::NEXUS’s functionality and use cases are confined to
input and output in that format, omitting the object
manipulation, annotation, visualization and sampling
and simulation features discussed here.
In comparison with open source projects for phyloin-

formatics implemented in other programming languages,
Bio::Phylo most closely resembles the ape toolkit for R
[6] and the DendroPy toolkit for Python [3], however,
the language environments of these three projects are
obviously different both in actual functionality and in
their appeal to differing sense of aesthetics among user
communities. Also, the compatibility with BioPerl and
the integration with NeXML make Bio::Phylo especially
suitable for applications where richly annotated phyloge-
netic data objects need to be persisted such that the
semantics of the metadata are preserved (e.g. between
steps in a larger workflow, or as data are serialized for
sharing). A simple example of this is shown in Figure 3.
In this code sample, two Newick trees are parsed; subse-
quently, OTUs for the terminal nodes in the trees are
annotated with the skos:closeMatch predicate that
describes the relationship between the OTUs and the
respective NCBI taxonomy database records returned by
the Entrez web service as best matches for the OTU
names. In the final step of the example, the annotated
project is persisted to NeXML with the metadata avail-
able to other consumers (such as a different script, or a
client to a web service) and preserving in machine-read-
able format why the metadata exist.

Future directions
Bio::Phylo is written in Perl, and while this language has
many useful features, it is not very well suited for com-
putationally intensive calculations compared to compiled
languages such as C/C++. This means that operations
such as maximum likelihood estimation or Markov
chains are not usefully implemented in Perl, and so Bio::
Phylo does not attempt this. However, Perl can easily
make use of applications written in other languages
through system calls, which is why it is used as a “glue
language” for analysis workflows [2]. This is one of the
main use cases for Bio::Phylo. In addition to writing
one-off wrappers around command line tools, in this
scenario one can also use BioPerl’s bioperl-run exten-
sion, which Bio::Phylo can be seamlessly incorporated
into because its objects can, optionally, double as the
BioPerl objects that are passed into the wrappers that
bioperl-run provides. However, this interface is some-
what coarse in the amount of allowed parameterization
of wrapped applications, and so novel algorithms are
generally difficult to implement this way. Several pro-
jects developed in compiled languages-for example
HyPhy [47] and BEAGLE [48]-are now being designed

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 6 of 9

http://search.cpan.org/dist/Bio-Phylo/lib/Bio/Phylo/Manual.pod
http://search.cpan.org/dist/Bio-Phylo/lib/Bio/Phylo/Manual.pod

so that they can be used as computational back-ends
that can be connected to front-ends implemented in
scripting languages such as Perl (e.g. using SWIG).
Some preliminary tests have shown that it is possible to
expose some of HyPhy’s and BEAGLE’s functionality to
Bio::Phylo in this way, and this is something that will be
explored further in the future, possibly as optional
extensions to Bio::Phylo.

Other developments that might affect Bio::Phylo’s
future implementation and project organization are
some of the new initiatives that are being undertaken in
the Perl/bioinformatics community. The BioPerl project
has grown to such a size that work is now being under-
taken by its core developers to develop a more decentra-
lized and modular architecture. If this results in a model
whereby the different components in this new BioPerl

use Bio::DB::Taxonomy;
use Bio::Phylo::IO 'parse';
use Bio::Phylo::NeXML::Meta;

Assign base URL for NCBI taxonomy entries, assign SKOS namespace,
instantiate the BioPerl taxonomy searcher, read DATA block
my $ncbi = 'http://purl.uniprot.org/taxonomy/';
my $skos = 'http://www.w3.org/2004/02/skos/core#';
my $db = Bio::DB::Taxonomy->new('-source' => 'entrez');
my $trees = do { local $/; <DATA> };

Parse the newick strings from the DATA block, turn them
into a Bio::Phylo::Project object
my $project = parse(

'-format' => 'newick',
'-string' => $trees,
'-as_project' => 1,

);

Create OTUs for the terminal nodes parsed out of the newick strings
my $otus = $project->get_forests->[0]->make_taxa;

Visit the created OTUs
$otus->visit(

sub {
my $otu = shift;

Add a metadata annotation to each OTU to specify how it
matches a record from the NCBI taxonomy, i.e. as a "closeMatch"
as per the SKOS vocabulary
$otu->add_meta(

Bio::Phylo::NeXML::Meta->new(
'-namespaces' => { 'skos' => $skos },
'-triple' => {

'skos:closeMatch' => $ncbi.$db->get_taxonid($otu->get_name)
}

)
)

}
);

Add the OTUs to the project, write the result to NeXML
$project->insert($otus);
print $project->to_xml;

__DATA__
(((Homo sapiens,Pan troglodytes),Gorilla gorilla),Pongo pygmaeus);
(((Homo sapiens,Pan paniscus),Gorilla gorilla),Pongo pygmaeus);

Figure 3 Code sample: parsing OTUs from Newick tree descriptions and annotating them with NCBI taxonomy database record
identifiers using the SKOS vocabulary to describe the relationship between the OTU and the database record (i.e. a close string
match).

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 7 of 9

ecosystem are decoupled enough that Bio::Phylo can
participate in it while continuing to be developed along
its original design and API it is the intention to make it
part of this ecosystem. The recent decomposition of the
BioPerl source code into multiple repositories main-
tained under the “git” revision control system simplifies
this; recent discussions between BioPerl and Bio::Phylo
developers point to a solution where Bio::Phylo becomes
one such repository (e.g. “bioperl-phylo”). The hope is
that this will ensure continued compliance of Bio::Phy-
lo’s implementations of BioPerl interfaces and that it
will invite BioPerl users and developers to consider get-
ting involved in Bio::Phylo where it fills niches left open
by BioPerl. In fact, Bio::Phylo has been used successfully
as an underlying engine for the parsing and production
of NeXML format within the BioPerl core code base
itself, through the module Bio::Nexml (written by CM).
Bio::Nexml is an example of the transparent interoper-
ability of the two toolkits, and a model of how contin-
ued cross-fertilization might proceed.
Yet other initiatives in the BioPerl community pertain

to innovation in the Perl language itself. For Perl version
5, a new meta-programming extension called Moose
greatly simplifies class definitions, and usage of this
extension is being explored for BioPerl under the
BIOME http://github.com/cjfields/biome project. It has
been a guiding principle in Bio::Phylo’s development
that it does not require any prerequisites that are not
part of the Perl core in order to be installed (although
some functionality will be unavailable at runtime unless
and until optional extensions are installed as specified in
the ‘Availability and Requirements’ section). Since the
Moose extension is currently not part of the Perl 5 core,
redesigning Bio::Phylo along similar lines as the BIOME
project would introduce a prerequisite to installing Bio::
Phylo without adding any functionality. At present this
makes this an unlikely scenario, but this might change
depending on the success of BIOME and inclusion of
Moose in the Perl 5 core.
Lastly, an important innovation is the development of

the Perl 6 language http://dev.perl.org/perl6/. This new
version of the language itself is a break with all preced-
ing ones, with significant differences in syntax and in
the object system. The new object system has several
useful properties that will promote the development and
maintenance of larger, more easily maintainable software
projects. However, version 6 is so different from version
5 that adapting Bio::Phylo to it would amount to a port
to a new language. Although this is currently being
explored for BioPerl, the time investment is not justifi-
able for Bio::Phylo as long as Perl 6 virtual machines are
not installed by default (or indeed available at all) on a
great number of operating systems. This, however, is
likely to change in the future.

Availability and requirements
▪ Project name: Bio::Phylo
▪ Project home page: http://search.cpan.org/dist/Bio-
Phylo/
▪ Source code repository: http://nexml.svn.source-
forge.net/svnroot/nexml/trunk/nexml/perl
▪ Operating system: platform independent
▪ Programming language: Perl
▪ License: GNU General Public License, version 3
▪ Other requirements: can all be installed from
CPAN, either before or after installation of Bio::
Phylo itself. These need to be present to activate cer-
tain functionality:

○ Visualization - any of the following to create
the respective serializations: SVG.pm, SWF::
Builder, PDF::API2, GD (for bitmap formats).
○ Tree simulation - Math::Random, Math::CDF
○ NeXML I/O - XML::Twig (for reading), XML::
LibXML (optional, alternate way of creating
DOM objects from Bio::Phylo objects).

Installation
Bio::Phylo is installed like any other CPAN-compliant
pure Perl distribution; it requires no compilation, but it
does require the make (or on Windows, nmake) utility,
which is freely available on all common operating sys-
tems. Bio::Phylo has been successfully installed on a
variety of architectures. Installation testing reports col-
lected by CPAN show successful installs on Linux (ver-
sions 2.6.26-2-686, 2.6.18-5-alpha-generic, 2.6.26-1-
orion5x, 2.6.26-2-amd64 and 2.6.18-4-xen-amd64), Mac
OS X (Darwin versions 8.11.0, 8.11.1 and 10.2.0, equiva-
lent to OS X versions 10.4.x and 10.6.x), FreeBSD (ver-
sions 6.2-release, 6.4-release, 7.0-release and 8.0-release),
NetBSD (version 4.0.1), IRIX (version 6.5), SunOS/
Solaris (versions 2.9 and 2.11) and Windows (version
5.00, i.e. “Windows 2000” and Cygwin version 1.5.24
(0.15642)). Perl versions upward from 5.8.x are known
to work generally, with successful installs using 5.8.6,
5.8.7, 5.8.8, 5.8.9, 5.10.0 and 5.10.1 on threaded and
unthreaded perls.

List of abbreviations
API: Application Programming Interface; CPAN: Comprehensive Perl Archive
Network; DOM: Document Object Model; GIF: Graphics Interchange Format;
HTML: Hypertext Markup Language; JPEG: Joint Photographic Experts Group;
PDF: Portable Document Format; PNG: Portable Network Graphics; SVG:
Scalable Vector Graphics; SWF: Small Web Format (or ShockWave Flash);
SWIG: Simplified Wrapper and Interface Generator; XML: eXtensible Markup
Language.

Acknowledgements
The authors would like to thank Aki Mimoto and Florent Angly for code
contributions and helpful feedback on Bio::Phylo’s design. Arne Mooers,
Wayne Maddison and Mark Pagel have provided RAV with material support
during Bio::Phylo’s initial development. Technical and moral support from

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 8 of 9

http://github.com/cjfields/biome
http://dev.perl.org/perl6/
http://search.cpan.org/dist/Bio-Phylo/
http://search.cpan.org/dist/Bio-Phylo/
http://nexml.svn.sourceforge.net/svnroot/nexml/trunk/nexml/perl
http://nexml.svn.sourceforge.net/svnroot/nexml/trunk/nexml/perl

the BioPerl core development team is gratefully acknowledged. Chris
Venditti kindly provided the data and use case for the visualization example
in Figure 2. Development was funded by the CIPRES grant (NSF EF-
03314953), the Google Summer of Code program and through NESCent
hackathons. RAV is supported by a Marie Curie Fellowship (FP7-PEOPLE-IEF-
2008/N°237046).

Author details
1School of Biological Sciences, University of Reading, UK. 2Department of
Biological Sciences, Wayne State University, Detroit, MI, USA. 3Tasmanian
Aquaculture and Fisheries Institute, University of Tasmania, Australia.
4Fortinbras Research, Rockville, MD, USA. 5Center for Infection and Immunity,
Columbia University, New York, NY, USA.

Authors’ contributions
RAV carried out the initial design of Bio::Phylo and drafted the manuscript.
JC, KH, MJ and CM contributed selected parts of the code base and helped
draft the manuscript. All authors read and approved the final manuscript.

Received: 21 September 2010 Accepted: 27 February 2011
Published: 27 February 2011

References
1. Cracraft J: The Seven Great Questions of Systematic Biology: An Essential

Foundation for Conservation and the Sustainable Use of Biodiversity.
Annals of the Missouri Botanical Garden 2002, 89:127-144.

2. Noble WS: A quick guide to organizing computational biology projects.
PLoS computational biology 2009, 5:e1000424.

3. Sukumaran J, Holder M: DendroPy: a Python library for phylogenetic
computing. Bioinformatics 2010, 26:1569-1571.

4. Huerta-Cepas J, Dopazo J, Gabaldon T: ETE: a python Environment for
Tree Exploration. BMC Bioinformatics 2010, 11:24.

5. Cock P, Antao T, Chang J, Chapman B, Cox C, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon M: Biopython: freely available
Python tools for computational molecular biology and bioinformatics.
Bioinformatics 2009, 25:1422-1423.

6. Paradis E, Claude J, Strimmer K: APE: Analyses of Phylogenetics and
Evolution in R language. Bioinformatics 2004, 20:289-290.

7. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G,
Gilbert J, Korf I, Lapp H, et al: The Bioperl Toolkit: Perl Modules for the
Life Sciences. Genome Res 2002, 12:1611-1618.

8. The Newick tree format. [http://evolution.genetics.washington.edu/phylip/
newicktree.html].

9. Maddison D, Swofford D, Maddison W: NEXUS: An Extensible File Format
for Systematic Information. Systematic Biology 1997, 46:590-621.

10. Cornish-Bowden A: Nomenclature for incompletely specified bases in
nucleic acid sequences: recommendations 1984. Nucleic acids research
1985, 13:3021-3030.

11. Mesquite: a modular system for evolutionary analysis. Version 2.73.
[http://mesquiteproject.org].

12. Piel W, Chan L, Dominus M, Ruan J, Vos R, Tannen V: TreeBASE v. 2: A
Database of Phylogenetic Knowledge. e-BioSphere 2009; London 2009.

13. RDFa in XHTML: Syntax and Processing. [http://www.w3.org/TR/rdfa-
syntax/].

14. Antezana E, Kuiper M, Mironov V: Biological knowledge management: the
emerging role of the Semantic Web technologies. Briefings in
Bioinformatics 2009, 10:392-407.

15. Prosdocimi F, Chisham B, Pontelli E, Thompson J, Stoltzfus A: Initial
implementation of a comparative data analysis ontology. Evolutionary
bioinformatics online 2009, 5:47-66.

16. Miles A, Pérez-Agüera J: SKOS: Simple Knowledge Organisation for the
Web. Cataloging & Classification Quarterly 2007, 43:69-83.

17. Gamma E, Helm R, Johnson R, Vlissides J: Design Patterns: Elements of
Reusable Software Components Addison-Wesley Professional; 1995.

18. Nee S, Mooers A, Harvey PH: Tempo and mode of evolution revealed
from molecular phylogenies. Proceedings of the National Academy of
Sciences of the United States of America 1992, 89:8322-8326.

19. Penny D, Hendy MP: The use of tree comparison metrics. Systematic
Zoology 1985, 34:75-82.

20. Fiala KL, Sokal RR: Factors Determining the Accuracy of Cladogram
Estimation: Evaluation Using Computer Simulation. Evolution 1985,
39:609-622.

21. Rohlf F, Chang W, Sokal R, Kim J: Accuracy of Estimated Phylogenies:
Effects of Tree Topology and Evolutionary Model. Evolution 1990,
44:1671-1684.

22. Colless D: Phylogenetics: the theory and practice of phylogenetic
systematics. Systematic Zoology 1982, 31:100-104.

23. Pybus OG, Harvey PH: Testing macro-evolutionary models using
incomplete molecular phylogenies. Proc Biol Sci 2000, 267:2267-2272.

24. Mooers A, Heard S: Inferring Evolutionary Process from Phylogenetic Tree
Shape. The Quarterly Review of Biology 1997, 72:31-54.

25. Isaac N, Turvey S, Collen B, Waterman C, Baillie J: Mammals on the EDGE:
Conservation Priorities Based on Threat and Phylogeny. PLoS ONE 2007,
2:e296.

26. Redding DW: Incorporating genetic distinctness and reserve occupancy
into a conservation priorisation approach. Masters Thesis. Masters Thesis
University Of East Anglia; 2003.

27. Pauplin Y: Direct Calculation of a Tree Length Using a Distance Matrix.
Journal of Molecular Evolution 2000, 51:41-47.

28. Semple C, Steel M: Phylogenetics. New York, NY: Oxford University Press;
2003.

29. Altschul SF, Lipman DJ: Equal animals. Nature 1990, 348:493-494.
30. Haake CJ, Kashiwada A, Su FE: The Shapley value of phylogenetic trees.

Journal of mathematical biology 2008, 56:479-497.
31. Baum BR: Combining trees as a way of combining data sets for

phylogenetic inference, and the desirability of combining gene trees.
Taxon 1992, 41:3-10.

32. Ragan MA: Phylogenetic inference based on matrix representation of
trees. Molecular Phylogenetics and Evolution 1992, 1:53-58.

33. Felsenstein J: Inferring phylogenies Sinauer Associates, Inc; 2003.
34. Maddison D, Schulz K-S, Maddison W: The Tree of Life Web Project.

Zootaxa 2007, 19-40.
35. Pagel M: Inferring evolutionary processes from phylogenies. Zoologica

Scripta 1997, 26:331-348.
36. Pagel M: Inferring the historical patterns of biological evolution. Nature

1999, 401:877-884.
37. Pagel M: Detecting correlated evolution on phylogenies: a general

method for the comparative analysis of discrete characters. Proceedings
of the Royal Society London Series B 1994, 255:37-45.

38. Mitsuteru N, Goto N, Nakao M, Kawashima S, Katayama T, Kanehisa M:
BioRuby: open-source bioinformatics library. Genome Informatics 2003,
14:629-630.

39. Schluter D, Price T, Mooers A, Ludwig D: Likelihood of ancestor states in
adaptive radiation. Evolution 1997, 51:1699-1711.

40. Angly F, Willner D, Prieto-Davó A, Edwards R, Schmieder R, Vega-Thurber R,
Antonopoulos D, Barott K, Cottrell M, Desnues C, et al: The GAAS
Metagenomic Tool and Its Estimations of Viral and Microbial Average
Genome Size in Four Major Biomes. PLoS Comput Biol 2009, 5:e1000593.

41. Hey J: Using Phylogenetic Trees to Study Speciation and Extinction.
Evolution 1992, 46:627-640.

42. Yule U: A Mathematical Theory of Evolution, based on the Conclusions
of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of
London Series B 1925, 213:21-87.

43. Simberloff D: Calculating Probabilities that Cladograms Match: A Method
of Biogeographical Inference. Systematic Zoology 1987, 36:175-195.

44. Hartmann K, Wong D, Gernhard T: Sampling trees from evolutionary
models. Systematic Biology .

45. Redding D, Hartmann K, Mimoto A, Bokal D, Devos M, Mooers A:
Evolutionarily distinctive species often capture more phylogenetic
diversity than expected. Journal of Theoretical Biology 2008, 251:606-615.

46. Hladish T, Gopalan V, Liang C, Qiu W, Yang P, Stoltzfus A: Bio::NEXUS: a
Perl API for the NEXUS format for comparative biological data. BMC
Bioinformatics 2007, 8:191.

47. Kosakovsky Pond S, Frost S, Muse S: HyPhy: hypothesis testing using
phylogenies. Bioinformatics 2005, 21:676-679.

48. Suchard M, Rambaut A: Many-core algorithms for statistical
phylogenetics. Bioinformatics 2009, 25:1370-1376.

doi:10.1186/1471-2105-12-63
Cite this article as: Vos et al.: BIO::Phylo-phyloinformatic analysis using
perl. BMC Bioinformatics 2011 12:63.

Vos et al. BMC Bioinformatics 2011, 12:63
http://www.biomedcentral.com/1471-2105/12/63

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19649301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20421198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20421198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20070885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20070885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://www.ncbi.nlm.nih.gov/pubmed/11975335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11975335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2582368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2582368?dopt=Abstract
http://mesquiteproject.org
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.ncbi.nlm.nih.gov/pubmed/19457869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19457869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1518865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1518865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11413642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11413642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17375184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17375184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10903371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2247160?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17805545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1342924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1342924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10553904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20011103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20011103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20011103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17559666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17559666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract

	Wayne State University
	2011
	BIO::Phylo-phyloinformatic analysis using perl
	Rutger A. Vos
	Jason Caravas
	Klaas Hartmann
	Mark A. Jensen
	Chase Miller
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Data and object model
	NeXML

	Results and discussion
	Object manipulation and transformation
	Input/output
	Visualization
	Sampling and simulation

	Conclusions
	Future directions

	Availability and requirements
	Installation

	Acknowledgements
	Author details
	Authors' contributions
	References

