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model can vary from domain to domain (Freire et al., 2008). In 

particular, although the VisTrails, Swift, VIEW and LONI workflow 

systems have been applied to neuroimaging, a number of prov-

enance modeling and management issues that are specific to the 

neuroimaging domain have to be explored further:

(Q1) The provenance model varies from domain to domain and 

has to be identified and appropriately customized for the neuroim-

aging domain. First, as the neuroimaging databases, such as XNAT 

(Marcus et al., 2007), HID (Keator et al., 2008) and NDAR (Ndar 

2009), manage raw data provenance information, the neuroimaging 

workflow systems should be customized to work seamlessly with 

neuroimaging databases to minimize duplicated efforts and stor-

age redundancy for provenance management. Second, as the neu-

roimaging domain involves domain specific user interaction and 

annotation, the provenance model should be extended to include 

this kind of information.

(Q2) The representation of the provenance is still not well 

addressed in the scientific workflow research community and 

needs to be adequately addressed in the neuroimaging domain. 

Improper representation of the provenance can result in huge 

redundancy. One way of minimizing the redundancy is to structure 

the provenance into layers of normalized components (Freire et al., 

2008). However, definition of the layers and components can still 

vary from domain to domain. In particular, this issue needs to be 

appropriately addressed in the neuroimaging domain.

(Q3) The provenance granularity can vary across domains, and 

has not been explicitly explored for the neuroimaging domain. The 

provenance can be recorded at different levels of granularity, i.e., 

varying levels of details. Improper selection of the granularity of 

INTRODUCTION

Scientific workflow systems that are capable of tracking the details 

of data processing history can facilitate a number of fundamental 

requirements in everyday scientific research, such as scheduling batch 

processing on multiple computers, interpreting and comparing differ-

ent results, sharing and reusing existing workflow, etc. In the scientific 

workflow research community, the information that describes the 

details of data processing history is referred to as “provenance” (also 

“lineage” or “pedigree”) (Simmhan et al., 2005). Provenance manage-

ment is a critical component of scientific workflow systems and most 

of the existing popular scientific workflow systems have a module for 

management of provenance information. For e.g., the Kepler work-

flow system is able to collect the provenance information (Ludäscher, 

2006), while the Taverna workflow system stores the provenance infor-

mation for users to manage and reuse previous workflows (Oinn 

et al., 2004). VisTrails is a provenance management system (PMS) 

that provides infrastructure for data exploration and visualization 

through workflows (Callahan et al., 2006; Silva et al., 2007; Koop et al., 

2008). The Swift workflow system builds on and includes technology 

previously distributed as the GriPhyN Virtual Data System to capture 

the provenance (Zhao et al., 2007). The Pegasus workflow system also 

uses the Virtual Data System to capture the provenance (Miles et al., 

2008). The VIEW workflow system manages the provenance data 

with a provenance management module (Lin et al., 2009). The LONI 

workflow system has a provenance management framework to man-

age the provenance data (MacKenzie-Graham et al., 2008).

Despite its importance, however, provenance modeling and 

management is still a relatively new area in the scientific workflow 

research community (Simmhan et al., 2005) and the provenance 
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provenance can produce inordinately large volume of provenance 

data bigger than the data it describes (Simmhan et al., 2005), which 

may not be useful and may be hard to manage. In the neuroimag-

ing workflow system, theoretically, the provenance granularity can 

be set at voxel-level, slice-level, volume-level, session/visit-level, 

 subject-level, or group-level. Variability in granularity can result in 

a big difference in performance and storage overhead. The optimal 

provenance granularity for the neuroimaging workflow has hith-

erto not been explicitly explored in the existing literature.

(Q4) The provenance model can be implemented in many differ-

ent ways which vary from application to application. The different 

approaches can vary in the way they capture, store and retrieve the 

provenance information. The capturing mechanism can be at vari-

ous levels, i.e., at the OS-level, processing-level and workflow-level. 

The storage mechanism can be either file-system based or database 

based. The retrieval mechanism can be a special scripting language, 

like SQL or a visual user interface. When a new neuroimaging prov-

enance model is created, the corresponding implementation issues 

have to be properly addressed as well.

In general, proper solutions for provenance modeling and 

management problems need to be explored for the neuroimag-

ing domain. In this paper, we introduce the Bio-Swarm-Pipeline 

(BSP), a scientific workflow management system for bio-medical 

research developed at the Genes, Cognition and Psychosis Program 

(GCAP) of NIMH/NIH. It was designed to facilitate the fundamen-

tal requirements for everyday scientific research, such as scheduling 

batch processing on multiple computers, interpreting and compar-

ing different results, sharing and reusing existing workflows, etc. 

This system is based on a new provenance model developed to meet 

the needs specific to a neuroimaging workflow management system. 

It systematically addresses the issues involved in the provenance 

modeling and management in the neuroimaging domain. First, by 

proper extension of the provenance model, the workflow manage-

ment system can work seamlessly with existing neuroimaging data-

bases and effectively reduce unnecessary storage and developing 

efforts. Second, by properly structuring provenance into two layers 

of six independent sub-provenance components, the BSP effec-

tively minimizes the recording redundancy of provenance; Third, 

by proper determination of the provenance granularity, the BSP 

effectively eliminates unnecessary information, makes the system 

more light weighted and manageable; Fourth, by providing an opti-

mal number of user interfaces, it makes provenance management 

and task scheduling an efficient and effective procedure. Finally, by 

taking swarm as analogy, an unsophisticated user with little or no 

knowledge in programming can easily capture the core concepts 

and understand how a task is processed by the system. Although 

this system stems from applications in the neuroimaging domain, 

the system can potentially be adapted to meet the requirements for 

a wide range of bio-medical application scenarios.

The remainder of this paper is organized as follows: in the meth-

ods section, we describe the BSP system architecture, highlight the 

structured provenance model, and demonstrate how it works with 

real examples; in the results section, we describe the current appli-

cation status and impact of the system to the work at the GCAP of 

NIMH; and in the discussion section, we discuss how provenance 

modeling and management problems were addressed in the BSP. 

We also discuss some additional features and future extensions.

METHODS (BSP SYSTEM ARCHITECTURE)

The BSP system architecture is made up of three layers – (I) pipe-

line interface layer, (II) PMS layer, and (III) data processing clients 

(DPCs) layer as shown in Figure 1. The interface layer interacts 

with the PMS layer to submit data processing tasks and tracks the 

data processing provenance information. The DPC layer interacts 

with the PMS layer to perform data processing and updates prov-

enance information. In this section, we will highlight layer II, i.e., 

PMS, and demonstrate how it works. We will also briefly introduce 

layer I and layer III.

PIPELINE INTERFACE

The interface enables the user to interact with the PMS to submit 

data processing tasks and tracks the data processing provenance 

information. Each interface is presented in the next section along 

with the provenance data that is managed.

PROVENANCE MANAGEMENT SYSTEM

The PMS manages a structured provenance model as shown in 

Figure 1. The design and implementation is based on the MySQL 

relational database system. Conceptually, the model can be divided 

into two layers.

The first layer contains three sub-provenance components, 

i.e., task/job provenances, static workflow provenances and 

 computational resource provenances. The task provenances record 

all the necessary information to reproduce a specific data process-

ing result, including the run-time task provenances (such as result 

location, processing time, status) and user annotations as well as the 

references to static workflow provenances and the computational 

resource provenances.

In the second layer, the sub-provenance components are fur-

ther decomposed. For example, the static workflow provenances 

are further divided into wrapper provenance, parameter prov-

enance and data source provenance. The computational resource 

provenances are further divided into storage provenance and 

DPC provenance.

In this section, we will first introduce the static workflow and 

the computational resource provenances, and then introduce the 

task/job provenance. Later on in the discussing section, we will also 

discuss how this model systematically addresses the provenance 

modeling problems mentioned in Section “Introduction”.

Static workflow provenances

Static workflow provenances are specifications about workflows 

which can be shared across different tasks. This includes the speci-

fication of the wrappers, processing parameters and data sources.

Wrapper provenance management. The wrapper provenance 

management module manages the specification of the wrapper 

libraries for different data processing packages. Each data process-

ing package (e.g. SPM (Friston et al., 1995), AFNI (Cox, 1996), 

VBM (Ashburner and Friston, 2000), FreeSurfer (Dale et al., 1999), 

etc.) is encapsulated by a wrapper so that they have a uniform 

calling interface like do + package_name + version + release. Each 

wrapper is uniquely identified by a wrapper ID so that the task/

job provenances component can be simplified by referring to the 

wrapper ID.
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Parameter provenance management. The parameter provenance 

management module manages the instantiated processing param-

eters for each given wrapper. It tracks everything related to the 

processing parameters that a user may be interested in. These 

include the parameter ID, the wrapper ID, the user login name who 

created the parameter set and the parameter body and some com-

ments fields. Within the parameter ID, the user can easily interpret 

and compare the different results and check if they are generated 

from the same procedure.

The parameter set is managed in the parameter management 

interface. As an illustration, in Figure 2 we use SPM-based first level 

data processing as an example to help the reader evaluate how the 

system works. In this illustration the processing parameters with 

parameter ID 11 are associated with wrapper SPM2. The parameter 

management interface allows the users to create new parameters 

or adapt from existing parameters. For the latter, users can first 

retrieve the parameters they want to duplicate from, and then click 

“borrow and create” button to make a new parameter. Then the 

user can modify the parameter as required. When a parameter set 

is first created, a unique parameter ID is automatically assigned to 

it. If the parameter set is derived from another parameter, users can 

add comments to indicate what the parent parameter ID is. This 

allows users to track the relationships among a family of related 

parameter sets.

Data source provenance management. The data source prov-

enance management module makes it easy for the workflow 

management system to inter-communicate with the neuroim-

aging database and other heterogeneous data sources and take 

input data from there. By default, BSP was designed to be work 

FIGURE 1 | Bio-Swarm-Pipeline system architecture.
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 seamlessly with XNAT@GCAP neuroimaging database (Cheng 

et al., 2008). It assumes that the raw data provenance informa-

tion, such as the raw data locations, data acquisition parameters 

and subject demographics information are all managed by the 

neuroimaging database with XNAT like database schema (Marcus 

et al., 2007). Therefore only references to the raw data provenance 

are kept in the system. The data source provenance component is 

able to retrieve raw data provenance information from the neu-

roimaging database when necessary.

Computational resource provenances

Computational resource provenances are specifications about com-

putational resources that can be shared across different tasks. This 

includes specifications about the DPC and storage devices.

Data processing clients provenance management. The DPCs 

provenance management module manages the profiles of hetero-

geneous client workstations in the database. The profile describes 

the following information: hostname, system architecture, proc-

essor speed, memory capacity, operating system, network speed, 

available storage space, version of wrapper libraries and traffic 

lights, etc.

The storage provenance management. The storage provenance 

management module simplifies the dynamical management of 

the mappings between processing parameters and storage devices. 

The mappings are defined by the storage allocation rules in the 

format of (parameter_ID, output_dir, is_active), which specify 

a list of alternative output directories for each parameter IDs. 

When the available physical storage is below a certain threshold, 

the is_active flag will be automatically set to 0 by a daemon pro-

gram so that the DPC will try to find the next available output 

directory with adequate space for ensuing tasks. If there is no 

output directory with adequate space, DPC will switch the task 

into “pending” status. When an output directory with adequate 

space is made available, DPC will automatically enable processing 

of the pending tasks.

Task/job provenances management

The task provenances record the most detailed information to 

reproduce an individual result. This includes the run-time task 

provenances (such as result location, processing time, status) and 

user annotations (such as data quality notes, etc.) as well as the 

references to static workflow provenances and the computational 

resource provenances defined above.

All the task provenance information is maintained in the task 

table of the database as shown in Figure 3. Each task is identi-

fied by a unique ID in the task table. The task table specifies thetask table. The task table specifies the. The task table specifies thetask table specifies the specifies the 

following information for task processing: such as the priority of 

the task, the wrapper ID and the parameter ID required to proc-

ess this task, and the name of the DPC (hostname) assigned to 

handle the task so that different tasks can be assigned to different 

FIGURE 2 | Parameter management interface.
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hosts and processed in parallel, the directory where the results will 

be outputted, and the email addresses that should be notified upon 

completion of the tasks. Most of this information is collected before 

the task execution.

Moreover, the task status and quality annotations are custom-

ized to accommodate the requirements in neuroimaging domain. 

In our system, the possible status of a task can be “pending”, 

“ready-for-processing”, “failed”, “ready-for-review” or “reviewed” 

as shown in Figure 4.

After a task is being created, if all the required data sources 

are ready and the storage space is available, the task will be set 

to the “ready-for-processing” status. Otherwise it will be set to a“ready-for-processing” status. Otherwise it will be set to aready-for-processing” status. Otherwise it will be set to a” status. Otherwise it will be set to a status. Otherwise it will be set to a 

“pending” status. When processing has completed successfully, thepending” status. When processing has completed successfully, the” status. When processing has completed successfully, the status. When processing has completed successfully, the 

pipeline is switched to “ready-for-review” status by the DPC. After“ready-for-review” status by the DPC. Afterready-for-review” status by the DPC. After” status by the DPC. After status by the DPC. After 

the review is complete, it can be switched to the “reviewed” status 

by the user through the user interface, and the quality of the task 

will be marked as either + or − to indicate whether the results are 

usable. If the processing fails, the status will be set to “failed” by 

DPC, allowing the administrator to fix the error, and switch the 

status to “pending” or “ready-for-processing”.

To make the provenance model lightweight, the optimal 

 granularity level of the provenance must be chosen. The available 

choices in the neuroimaging domain are voxel-level, slice-level, 

volume-level, session/visit-level, subject-level, and group-level. In 

most occasions, researchers may only be interested in the session/

visit-level provenance information. The provenance informa-

tion at this level is easily manageable, so the BSP provenance 

FIGURE 3 | Structure of the task table in the database.

FIGURE 4 | Flow chart of task status.
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model is explicitly set at this level. However, the system can 

be easily extended to work on a different level of granularity 

when necessary.

A series of web user interfaces are provided to make it easier 

for the user to submit tasks, retrieve tasks and review the results 

on-line. In the following demonstration, we will again take SPM-

based batch processing as an example to help the reader further 

evaluate the system.

First, a user can submit tasks through the task management 

interface as shown in Figure 5. Here, the user can create a new data 

processing project by click the “append” button. The user can then“append” button. The user can thenappend” button. The user can then” button. The user can then button. The user can then 

specify the project name, the parameter ID, the machine list to be 

used and a list of e-mail addresses where notifications can be sent 

upon the completion of the task. Afterwards, the user can click 

the “add session” button to add data and click the “place order”“add session” button to add data and click the “place order”add session” button to add data and click the “place order”” button to add data and click the “place order” button to add data and click the “place order”“place order”place order”” 

button to place data processing task (we also call them orders) for 

them. Multiple dataset (sessions) can be added to the project at the 

same time. Each dataset will be assigned to an individual task. If 

FIGURE 5 | Task management interface.

multiple machines are provided, the tasks will be split evenly among 

them. The processing status of each dataset is also available in the 

task management screen. As can be seen in the lower part of the 

Figure 5, each processed session now has a green check mark on 

the left side of the row.

After the tasks have been submitted, the user can log off and wait for 

the process to finish. Upon the completion of each task, the user will 

get an email notification indicating the status of the task. An example 

of the email notification is shown in Figure 6. If a task finishes without 

error, the user can log into the web interface, as shown in Figure 7, to 

query the results by subject ID, task IDs or parameter ID.

When the user provides the parameter ID and clicks the “get“getget 

results” button (” button ( button (Figure 7), the corresponding results of the tasks 

will be available for on-line review through the web user inter-

face as shown in Figure 8. In our illustration using SPM-based 

first level data processing the following results are made available 

for inspection: preprocessed results (lower left plot in Figure 8), 

 contrast map (middle plot in Figure 8), quality control images and 
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There are also a number of command line tools used for 

 simplifying routine administrative tasks such as task scheduling, 

traffic control and diagnosis.

DATA PROCESSING CLIENTS

DPCs manage data processing in each client workstation by 

communicating with PMS. Each DPC is made up of two types 

of swarms, i.e., the manager-swarm (M-swarm) and the worker-

swarm (W-swarm). The M-swarm, running as services on each 

local computer, manages (i.e., creates or kills) W-swarms in the local 

computer, retrieves tasks from the task table by local host name and 

task priority, and dispatches them to be processed by W-swarms. The 

W-swarm takes the task from M-swarm and processes them. The 

DPCs can be extended to incorporate computational resource(s) 

from a high-performance computing center like Beowulf cluster 

(Gropp et al., 2003) by installing a customized DPC.

RESULTS

The BSP has been built, maintained and supported by GCAP 

since 2006. To date, around 130 workflows and above 32000 data 

processing tasks have been completed through this scientific work-

flow management system, with each task taking about 10–60 min. 

Currently the system supports SPM (for fMRI and VBM) and 

Freesurfer based data processing, but other popular packages or 

in-house packages can be easily integrated as well. The workflow 

system in its current status has been playing a critical role in the 

day-to-day neuroimaging research within GCAP, including but not 

limited to the following aspects:

FIGURE 6 | Example of email notification.

FIGURE 7 | Querying the processing results.

measures (right plot in Figure 8). The user can add annotations con-

cerning the quality of the results after visual inspection. The quality 

information can then be used in a query to filter the datasets.
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• Improved productivity: due to its parallel data processing 

 capabilities, the workflow system has refreshed data processing 

records in the past 2 years. The most recent accomplishment has 

been to successfully process almost 3000 high-resolution struc-

tural MRI preprocessing for VBM in <1 week, and nearly 5000 

fMRI first level data processing for SPM in 2 weeks. This has been 

achieved using just one W-swarm per workstation because some 

of the packages were not multi-thread-able. The modern quad-

core processor will be able to easily scale up to four W-swarms 

without compromising performance. Making the data proces-

sing packages multi-thread-able will make this a more efficient 

process. This kind of capability makes the BSP very efficient even 

when compared to the crowded Beowulf cluster.

• Improved efficiency of workflow within GCAP neuroimaging 

research groups. By enabling automated data processing of 

large datasets, it has made more time available for researchers 

to pursue more intellectually challenging tasks.

• Facilitates easy and efficient replication of results using identi-

cal parameters. This decreases the necessity to backup proces-

sed data and thereby decreases storage space requirements.

DISCUSSION

In this section first we discuss how the BSP provenance model 

addressed the provenance modeling and management prob-

lems mentioned in Section “Introduction” for the neuroimaging 

domain. Second we summarize the additional features of BSP 

along with the provenance model. Finally we list some possible 

future extensions.

THE BSP PROVENANCE MODEL ADDRESSES THE PROVENANCE 

MODELING AND MANAGEMENT PROBLEMS IN THE NEUROIMAGING 

DOMAIN

The BSP provenance model has systematically addressed the prov-

enance modeling and management problems for the neuroimaging 

domain (Q1–Q4) as outlined in Section “Introduction:”

(P1) the BSP provenance model is extended to cover the 

 neuroimaging domain. First, the BSP is extended to work seamlessly 

with the XNAT@GCAP (Cheng et al., 2008) neuroimaging data 

archiving system, i.e., the BSP data source component just keeps 

the references to the raw data provenance, such as the data acquisi-

tion parameters as well as the subject’s demographic information, 

and is able to retrieve the raw data provenance information from 

the XNAT@GCAP neuroimaging database as necessary. Therefore, 

the duplicated efforts and storage redundancy for the maintenance 

of the provenance information are minimized. Second, the BSP 

model is extended to include information specific to neuroimaging. 

Particularly, the system is customized to accommodate the domain 

specific user interactions for reviewing the quality of the images, 

for example the task status field is extended to include options 

like “ready-for-review”,“reviewed”, etc“ready-for-review”,“reviewed”, etcready-for-review”,“reviewed”, etc”,“reviewed”, etc, “reviewed”, etc“reviewed”, etcreviewed”, etc”, etc, etc. After a task is reviewed, the 

annotation and comments related to the data quality can be stored. 

Special user interfaces (see Figures 2, 5, 7 and 8) are also provided 

for the user to manage parameter sets, make queries, visually inspect 

the results, and manage the annotations. These extensions are dif-

ferent from existing workflow systems. For example, most work-

flows except LONI do not work with neuroimaging databases.

(P2) the BSP provenance model was structured into two layers of 

six independent sub-provenance components (i.e., wrapper prov-

enance, parameter provenance, data source provenance, storage 

provenance, DPC provenance and task provenance) to minimize 

the recording of redundant information. Referring to Figure 3, 

although the task provenance component tracks all the details nec-

essary to reproduce the results, the storage overhead are very small, 

as most of the common information (such as the static workflow 

provenance and the computational resources provenance) is stored 

as references. In general, the BSP provenance model structure is 

quite different from that of other existing provenance models. For 

example, in VisTrails, the provenance model is structured into 

three layers: the workflow evolution, the workflow instance and 

the execution log (Freire et al., 2008). In the LONI workflow system, 

FIGURE 8 | Visual inspection interface.
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the provenance model is divided into four components: the data 

provenance, the binary provenance, the executable provenance, 

the workflow provenance, the processing provenance (MacKenzie-

Graham et al., 2008). Although these systems have some features 

that are similar to the BSP provenance model, the overall structure 

is different.

(P3) in the BSP provenance model, the provenance granularity 

is explicitly selected to be at the session-level so that only informa-

tion of interest to the user is tracked. However, there is no limita-

tion if a user wants to extend the current model to include other 

levels of the provenance. Usually the provenance granularity for 

the neuroimaging domain is not explicitly specified in other work-

flows. As mentioned before, without explicitly specifying the level 

of granularity, the neuroimaging workflow system can potentially 

store too much detailed information – such as the provenance at 

the slice or voxel-level, which can result in a huge and unnecessary 

storage overhead. However, most users may not be interested in 

such fine-grained provenance.

(P4) the provenance model, implementation has been care-

fully chosen in the BSP to optimize the performance. First, most 

of the provenance information is collected prospectively (e.g., the 

wrapper provenance, parameter provenance, data source prov-

enance, storage provenance, DPC provenance are all specified 

before task execution). Only little information in task provenance 

is collected retrospectively. Compared to the OS-level capturing 

mechanism, which needs to filter through all the system calls 

and files touched during the execution of a task’s, this approach 

is more efficient. Second, the BSP provenance model is based 

on a relational database system. In comparison to file-based 

provenance storage system, the data storage is optimized by the 

database system, and the query/retrieval stage is more flexible 

and efficient.

Although the BSP provenance model originates in the neuroim-

aging domain, it can be potentially adapted to cover many other 

bio-medical domains as well.

ADDITIONAL FEATURES OF THE BSP

Along with the BSP provenance model, here we would like to sum-

marize some additional features of the BSP in general.

• BSP is parallel in nature

In contrast to workflow systems that are primarily designed 

to handle inter-package heterogeneities but do not facilitate 

parallel processing, the BSP allows optimal distribution of 

multiple data processing tasks across a number of computers 

to maximize the throughputs.

• BSP is light weighted

This is because: (A) The swarm is conceptually simple, an 

unsophisticated user can capture the core concepts and under-

stand how a task is processed by the system fairly quickly 

without having to read the whole manual; (B) The system 

boundary is properly tailored, so that duplicated work is avoi-

ded; (C) The redundancy of provenance data is minimized as 

the provenance model is highly normalized; (D) The granula-

rity of the provenance is set at session level, the unnecessary 

provenance information is effectively ignored.

• BSP is built on top of the relational database

This is a big advantage of the BSP over workflow systems that 

are not bundled with a database. With the powerful MySQL 

database and SQL language, routine management tasks such as 

wrapper management, DPCs management, task/job manage-

ment, data source management and storage management can 

be very easy and flexible.

• BSP is reliable

The failure of one machine will not affect the data processing 

on another in the network, and is therefore easy to identify and 

recover from failure.

• BSP is scalable

 –  As there is no communication between the different proces-

sing tasks, the throughputs of the workflow system increases 

almost linearly with the number of workstations.

 –  A work station can join or leave the workflow system at any 

time without affecting the overall batch processing.

•฀ BSP is extensible

 –  The workflow system can be extended to cover different data 

processing packages as long as the appropriate wrappers are 

provided.

 –  The DPCs are extensible. For example, a high performance 

computing center like Beowulf cluster can be treated as a 

DPC and managed by the workflow system

 –  Data sources can be extended to accommodate a wide range 

of different data sources as long as the appropriate data 

source adaptors are provided.

The BSP is flexible and has a number of other advantages. 

For example, when compared to the Beowulf cluster, it is: 

(1) capable of applying complicated and flexible data process-

ing management; (2) free from limited license issue (e.g., the 

Beowulf cluster usually limits the number of Matlab licenses to 16 

for each user); (3) no need to transfer data and results back and 

forth as is required between Beowulf and the local file systems; 

and (4) no waiting time (in comparison to the high performance 

computing center).

POSSIBLE EXTENSIONS

As some of the provenance management is currently conducted 

through command line, more user friendly interfaces will be pro-

vided in the new release. These include interfaces for: (1) wrapper 

management; (2) storage management; (3) task re-scheduling and 

traffic control; (4) data source management.
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