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Abstract

Many real-world time series analysis problems are characterized by low signal-to-noise ratios and compounded by scarce

data. Solutions to these types of problems often rely on handcrafted features extracted in the time or frequency domain.

Recent high-profile advances in deep learning have improved performance across many application domains; however,

they typically rely on large data sets that may not always be available. This paper presents an application of deep learning

for acoustic event detection in a challenging, data-scarce, real-world problem. We show that convolutional neural networks

(CNNs), operating on wavelet transformations of audio recordings, demonstrate superior performance over conventional

classifiers that utilize handcrafted features. Our key result is that wavelet transformations offer a clear benefit over the more

commonly used short-time Fourier transform. Furthermore, we show that features, handcrafted for a particular dataset, do

not generalize well to other datasets. Conversely, CNNs trained on generic features are able to achieve comparable results

across multiple datasets, along with outperforming human labellers. We present our results on the application of both

detecting the presence of mosquitoes and the classification of bird species.

Keywords Convolutional neural networks � Spectrograms � Short-time Fourier transform � Wavelets � Acoustic signal

processing � Classification and detection

1 Introduction

The timely and accurate detection of animals, birds and

insects is of critical importance for conservation, ecology

and epidemiology. We consider the effective analysis of

the natural soundscape as a constituent component of this

analysis. In this paper, we focus on bioacoustic classifica-

tion, with a particular emphasis on mosquito detection. As

part of showcasing the methods developed for this appli-

cation, we describe how they can also, with minimal

alteration, offer robust results in other bioacoustic classi-

fication domains.

Mosquitoes are responsible for hundreds of thousands of

deaths every year due to their capacity to vector lethal

parasites and viruses, which cause diseases such as malaria,

lymphatic filariasis, zika, dengue and yellow

fever [51, 52]. Their ability to transmit diseases has been

widely known for over a hundred years, and several prac-

tices have been put in place to mitigate their impact on

human life. Examples of these include insecticide-treated

mosquito nets [7, 33] and insect sterilization
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techniques [4]. However, further progress in the battle

against mosquito-vectored disease requires a more accurate

identification of species and their precise location—not all

mosquitoes are vectors of disease, and some non-vectors

are morphologically identical to highly effective vector

species. Current surveys rely either on human-landing

catches or on less effective light traps. In part, this is due to

the lack of cheap, yet accurate, surveillance sensors that

can aid mosquito detection. Acoustic monitoring of mos-

quitoes proves compelling, as the insects produce a sound

both as a by-product of their flight and as a means for

communication and mating. Detecting and recognizing this

sound is an effective method to locate the presence of

mosquitoes and even offers the potential to categorize by

species. Nonetheless, automated mosquito detection pre-

sents a fundamental signal processing challenge, namely

the detection of a weak signal embedded in noise. Current

detection mechanisms rely heavily on domain knowledge,

such as tuning models to likely fundamental frequency and

harmonics, and often extensive handcrafting of features,

frequently similar to traditional speech representation

methods. Over the last decade, there have been increas-

ingly impressive performance gains achieved by the para-

digm shift to deep learning, including bioacoustics [29].

An opportunity hence emerges to exploit and expand upon

these advances to tackle our application problem.

Deep learning approaches, however, tend to be effective

only once a critical number of training samples has been

reached [9]. Consequently, data-scarce problems are not

well suited to this paradigm. As with many other domains,

the task of data labelling is expensive in both time

requirement for hand labelling and associated ambiguity—

namely that multiple human experts will not be perfectly

concordant in their labels. Furthermore, recordings of free-

flying mosquitoes in realistic environments are scarce [37]

and hardly ever labelled.

This paper presents a novel approach for classifying

events from acoustic data using scarce training data. Our

approach is based on a convolutional neural network

classifier conditioned on wavelet representations of the raw

data. By exploiting the high sample rates of audio

recordings, we are able to create sufficient training data for

deep learning to remain highly effective. The network

architecture and associated hyperparameters are, however,

still strongly influenced by constraints in dataset size. We

compare our methods to well-established classifiers,

trained on both handcrafted features and the short-time

Fourier transform (STFT), as well as human-made labels of

mosquito audio recordings. We show that wavelet-condi-

tioned CNN classifications are consistently made more

accurately and confidently than on the STFT. The majority

of our algorithms are able to more reliably detect mos-

quitoes (with accuracy above 90%) than human labellers,

where only 70% of labels are in full agreement amongst

four labellers.

Furthermore, without additional hyperparameter tuning

we demonstrate that our approach scales well to different

data domains, a transfer that traditional handcrafted fea-

tures or classifiers struggle to make. Highlighting the

generic nature of the solution we propose, we show that the

CNN is also able to extract feature representations that

allow it to distinguish between nine species of birds with

reliably high accuracy (over 90%), similarly from very

little data.

The remainder of this paper is structured as follows.

Section 2 addresses related work, explaining the motiva-

tion and benefits of our approach. Section 3 details the

method we adopt, providing insight into the relative

strengths of wavelet transforms. Section 4 describes the

experimental setup. Section 5 highlights the value of the

method. We visualize and interpret the predictions made by

our algorithm on unseen data in Sect. 6 to help reveal

informative features learned from the representations and

verify the method. Finally, we suggest further work and

conclude in Sect. 7.

2 Related work

The use of artificial neural networks in acoustic detection

and classification of species dates back to at least the

beginning of the century, with the first approaches

addressing the identification of bat echolocation calls [40].

Both manual and algorithmic techniques have subsequently

been used to identify insects [10, 53], elephants [15], del-

phinids [39] and other animals. The benefits of leveraging

the sound animals produce—both actively as communica-

tion mechanisms and passively as a result of their move-

ment—is clear: animals themselves use sound to identify

prey, predators and mates. Sound can therefore be used to

locate individuals for biodiversity monitoring, pest control,

identification of endangered species and more.

This section will therefore briefly review the use of

machine learning approaches in bioacoustics. We describe

the traditional feature and classification approaches to

acoustic signal detection. In contrast, we also present the

benefit of feature extraction methods inherent to current

deep learning approaches. Finally, we narrow our focus

down to the often overlooked wavelet transform, which

offers significant performance gains in our pipeline.

2.1 Applications

The employment of artificial neural networks has proven

successful for over a decade. In Chesmore and Ohya [10], a

neural network classifier was used to discriminate four
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species of grasshopper recorded in northern England, with

accuracy surpassing 70%. Other classification methods

include Gaussian mixture models [41, 44] and hidden

Markov models [34, 53], applied to a variety of different

features extracted from recordings of singing insects. The

work of Chen et al. [9] attributes the stagnation of auto-

mated insect detection accuracy to the sole use of acoustic

devices, which are often not capable of producing a signal

sufficiently clean to be classified correctly. In their work,

they replace microphones with optical sensors, recording

mosquito wingbeat through a laser beam hitting a photo-

transistor array—an extension of the method proposed by

Moore et al. [36]. In a real-world setting, the resultant

signals have a higher signal-to-noise ratio than those

recorded acoustically. We regard these approaches and

acoustic sensors as complementary, rather than competi-

tors, and note that approaches which work well for acoustic

detection can also be used to perform detection in other

datasets, including optically sensed data, as well as other

bioacoustic problems.

Whichever technique is used to record a mosquito

wingbeat frequency, the need arises to be able to identify

the insect’s flight in a (more or less) noisy recording. The

following section therefore reviews recent achievements in

feature representation and learning, in the broad context of

practical acoustic signal classification.

2.2 Feature representation and learning

The process of automatically detecting an acoustic signal in

noise typically consists of an initial preprocessing stage,

which involves cleaning and de-noising the signal itself,

followed by a feature extraction process, in which the

signal is transformed into a format suitable for a classifier,

followed by the final classification stage. Historically,

audio feature extraction in signal processing employed

domain knowledge and intricate understanding of digital

signal theory [28], leading to handcrafted feature

representations.

Many of these representations often recur in the litera-

ture. A powerful, though often overlooked, technique is the

wavelet transform, which has the ability to represent

multiple time-frequency resolutions [2, Chapter 9]. An

instantiation with a fixed time-frequency resolution thereof

is the Fourier transform. The Fourier transform can be

temporally windowed with a smoothing window function

to create a short-time Fourier transform (STFT). Mel-fre-

quency cepstral coefficients (MFCCs) create lower-di-

mensional representations by taking the STFT, applying a

nonlinear transform (the logarithm), pooling and a final

affine transform. A further example is presented by linear

prediction cepstral coefficients (LPCCs), which pre-

emphasise low-frequency resolution and thereafter undergo

linear predictive and cepstral analysis [1].

Detection methods have fed generic STFT representa-

tions to standard classifiers [42], but more frequently

complex features and feature combinations are used,

applying dimensionality reduction to combat the curse of

dimensionality [32]. Complex features (e.g., MFCCs and

LPCCs) were originally developed for specific applica-

tions, such as speech recognition, but have since been used

in several audio domains [35]. Humphrey et al. [28] argue

that using features specifically developed for a prior

application is unsustainable and has contributed to the

stagnation in the field of audio event recognition.

On the contrary, the deep learning approach usually

consists of applying a simple, general transform to the

input data and allowing the network to both learn a feature

representation and perform classification. This enables the

models to learn salient, hierarchical features from raw data.

The automated deep learning approach has recently fea-

tured prominently in the machine learning literature,

showing impressive results in a variety of application

domains, such as computer vision [31] and speech recog-

nition [32]. However, deep learning models such as con-

volutional and recurrent neural networks are known to have

a large number of parameters and hence typically require

large data and hardware resources. Despite their success,

these techniques have only recently received more atten-

tion in the time series signal processing literature.

A prominent example of this shift in methodology is the

BirdCLEF bird recognition challenge. The challenge con-

sists of the classification of bird songs and calls into up to

1500 bird species from tens of thousands of crowd-sourced

recordings. The introduction of deep learning has brought

drastic improvements in mean average precision (MAP)

scores. The best MAP score of 2014 was 0.45 [23], which

was improved to 0.69 the following year when deep

learning was applied, outperforming the closest scoring

handcrafted method by 19% [29]. The impressive perfor-

mance gain came from the utilization of well-established

convolutional neural network practice from image recog-

nition. By transforming the signals into STFT spectrogram

format, the input is represented by 2D matrices, which are

used as training data. The following year saw a further

jump to 0.71 [46] by utilizing transfer learning of the

Inception-v4 deep convolutional neural network which was

highly successful in ImageNet. Alongside this example, the

most widely used base method to transform the input sig-

nals is the STFT [26, 43, 45].

An alternative feature transformation can be obtained

with wavelets. Gaining popularity in the late 1990s,

wavelets have been applied successfully to efficient image

compression [12, JPEG 2000], de-noising [20], and have

shown an ability to form efficient multi-resolution
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representations [17]. These properties have led to the use of

wavelets in deep learning in two general ways. In one,

wavelets are used as a preprocessing step to form noise-

robust representations of time series, while in the second

wavelets are employed to replace neurons to form wavelet

neural networks. An example application of the former

used Haar wavelets for stock price time series forecasting

with recurrent neural networks [27]. In the latter scenario,

wavelet neural networks have seen some success in time

series prediction [8], signal classification and compres-

sion [30], but a lack of standard representations and gen-

eral frameworks has prevented wider adoption [3].

As a result, to the best of our knowledge, the wavelet

transform is rarely used as the representation domain for a

convolutional neural network. In the following section, we

present our method, which leverages the benefits of the

wavelet transform demonstrated in the signal processing

literature, as well as the ability to form hierarchical feature

representations for deep learning.

3 Methods

We present a novel wavelet transform-based convolutional

neural network architecture for the detection of events in

noisy audio recordings. As our results of Sect. 5 indicate

superior performance when training on wavelet represen-

tations of the data, we describe in depth the wavelet

transform to provide insight into its benefits over the

conventional STFT. We explain the wavelet transform in

the context of the algorithm, thereafter describing the

neural network configurations and a range of traditional

classifiers against which we assess performance. The key

steps of the feature extraction and classification pipeline

are given in Algorithm 1.

3.1 The wavelet transform

We begin by discussing the details of the transform used in

Step 2 of Algorithm 1 as a base to further extract features.

A well-established approach in signal processing is the

Fourier transform, which can be used to express any signal

with an infinite series of sinusoids and cosines. Its main

disadvantage is the provision only of frequency resolution,

meaning one can identify all the frequencies present in a

signal, but not their occurrence in time. To overcome this,

common approaches include cutting the signal into sections

of time and treating each segment separately. This action,

however, smears out frequencies, especially in the case of

short windows. A wide window is able to provide better

frequency resolution at the sacrifice of time resolution.

Choosing a window function therefore limits one to a fixed

time-frequency resolution. The uncertainty in time-fre-

quency is referred to as the Heisenberg-Gabor limit [6]

which is derived from the notion that the product of the

precision in time and frequency is limited.

The wavelet transform employs a fully scalable modu-

lated window which provides a principled solution to the

windowing function selection problem [49]. The window is

slid across the signal, and for every position a spectrum is

calculated. The procedure is then repeated at a multitude of

scales, providing a signal representation with multiple

time-frequency resolutions. This allows the provision of

good time resolution for high-frequency events, as well as

good frequency resolution for low-frequency events, which

in practice is a combination best suited to real signals.

We choose to use the continuous wavelet transform

(CWT) due to its successful application in time-frequency

analysis [18]. The CWT is particularly well suited over the

discrete wavelet transform to time-frequency analysis as

redundancy makes information available in peak shape and

peak composition more visible and easier to interpret [21].

The CWT can be written in the time domain as:

Algorithm 1 Detection Pipeline

1: Load N labelled microphone recordings x1(t), x2(t), . . . , xN (t).

2: Take transform with h1 features such that we form a feature tensorXtrain and corresponding label vector

ytrain:

Xtrain ∈ R
NS×h1×w1 , ytrain ∈ R

NS×n ,

where Ns is the number of training samples formed by splitting the transformed recordings into 2D

‘images’ with dimensions h1 × w1, and n is the number of classes.

3: Train classifier on Xtrain, ytrain.

4: For test data, Xtest, neural network outputs a prediction ŷi for each class Ci :

0 ≤ ŷi (x) ≤ 1, such that

n

i=1

ŷi (x) = 1.
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aðs; sÞ ¼ jsj�1=2

Z 1

�1

f ðtÞw� t � s

s

� �

dt; ð1Þ

or equivalently in the frequency domain as:

aðs; sÞ ¼ jsj1=2
Z 1

�1

FðxÞW�ðsxÞeixs dx; ð2Þ

where s is the scale factor, s is the translation factor, jsj�1=2

is the energy normalization factor, and * denotes complex

conjugation. The wavelets are generated by scaling and

translating a single mother wavelet wðtÞ. Through contin-

uous dilation in s, the resulting CWT coefficients aðs; sÞ

can be assembled for a multitude of scales to either

reconstruct the signal with an inverse transform or to create

a spatial representation, called the scalogram. An equiva-

lent representation in Fourier space requires the continuous

application of 1-D Fourier transforms with windows that

are translated in time. We can illustrate this by substitution

of w�
s;sð

t�s
s
Þ ¼ e�ixt in Eq. 1. Essentially, this is equivalent

to using a fixed basis with s ¼ 1 and ignoring the dilation

in s. We thereby emphasise the more principled solution

employed with the CWT, eliminating the need to choose

and parameterize the window function necessary for STFT

representations. Furthermore, working with the CWT one

is free to choose a wavelet function with properties and

characteristics that best suit the data, given knowledge of

the signal being analysed. A popular choice of wavelet

function for time-frequency analysis is given by the bump

wavelet [50], expressed in the Fourier domain as:

WðsxÞ ¼ exp 1�
1

1� ðsx� lÞ2=r2

 !

I½ðl� rÞ=s; ðlþ rÞ=s�;

ð3Þ

where I½�� is the indicator function. Valid values for l; r are

[3, 6], [0.1, 1.2], respectively. Smaller values of r result in

a wavelet function spanning a narrower frequency band-

width (Fig. 1a), which results in superior frequency local-

ization but poorer time localization. The bump wavelet is

symmetric in frequency and has a direct relationship

between wavelet scale and centre frequency, which we

illustrate in Fig. 1b. As a result, we can create spectro-

grams in frequency which retain clear interpretability

(which becomes important for Sects. 4, 6).

The spatial features thus created are then passed to the

classifiers in the next step of the algorithm. We discuss

neural network and more traditional implementations sep-

arately in the upcoming sections.

3.2 Neural network configurations

In this subsection, we start by providing definitions for the

layers and parameters used in our convolutional neural

network model. Thereafter, we describe how they were

used in experimental setting.

A convolutional layer Hconv: R
h1�w1�c ! R

h2�w2�Nk

with input tensor X 2 R
h1�w1�c and output tensor Y 2

R
h2�w2�Nk is given by the sequential application of Nk

learnable convolutional kernels Wp 2 R
k�k; p\Nk to the

input tensor. Given our single-channel ðc ¼ 1) input rep-

resentation of the signal X 2 R
h1�w1�1 and a single kernel

Wp, their 2D convolution Yk is given by [24, Chapter 9]:

Ykði; jÞ ¼ X �Wp ¼
X

i0

X

j0

Xði� i0; j� j0ÞWpði
0; j0Þ:

ð4Þ

The Nk individual outputs are then passed through a non-

linear function / and stacked as a tensor Y. Conventional

choices for the activation / include the sigmoid function,

the hyperbolic tangent and the rectified linear unit (ReLU).

The data size constraint results in an architecture choice

(Fig. 2) of few layers and free parameters. Our network

consists of an input layer connected sequentially to a single

convolutional layer and a fully connected layer, which is

connected to the two output classes with dropout [48] with

probability p. ReLU activations are employed based on

their desirable training convergence properties [31].

Finally, we perform grid search over potential candidate

hyperparameters using tenfold cross-validation on a subset

of the mosquito training data. We show the results of these

in Sect. 4.2. The combination of cross-validation and

dropout helps avoid overfitting to our scarce data envi-

ronment. This is shown by the excellent performance

transfer with no hyperparameter re-tuning in Sect. 5.

3.3 Traditional classifier baseline

As a baseline, we compare the neural network models with

more traditional classifiers that typically require explicit

feature design. We choose three candidate classifiers

widely used in machine learning with audio: random for-

ests (RFs), naı̈ve Bayes’ (NBs) and support vector machi-

nes using a radial basis function kernel (RBF-SVMs). Their

popularity stems from ease of implementation, reasonably

quick training and competitive performance [47], espe-

cially in data-scarce problems. For brevity, we present

results with the best-performing of these only, namely the

SVM.

We selected ten features to encode the observed raw

data: STFT spectrogram slices with 256 coefficients (cre-

ated with a Hanning window and 256 samples of overlap),

13 MFCCs, entropy, energy entropy, spectral entropy, flux,

roll-off, spread, centroid, and the zero crossing rate (for a

detailed explanation of these features, see for example the

open-source audio signal analysis toolkit by
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Giannakopoulos [22]). We note that our choice of feature

parameters is based on past literature [19, STFT], [38,

MFCCs], as well as empirical evidence. Prior parameteri-

zation of the feature space is necessary to some extent, as

the number of feature and classifier parameters grows

combinatorially to the point where joint optimization of all

possible variables is infeasible. We select certain aspects of

classifier-feature pipelines by cross-validation as detailed

in Sect. 4.2.

4 Experimental details

4.1 Datasets

The mosquito data used here were recorded in January

2016 within culture cages containing both male and female

Culex quinquefasciatus. Mosquito wingbeat sounds

commonly have a fundamental frequency in the range of

150–750 Hz [14]. In noisy recording conditions, higher

harmonics are less audible due to the sharper fall-off of

shorter wavelength waves. Furthermore, the signals are

sampled with inexpensive smartphone microphones to

allow widespread deployment at low cost. Given the

quality of these microphones, we observe empirically that

sound emitted by mosquitoes mostly disappears in noise for

frequencies higher than the third harmonic. We therefore

choose to sample at Fs ¼ 8 kHz. Figure 3 shows a fre-

quency domain excerpt of a particularly faint recording in

the windowed frequency domains. For comparison, we also

illustrate the wavelet scalogram taken with the same

number of scales as frequency bins, h1, in the STFT. We

plot the logarithm of the absolute value of the derived

coefficients against the spectral frequency of each feature

representation. Figure 3 (lower) shows the classifications

within yi ¼ f0; 1g: absence, presence of mosquito, as
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Fig. 1 Illustration of key properties of the bump wavelet, constructed

from Eqs. 2 and 3. a Bump mother wavelets of fixed scale, s10, with

varying values of l, r, constructed from Eq. 3. b By converting

wavelet scale to frequency, f ¼ ð1
s

l
2p
Þ, we can illustrate the tiling of

the frequency plane with the bump wavelet

Fig. 2 The CNN pipeline. 1.5 s spectrogram of mosquito recording is

partitioned into images with c ¼ 1 channels, of dimensions h1 � w1.

This serves as input to a convolutional network with Nk filters with

kernel Wp 2 R
k�k. Feature maps are formed with dimensions reduced

to h2 � w2 following convolution. These maps are fully connected to

Nd units in the dense layer, fully connected to 2 units in the output

layer
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labelled by four individual human researchers. These labels

are created in version 2.2.2 of Audacity [5] with access to

the recording audio and a matching spectrogram visual-

ization. Of these, one particularly accurate label set created

with great care under ideal conditions is taken as a gold

standard reference to both train the algorithms and

benchmark with the remaining experts. The classifications

are restricted to only 2 classes due to the absence of

labelled data in a multi-species scenario.

4.2 Cross-validated parameter search

In this section, we describe the experiment design and choice

of hyperparameters, optimized to maximize F1 score over a

cross-validation sample. The available 57 mosquito record-

ings were split into 50% training and 50% held out data. The

training data was then further split tenfold to perform cross-

validation, creating approximately 3000–30,000 training

samples, for window widths w1 ¼ 10 and w1 ¼ 1 samples,

respectively. The neural networks were trained with a batch

size of 256 for 20 epochs, according to validation accuracy in

conjunction with early stopping criteria.

For fair comparison, we partition the data (choose

window length w) to the strengths of each individual

classifier. When evaluating cross-validation performance

over the label interval, our hyperparameter optima

(w1 ¼ 10 for the CNN, and w1 ¼ 1 for the SVM) given in

bold in Table 1 suggest stacking the windows together

creates feature vectors that lead to performance degrada-

tion for the SVM. Therefore, for each CNN input image

with height h1 ¼ 256 and width w1 ¼ 10, our SVM will

use 10 training samples with w ¼ 1; h ¼ 256 instead.

Optimum window widths may vary with the dynamics of

the signal, so it is important to consider this parameter

systematically. In particular, should significantly more data

be available, the drawbacks due to the use of larger win-

dows (decrease in training samples the classifier sees)

would be mitigated by the higher number of training

samples at disposal. Conversely, the advantage of longer

windows lies with supplying a longer temporal context.

The traditional classifiers are cross-validated with prin-

cipal component analysis (PCA), and recursive feature

elimination [25, RFE], with the number of components

controlled by n and m, respectively. The best-performing

feature set for all traditional classifiers is the set extracted

by cross-validated RFE, outperforming all PCA reductions

for every classifier-feature pair. The highest scoring

hyperparameter, m ¼ 27, defines a feature set, that we

denote as RFE88, which retains 88 dimensions from the ten

original features spanning 304 dimensions (F10 2 R
304).

4.3 Computational details

We consider computational complexity by splitting the

pipelines into three processing stages: feature transforma-

tion, classifier training and classifier prediction. The overall

compute time is thus the sum of all three. We further break

this down for individual pipelines, noting that various

software libraries can differ significantly in processing time

for the same transformation.1 We offer some insights from

the figures given in Table 2 in this subsection.

Fig. 3 STFT (top) and wavelet

(middle) representations of

signal with h1 ¼ 256 frequency

bins and wavelet scales,

respectively. Corresponding

varying class labels (bottom) as

supplied by human labellers.

The wavelet representation

shows greater contrast in

horizontal constant frequency

bands that correspond to the

mosquito tone

1 We provide our data and implementation on http://humbug.ac.uk/

kiskin2018/.
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The native training complexity of the RBF-SVM is stated

as OðnSVdÞ, where d is the input dimension and nSV is the

number of support vectors [13]. Table 2 shows that an

increase in d coupled with the already large number of training

samples (leading to a large nSV) causes a significant slowdown

in both training and prediction with the SVM. A feature

dimension reduction, as encountered with the MFCC or RFE

approaches, while slightlymore costly as a preprocessing step,

speeds up the training and prediction significantly.

The CNN was trained in Keras [11], with an NVIDIA

970 GTX GPU. This allows quick training and prediction,

resulting in much shorter computation times than those of

the scikit-learn SVM (running on a CPU) when

working with a large feature space.

Furthermore, the CWT is highly redundant and so incurs

a greater computational cost. Its computational complexity

increases linearly with number of wavelet scales (provided

sufficient RAM). Despite this, the sum of feature trans-

formation and training time is well under the length of the

audio recordings, suggesting real-time detection to be

perfectly feasible given appropriate hardware. A significant

reduction in the CWT processing time can be achieved by

calculating each wavelet scale in parallel, due to the

independence of each computation per scale. Further con-

siderable speed-up can be achieved by utilizing a discrete

wavelet transform or a fast wavelet transform [16]. While

not the focus of this paper, this may be worth considering

when transferring algorithms to embedded devices and

specialized hardware in future work.

5 Classification performance

The performance metrics are defined at the resolution of

the supplied label interval (0.1 s granularity) and presented

in Table 3 for the mosquito dataset, and in Table 4 and

Fig. 4 for the BirdCLEF subset. We highlight three key

results in both applications.

5.1 Mosquito detection

Firstly, both the traditional and deep learning algorithms

accurately and reliably detect mosquitoes, far surpassing

human labellers in both F1 score and precision-recall (PR)

area. Since human labels were supplied as absolute (either

ŷi ¼ 1; ŷi ¼ 0), an incorrect label incurs a large penalty on

Table 1 Results for grid search over hyperparameter values

Classifier Features Parameter grid F1 score

CNN STFT w1 2 f1; 10; 100g;
k 2 f2; 3; 4; 5g;
Nk 2 f8; 16; 32; 64; 128; 256; 1028; 2056g;
Nd 2 f64; 128; 256; 512; 1024g

0.861 ± 0.066

CNN Wavelet w1 2 f1; 10; 100g;
k 2 f2; 3; 4; 5g;
Nk 2 f8; 16; 32; 64; 128; 256; 1028; 2056g;
Nd 2 f64; 128; 256; 512; 1024g

0.915 ± 0.023

NB, RF, SVM F10 2 R
304 w1 2 f1; 10; 100g;

PCA 2 R
N ;N 2 0:8n � 304;

n 2 f0; 1; . . .; 12g;RFE 2 R
M ;M 2 304� 8m;

m 2 f0; 1; . . .; 27; . . .; 35g

0.880 ± 0.055

The cross-validated F1 score is reported for optimal hyperparameters found (in bold)

Table 2 Execution time given

in seconds for feature-classifier

pipelines trained on 15 min

(900 s) and evaluated over

15 min of audio data sampled at

8000 Hz

Pipeline Dimensions Feature transform (s) Classifier training (s) Classifier prediction (s)

SVM MFCC 13 1.5 17.0 3.6

SVM RFE88 88 5.2 42.9 8.4

SVM STFT 256 1.4 121.1 32.7

SVM Wavelet 256 170.6 131.4 28.9

CNN MFCC 13 1.5 16.0 1.0

CNN RFE88 88 5.2 24.0 1.0

CNN STFT 256 1.4 37.5 4.0

CNN Wavelet 256 170.6 44.8 7.5

Run times are an average of three passes on a mid-range desktop with an Intel i7-4790k CPU with 16 GB

DDR4 RAM and an NVIDIA GTX 970 GPU
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precision-recall curve areas, explaining the large PR area

deficit attributed to human labelling.

Secondly, the CNN provides a consistent performance

boost with every feature combination, even for the features

specifically handcrafted for the use with SVMs (RFE88).

Finally, we note that the wavelet pipeline strongly out-

performs the STFT, with both the CNN and SVM.

5.2 Bird classification

We now make three observations from Fig. 4 and Table 4,

representing a scenario that is novel to the classifier

pipelines.

Firstly, the wavelet features provide the best perfor-

mance with both the CNN and the SVM, with the top result

achieved by the CNN wavelet pipeline. As with the prior

application, the wavelet significantly outperforms the

STFT with all classifiers, with the difference magnified in

this application.

Secondly, the downside to the elaborate hand-tuned

feature selection scheme (RFE88) quickly becomes evident

when comparing performance conditioned on these

features (with F1 scores of approximately 0.85) to the

results of either general deep learning configuration (with

F1 scores of 0.91 and 0.93 for the STFT and wavelet,

respectively). We find results are consistent with claims

made about the unsustainable nature of handcrafted feature

and classifier design [28].

Finally, the CNN performs significantly better with

high-dimensional, generalizable, features (STFT and

wavelet) in this more difficult problem.

6 Visualizing discriminative power

In the absence of data labels, visualizations can be key to

understanding how neural networks obtain their discrimi-

native power. To ensure that the characteristics of the

signal have been learnt successfully, we compute the fre-

quency spectra xi;testðf Þ of samples that maximally activate

the network’s units. We compare this to the training spectra

xi;trainðf Þ using Algorithm 2.

Figures 5 and 6 show that the test samples closely

resembling the training set cause the highest activations—a

property we expect from our algorithms to verify they have

successfully been trained. Furthermore, Fig. 5 shows that

our prior expectation for the mosquito class matches the

spectral content that triggers the most confident predic-

tions. This is in the form of a distinct frequency peak

around 660 Hz and its harmonic at 1325 Hz, which differs

significantly from the noise class. Similarly, Fig. 6 shows

unique spectral regions dedicated to each species, also with

significant deviation from the noise class.

As we chose a wavelet basis with a scale directly pro-

portional to a centre frequency, we can directly compare

spectral representations with the STFT. The wavelet rep-

resentation results in the more easily distinguishable peaks

in the mosquito class (Fig. 5), and overall smoother spec-

tral representations of the bird calls (Fig. 6). We note that a

mismatch between high-scoring test and labelled spectra

Table 3 Mosquito detection:

summary classification metrics

reported as means ± the

standard deviation from n ¼ 30

random hold out dataset splits

with 50% training data, and

50% test data

Classifier Features F1 score TPR TNR PR area

CNN MFCC 0.895 ± 0.022 0.89 ± 0.04 0.90 ± 0.03 0.963± 0.012

SVM MFCC 0.880 ± 0.020 0.88 ± 0.02 0.88 ± 0.02 0.951 ± 0.013

CNN RFE88 0.922 – 0.019 0.93 – 0.02 0.91 – 0.04 0.980 – 0.007

SVM RFE88 0.904 ± 0.020 0.91 ± 0.02 0.90 ± 0.02 0.963 ± 0.013

CNN STFT 0.883 ± 0.031 0.86 ± 0.05 0.91 ± 0.02 0.939 ± 0.017

SVM STFT 0.858 ± 0.031 0.80 ± 0.05 0.91 ± 0.02 0.889 ± 0.036

CNN Wavelet 0.913 ± 0.020 0.92 ± 0.02 0.91 ± 0.02 0.962 ± 0.012

SVM Wavelet 0.897 ± 0.020 0.90 ± 0.02 0.90 ± 0.02 0.944 ± 0.012

Labeller 1 Audacity 0.819 ± 0.018 0.89 ± 0.02 0.85 ± 0.02 0.843 ± 0.006

Labeller 2 Audacity 0.856 ± 0.019 0.92 ± 0.03 0.88 ± 0.02 0.873 ± 0.008

Labeller 3 Audacity 0.852 ± 0.018 0.77 ± 0.02 0.98± 0.02 0.901 ± 0.007

Table 4 BirdCLEF subset: summary classification metrics reported

as means ± the standard deviation from n ¼ 30 random dataset splits

with 50% training data, and 50% test data

Classifier Features F1 score PR area

CNN MFCC 0.860 ± 0.028 0.915 ± 0.031

SVM MFCC 0.891 ± 0.029 0.931 ± 0.029

CNN RFE88 0.853 ± 0.036 0.853 ± 0.036

SVM RFE88 0.857 ± 0.024 0.905 ± 0.030

CNN STFT 0.909 ± 0.031 0.927 ± 0.031

SVM STFT 0.757 ± 0.021 0.821 ± 0.027

CNN Wavelet 0.925 – 0.021 0.947 – 0.023

SVM Wavelet 0.896 ± 0.023 0.939 ± 0.022
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(or matches in non-information bearing regions of the

spectrum) may suggest the network could be learning to

detect the noise profile of the microphones used for data

collection rather than the sound emitted by the object of

interest.

7 Conclusions

This paper presents a novel approach for acoustic classi-

fication in a real-world, data-scarce scenario. We are able

to more accurately and reliably differentiate between the

presence and absence of a mosquito than human labellers.

Furthermore, we show that a CNN outperforms generic

classifiers such as support vector machines commonly used

in the field.

Moreover, we highlight the importance of the generality

of deep learning approaches by evaluating classification

performance over a 10 class subset of bird species

recordings, where the wavelet-trained CNN outperforms

traditional classification algorithms with no hyperparame-

ter re-tuning of either approach. The consistent improve-

ment observed with wavelet features over the short-time

Fourier transform serves to warrant further research on

whether the STFT is the correct choice to use as a base

transform, as is overwhelmingly used in the literature.

Algorithm 2 Spectra calculation

1: for feature in {STFT, wavelet} do

2: for class in Ci do

3: Collect highest N predictions, ŷi
4: Collect corresponding inputs, Xi,test ∈ R

N×h1×w1 ,

forming a concatenation of 2D images with dimensions h1 × w1.

5: Collect Ns training samples to form Xi,train

6: Take ensemble average across patches and individual columns:

xi,test( f ) =
1

w1

1

N

w1

j=1

N

k=1

Xi jk,test, where Xi jk ∈ R
h1 , (5)

xi,train( f ) =
1

w1

1

Ns

w1

j=1

Ns

k=1

Xi jk,train. (6)

7: Normalise by mean and standard deviation

8: end for

9: end for

Fig. 4 BirdCLEF subset:

boxplots of mean accuracy per

class (F1 score) for n ¼ 30 trials

of the CNN and SVM methods,

grouped by feature combination
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Fig. 5 Culex mosquito dataset:

plot of normalized feature

coefficient against STFT

frequency bin (a), and wavelet

centre frequency (b), for the

10% most confident predicted

outputs over a test dataset. The

learned spectra xi;testðf Þ for the
highest N scores closely match

the labelled class spectra
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Fig. 6 BirdCLEF subset: plot

of normalized feature

coefficient against STFT

frequency bin (a) and wavelet

centre frequency (b), for the

10% most confident predicted

outputs over a test dataset. The

learned spectra xi;testðf Þ closely
match the labelled class spectra

xi;trainðf Þ
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Finally, our generic feature transform allows us to

visualize the learned class representation by back-propa-

gating predictions made by the network. We thus verify

that the network correctly infers the frequency character-

istics of the signal, rather than a peculiarity of the recording

such as the microphone noise profile. As more data

becomes available, future work will aim to deploy our

algorithm in a physical device to allow for large-scale

bioacoustic classification.
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