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A comprehensive phytochemical study of Juniperus turbinata (Cupressaceae) collected from La Maddalena Archipelago
(Sardinia, Italy) is reported. Both the essential oil and the ethanolic extract obtained from the aerial parts were analyzed.
The essential oil appears to belong to a new chemotype compared to other Mediterranean juniper accessions, as it was
favored by geographic isolation of the isles. It showed a low content of monoterpene hydrocarbons and a-terpineol, ent-
manoyl oxide, 1,10-di-epi-cubenol as the major constituents. The ethanolic fraction contained mainly diterpenoids. Among
these, 15-formyloxyimbricatolic acid (7) is a new natural product since it has hitherto been obtained only by synthetic
route. The phenolic fraction contained biflavonoids: cupressuflavone (9), followed by minor amounts of amentoflavone
(10) and hinokiflavone (11). The essential oil and six purified compounds (1 – 4, 8 and 9) were assessed for biological
activities, namely antioxidant (assessed by DPPH·, ABTS·+ and FRAP methods) and cytotoxic effects towards selected
human tumor cell lines (MDA-MB 231, A375 and HCT116 cells). Compound 3 exhibited higher radical scavenging activity
against ABTS·+ radical than the reference Trolox. Noteworthy, compound 8 showed powerful effects towards tumor cell
lines, with IC50 values in the range of 0.060 – 0.201 lM, which make it a promising anticancer drug candidate.
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Introduction

Juniperus turbinata GUSS. is a Mediterranean shrub or
small tree, up to 6 – 8 m tall, belonging to Cupres-
saceae family. It has been regarded as Juniperus phoeni-
cea ssp. turbinata (GUSS.) NYMAN

[1][2] or Juniperus
phoenicea var. turbinata (GUSS.) PARL.,[3][4] and included in
the Juniperus phoenicea L. complex, along with Juniperus
phoenicea s.s. However, according to morphological[5][6]

and genetic differences[7] between the two taxa, Junipe-
rus turbinata has recently been accepted at species rank.

J. turbinata grows in coastal areas around the
Mediterranean Sea and in the mountains of northwest
of Africa, up to 800 m a.s.l.,[8] while J. phoenicea s.s. is
present on mountains of Iberian Peninsula, southern
France and north-western Italy.[5]

The J. phoenicea complex enjoys good reputation
as an important medicinal plant as it has largely been

used in traditional medicine to heal various illnesses
such as dysentery, rheumatism, intestinal, urinary and
respiratory problems,[9] diabetes[10][11] and infectious
diseases.[12 – 14]

Two major classes of secondary metabolites are
found in the Juniperus genus such as terpenoids, with
diterpenes as the main compounds, and phenolics, in
particular biflavonoids.[15 – 19]

Concerning J. phoenicea, a significant degree of
morphological and genetic variability has been
reported in literature.[20 – 24] This may undoubtedly
affects the secondary metabolism expression of the
species. It is worth of note that most of studies on
J. phoenicea are related to its monoterpene-rich essen-
tial oil[14][25 – 29] and the monoterpene hydrocarbon
a-pinene emerged as the principal characterizing vola-
tile compound. Conversely, the non-volatile secondary
metabolites were investigated to a minor extent, and
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the following classes of natural products were the
main groups of secondary metabolites characterizing
the species J. phoenicea: abietane diterpenoids,[19][30]

sesquiterpenes,[31] norterpenoid glucosides,[32] scutel-
larein derivatives,[33] furanones, phenylpropane
glucosides[17][34][35] and lignans.[36] However, in this
context, J. turbinata has hitherto been poorly explored
and showed labdane diterpenes as the main
constituents.[37]

The aim of this study was to perform a complete
phytochemical analysis on both polar and volatile
compounds of J. turbinata collected from a geographi-
cally isolated population living in the La Maddalena
Archipelago and to assess their biological activity,
namely the cytotoxicity on a panel of human tumor
cells (MDA-MB 231, A375 and HCT116 cells) together
with the radical scavenging and ferric reducing antiox-
idant capacity. For this purpose, the main secondary
metabolites occurring in the J. turbinata ethanolic
extract were isolated by column chromatography and
structurally elucidated by MS and NMR techniques.
The essential oil was hydrodistilled from the aerial
parts and analyzed by GC-FID and GC/MS. Antioxidant
activity and cytotoxic effects of essential oil and six
isolated compounds were evaluated by DPPH˙, ABTS·+,
FRAP and MTT methods, respectively.

Results and Discussion

Analysis of the Ethanolic Extract

As already recognized from other Mediterranean popu-
lations of J. turbinata, the sample collected from
La Maddalena Island showed a huge presence of

diterpenoids, which were the major phytochemicals.
Among these, imbricatolic acid (1), 13-epi-cupressic
acid (2), ent-manoyl oxide (3), 7a-hydroxysandaracopi-
maric acid (4), 13-epi-torulosal (5), sandaracopimaric
acid (6), 15-formyloxyimbricatolic acid (7) and imbricat-
aloic acid (8) were identified (Figure 1). In this
context, it is worthy to note that the isolation of
15-formyloxyimbricatolic acid (7), from a natural
source, is reported here for the first time. In fact, com-
pound (7) was previously obtained by a semisynthesis
approach starting from imbricatolic acid (1).[38] From
the chemical standpoint, compound 7 may be con-
sidered as the oxidation product of 15-formyloxyimbri-
catolal, recognized as one of the components of a
Chilean resin sample obtained from Araucaria arau-
cana.[39] The identification of compound 7 was per-
formed by applying an extensive bidimensional NMR
analysis (using both mono- and bidimensional experi-
ments) and following a method reported in our recent
works[40 – 42] which permit to identify the components
of simple mixtures by unequivocal assignment of each
resonance signal. In the present case, the assignment
of resonances to the respective compounds was sim-
plified because the components were already
described in literature, while these methods have pre-
viously been applied in the structure elucidation of
new natural products. As a new natural compound,
the presence of 7 is also of high chemosystematic rele-
vance because it was not previously recognized in this
species. It might likely be a characteristic phytochemi-
cal trait owned by the population living in La Mad-
dalena Island and probably derived by its geographic
isolation. We already observed peculiar phytochemical

Figure 1. Diterpenoids isolated from Juniperus turbinata from La Maddalena Archipelago.
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patterns in the polar fraction obtained from species
living in isolated environments, restricted areas or by
endemic entities, especially in species collected from
Sardinia and La Maddalena islands,[43 – 51] therefore
the results achieved in the present study are a further
confirmation of these observations. Moreover, the
majority of the diterpenes identified in this study have
never been reported as constituents of J. turbinata,
and this represent an additional evidence of the influ-
ence exerted by the isolated environment on the
phytochemical pattern. Making a comparison, the
observed diterpene composition was very similar to
those observed in J. rigida from Korea[52] and
partially to those reported for J. phoenicea s.s. from
Saudi Arabia.[53]

The minor components of the ethanolic extract
belong to the class of flavonoid and resulted to be
three bi-apigenin derivatives with apigenin residues
coupled in different ways: with the C–C linkage in
cupressuflavone (9; C(8)–C(8″)) and amentoflavone
(10; C(30)–C(8″)), respectively, and with the C–O link-
age in hinokiflavone (11; C(40)–O–C(6″); Figure 2).

All these biflavonoids were already recognized in
Juniperus spp. as well as in the related species of the
Cupressaceae family,[18][53][54] while simple flavonoids,
reported as constituents in accessions belonging to
other populations of J. turbinata,[55][56] were not rec-
ognized in the present study.

Composition of the Essential Oil

The composition of the essential oil of J. turbinata is
reported in Table 1. A total of 99 volatile components

were identified, corresponding to 91.0% of the total
composition. The major compounds were represented
by a-terpineol (11.0%), ent-manoyl oxide (5.5%) and
1,10-di-epi-cubenol (5.1%). a-Terpineol is a safe com-
pound because of its frequent use in fragrances and
is being used as a scaffold for the synthesis of new
drugs for the treatment of cancer, severe pains and
inflammatory disorders.[57][58] The most abundant frac-
tion in the oil was that of oxygenated monoterpenes
(30.8%), followed by similar levels of sesquiterpene
hydrocarbons (23.6%) and oxygenated sesquiterpenes
(21.7%). Noteworthy was the presence of diterpenes
(10.9%, ten identified compounds), mainly labdanes,
abietanes and pimaranes, among which ent-manoyl
oxide was the most abundant. Finally, scarce was the
contribution of the monoterpene hydrocarbons with
1.3% of the total. Other components occurring in sig-
nificant amounts (> 2%) in the oil were: trans-verbenol
(2.4%) and piperitone (4.2%) among oxygenated
monoterpenes; d-cadinene (3.9%), germacrene D
(2.6%), epi-bicyclosesquiphellandrene (2.4%), germa-
crene B (2.2%) and c-cadinene (2.8%) for sesquiter-
pene hydrocarbons; elemol (2.3%) and shyobunol
(3.4%) for oxygenated sesquiterpenes, and trans-
totarol (2.1%) for diterpenes.

Some differences in volatiles were found with
respect to other populations of J. turbinata studied
previously. Rezzi and collaborators[59] analyzed a pop-
ulation growing in Corsica and found a-pinene,
b-phellandrene, a-terpinyl acetate, d-3-carene, myr-
cene and a-phellandrene as the main constituents.
Similar composition was observed in populations of
J. phoenicea var. turbinata (the previously accepted

Figure 2. Biflavonoids isolated from Juniperus turbinata from La Maddalena Archipelago.
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Table 1. Essential oil composition of Juniperus turbinata

No. Component[a] RI[b] RI lit.[c] [%][d] ID[e]

Adams NIST08

1 a-Pinene 932 939 932 0.2 Std
2 Myrcene 991 990 992 0.0 Std
3 a-Phellandrene 1003 1002 1002 0.1 Std
4 p-Cymene 1026 1024 1025 0.0 Std
5 b-Phellandrene 1029 1029 1030 0.9 Std
6 Linalool 1101 1096 1100 0.1 Std
7 cis-p-Menth-2-en-1-ol 1120 1121 1121 0.7 RI, MS
8 a-Campholenal 1125 1126 1123 0.7 RI, MS
9 trans-Pinocarveol 1136 1139 1137 1.3 Std
10 trans-p-Menth-2-en-1-ol 1140 1140 1140 0.4 RI, MS
11 Camphor 1141 1146 1139 0.6 Std
12 trans-Verbenol 1145 1144 1145 2.4 RI, MS
13 trans-Pinocamphone 1159 1162 1159 0.2 RI, MS
14 Pinocarvone 1162 1164 1162 0.2 RI, MS
15 Borneol 1164 1169 1164 0.1 Std
16 p-Mentha-1,5-dien-8-ol 1168 1170 1168 0.8 RI, MS
17 cis-Pinocamphone 1171 1175 1170 0.3 RI, MS
18 Terpinen-4-ol 1176 1177 1175 0.4 Std
19 Cryptone 1183 1184 1184 1.3 RI, MS
20 p-Cymen-8-ol 1186 1182 1186 0.5 RI, MS
21 a-Terpineol 1189 1188 1189 11.0 Std
22 Myrtenal 1193 1195 1193 0.4 RI, MS
23 Myrtenol 1193 1195 1193 0.6 Std
24 Verbenone 1204 1205 1204 1.1 Std
25 trans-Piperitol 1204 1208 1205 0.6 RI, MS
26 trans-Carveol 1218 1216 1219 0.7 RI, MS
27 Citronellol 1233 1225 1232 1.5 Std
28 Cuminaldehyde 1238 1241 1239 0.3 RI, MS
29 Piperitone 1252 1252 1252 4.2 Std
30 trans-Myrtanol 1258 1261 0.3 RI, MS
31 (4E)-Decen-1-ol 1261 1263 1.2 RI, MS
32 Phellandral 1271 1272 0.7 RI, MS
33 a-Terpinen-7-al 1281 1285 0.1 RI, MS
34 p-Cymen-7-ol 1290 1290 1289 0.1 RI, MS
35 d-Elemene 1334 1338 1337 0.3 RI, MS
36 d-Cubebene 1346 1348 0.1 RI, MS
37 d-Copaene 1370 1376 0.1 RI, MS
38 b-Bourbonene 1377 1388 1377 0.1 RI, MS
39 b-Cubebene 1385 1388 1386 0.1 RI, MS
40 b-Elemene 1387 1390 1387 0.4 RI, MS
41 (E)-Caryophyllene 1409 1419 1409 1.0 Std
42 cis-Thujopsene 1420 1431 0.3 RI, MS
43 2,5-Dimethoxy-p-cymene 1425 1426 0.6 RI, MS
44 c-Elemene 1429 1436 0.8 RI, MS
45 cis-Muurola-3,5-diene 1443 1450 0.7 RI, MS
46 a-Humulene 1445 1454 1446 1.1 Std
47 trans-Cadina-1(6),4-diene 1468 1476 1.3 RI, MS
48 Germacrene D 1473 1485 1472 2.6 RI, MS
49 b-Selinene 1477 1490 1478 0.2 RI, MS
50 epi-Bicyclosesquiphellandrene 1482 1471 2.4 RI, MS
51 Valencene 1485 1496 1485 0.3 RI, MS
52 epi-Cubebol 1487 1494 1.6 RI, MS
53 Butylated hydroxyanisole 1487 1489 0.8 RI, MS
54 a-Muurolene 1494 1500 1.0 RI, MS
55 c-Cadinene 1508 1513 1509 2.8 RI, MS
56 trans-Calamenene 1518 1522 1517 1.0 RI, MS
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Table 1. (cont.)

No. Component[a] RI[b] RI lit.[c] [%][d] ID[e]

Adams NIST08

57 d-Cadinene 1518 1523 1518 3.9 RI, MS
58 trans-Cadina-1,4-diene 1526 1534 0.4 RI, MS
59 Methyl dodecanoate 1528 1525 1527 0.4 RI, MS
60 (Z)-Nerolidol 1533 1532 0.3 RI, MS
61 c-Vetivenene 1533 1533 0.3 RI, MS
62 a-Calacorene 1536 1545 1547 0.2 RI, MS
63 Elemol 1545 1549 1545 2.3 RI, MS
64 Germacrene B 1547 1561 1548 2.2 RI, MS
65 cis-Muurol-5-en-4b-ol 1554 1551 0.1 RI, MS
66 b-Calacorene 1556 1564 0.1 RI, MS
67 cis-Muurol-5-en-4a-ol 1559 1561 0.1 RI, MS
68 (E)-Nerolidol 1564 1563 1564 0.2 Std
69 Germacrene D-4-ol 1568 1575 1568 0.7 RI, MS
70 Caryophyllene oxide 1573 1583 1573 1.5 Std
71 Dodecanoic acid 1575 1575 0.2 RI, MS
72 Salvial-4(14)-en-1-one 1584 1594 0.2 RI, MS
73 Widdrol 1588 1599 1587 0.3 RI, MS
74 Ethyl dodecanoate 1597 1598 1597 0.2 RI, MS
75 Humulene epoxide II 1597 1608 0.7 RI, MS
76 1,10-Di-epi-cubenol 1620 1619 5.1 RI, MS
77 epi-a-Muurolol 1635 1642 1.4 RI, MS
78 b-Eudesmol 1640 1650 1640 1.2 RI, MS
79 a-Eudesmol 1644 1653 1644 0.9 RI, MS
80 a-Cadinol 1647 1654 1646 1.2 RI, MS
81 Shyobunol 1680 1689 3.4 RI, MS
82 Amorpha-4,9-dien-2-ol 1699 1700 0.1 RI, MS
83 Pentadecanal 1714 1717 0.2 RI, MS
84 Methyl tetradecanoate 1728 1723 1728 0.0 RI, MS
85 Butyl dodecanoate 1787 1787 1786 tr[f] RI, MS
86 Nootkatone 1792 1806 1794 0.3 RI, MS
87 Cyclohexadecanolide 1916 1934 1912 0.2 RI, MS
88 Methyl hexadecanoate 1929 1921 1928 0.0 RI, MS
89 Pimaradiene 1943 1949 0.1 RI, MS
90 ent-Manoyl oxide 1976 1987 1977 5.5 RI, MS
91 Abietatriene 2042 2056 2041 0.5 RI, MS
92 Abietadiene 2065 2087 0.1 RI, MS
93 unknown diterpene MW = 272 2094 1.8 MS
94 Sandaracopimarinal 2183 2184 0.1 RI, MS
95 Sempervirol 2282 2283 0.1 RI, MS
96 4-epi-Abietal 2295 2298 0.4 RI, MS
97 trans-Totarol 2299 2314 2299 2.1 RI, MS
98 trans-Ferruginol 2325 2331 2325 0.2 RI, MS
99 Nonacosane 2900 2900 2900 0.1 Std

Total identified [%] 91.0
Monoterpene hydrocarbons 1.3
Oxygenated monoterpenes 30.8
Sesquiterpene hydrocarbons 23.6
Oxygenated sesquiterpenes 21.7
Diterpenes 10.9
Others 4.5

[a] Compounds are listed in order of their elution from a HP-5MS column. [b] Linear retention index on HP-5MS column, experimen-
tally determined using homologous series of C8 – C30 alkanes. [c] Linear retention index taken from Adams (2007) and NIST 08
(2008). [d] Percentage values are means of three determinations with a RSD% in all cases below 10%. [e] Identification methods:
std, based on comparison with authentic compounds; MS, based on comparison with Wiley, Adams and NIST 08 MS databases;
RI, based on comparison of LRI with those reported in Adams, FFNSC 2 and NIST 08. [f] tr [%] below 0.1%.
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denomination of this taxon) from Portugal, Algeria
and Morocco, where a-pinene, b-phellandrene and
a-terpinyl acetate were detected as the major volatile
compounds.[25][26][60] On the other hand, in popula-
tions from Tunisia and Morocco a-pinene was by far
the most abundant volatile component.[14][28][29][61]

Thus, one of the main features which differentiated
the investigated population of J. turbinata from those
previously studied appears to be the low content of
monoterpene hydrocarbons along with a noteworthy
presence of sesquiterpenes and diterpenes.

Overall, it seems that J. phoenicea complex exhibits
an infraspecific chemical variability with more chemo-
types depending on geographic and climatic factors.
The geographic isolation of the La Maddalena Archi-
pelago could have influenced the development of the
observed chemical variability. In fact, we have already
detected peculiar molecular patterns in EOs obtained
from species collected from these Isles, especially in
the case of endemic entities as Artemisia caerulescens
subsp. densiflora[62] and Helichrysum microphyllum
subsp. tyrrhenicum,[63] as well as in the case of more
widespread species such as Artemisia arborescens.[64]

Cytotoxic Activity on Tumor Cells

The cytotoxic activity of essential oil and polar com-
pounds 1 – 4, 8 and 9 from J. turbinata was evaluated
on a selection of human tumor cell lines such as colon
carcinoma, breast adenocarcinoma and malignant mel-
anoma cell lines by MTT. Increasing concentrations of
essential oil and polar compounds isolated from the
ethanolic extract were assayed on the three tumor cell
lines for 72 h. The results showed that essential oil
induced a concentration-dependent inhibitory effect on
all cell lines tested in the dilutions range 1.56 – 400 lg/

mL (Table 2, Figure S1). The IC50 values were 9.48, 25.10,
and 33.69 lg/mL towards A375, HCT116 and MDA-MB
231 cell line, respectively. The essential oil resulted
active mainly on human melanoma cell line. The chemi-
cal composition of the essential oil does not put in evi-
dence the presence of a main compound that could be
responsible for the cytotoxic activity. a-Terpineol
(11.0%) has been reported moderately cytotoxic
towards Madin–Darby canine kidney (MDCK) cell line
with EC50 values of 0.025% (v/v).[65] Among other com-
pounds present in the oil, minor components might
also contribute to the cytotoxic activity being involved
in some type of synergism with the major compounds.

The cytotoxic activity of compounds isolated from
the ethanolic extract is reported in Table 3. Data
showed a strong cytotoxic activity of imbricataloic acid
(8) against all cell lines tested, with IC50 values of 0.06,
0.114, and 0.201 lM against colon carcinoma, mela-
noma and breast adenocarcinoma cell lines, respec-
tively (Figure S2). Noteworthy, its activity was higher
than that of cisplatin used as positive control. Like in
the case of essential oil, this compound showed the
strongest effects on melanoma cells (nanomolar IC50
values). Significant cytotoxic activity was also shown by
cupressuflavone (9), but with lower intensity (IC50 in the
range of 12.71 – 19.25 lM; Figure S3) compared with
that of imbricataloic acid (8), while the other purified
compounds were inactive (IC50 > 100 lM).

The inhibitory properties of imbricatolic acid (1) on
cell proliferation in several tumor cell lines have
already been reported.[66] In particular, at a concentra-
tion of 10 lM, imbricatolic acid (1) was able to arrest
the cell cycle in p53-null CaLu-6 human lung tumor
cells. New derivatives of imbricatolic acid were evalu-
ated for antiproliferative activity on MRC-5, AGS, SK-
MES-1, J82 and HL-60 human tumor cell lines, with
the most active compound showing an IC50 value of
17 lM on AGS cells.[67] In our assay, imbricatolic acid
(1) resulted inactive at the concentrations tested on
all cell lines. However, the substitution of the primary
alcoholic function at C(15) (CH2OH group) with an
aldehydic function (CHO group) in imbricataloic acid
(8) structure seems to be a crucial structural feature to
strongly enhance the cytotoxic activity of the diter-
penoidic base skeleton. Therefore, it will be interesting
to perform further studies in order to determine the
mode of action, as well as the cytotoxicity against
non-tumor cells, and in vivo efficacy of this diterpene.

Antioxidant Activity

In Table 4 is reported the antioxidant activity of
J. turbinata essential oil against different radicals.

Table 2. In vitro cytotoxic activity of Juniperus turbinata
essential oil

Cell line (IC50 [lg/mL])[a]

MDA-MB 231[b] A375[c] HCT116[d]

Essential oil
J. turbinata 33.69 9.48 25.10
95% C.I.[e] 31.12 – 36.47 7.83 – 11.49 24.14 – 26.10

Reference
Cisplatin 3.56 0.56 2.68
95% C.I. 2.90 – 3.75 0.32 – 0.68 2.17 – 2.96

[a] IC50 = The concentration of compound that affords a 50%
reduction in cell growth (after 72 h of incubation). [b] Human
breast adenocarcinoma cell line. [c] Human malignant mela-
noma cell line. [d] Human colon carcinoma cell line. [e] C.I.
= Confidence Interval.
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According to the DPPH· and ABTS·+ assays, the essen-
tial oil showed significant antioxidant activity with val-
ues of IC50 about 10- and 25-fold lower when
compared with Trolox, respectively. The measured
reducing capacity power (FRAP assay), revealed that
the oil has a moderate capacity for iron binding that
is related to its possible action as peroxidation protec-
tor. The reducing power may be attributed to hydro-
gen donation from compounds bearing hydroxylic
functions as well as to the presence of reductant
agent. The latter can reduce the oxidized intermedi-
ates in lipid peroxidation processes, convert them to
more stable products and, consequently, terminate
radical chain reactions. By comparing the results (Fig-
ure S4) obtained by the three different antioxidant
activity methods and the relationships between the

chemical composition and the antioxidant activity, it
seems that J. turbinata essential oil possesses a good
capacity to scavenge free radicals and to prevent lipid
peroxidation, which can be ascribed to the pres-
ence of hydroxylated compounds occurring among
oxygen-containing monoterpenes, sesquiterpenes and
diterpenes.

Table 5 and Figure S5 show the scavenging activity
of compounds 1 – 4, 8 and 9 isolated from
J. turbinata ethanol extract against the radicals DPPH·

and ABTS·+ and the evaluation of their reducing
capacity power (FRAP). All tested compounds showed
good scavenging ability towards the ABTS·+ radical,
with an effectiveness in the order: cupressuflavone
(9) > ent-manoyl oxide (3) > imbricatolic acid (1) �
imbricataloic acid (8) > 7a-hydroxysandaracopimaric

Table 3. In vitro cytotoxic activity of diterpenoids and biflavonoids isolated from Juniperus turbinata

Compound Cell line (IC50 [lM])
[a]

MDA-MB 231[b] A375[c] HCT116[d]

Diterpenoids
Imbricatolic acid (1) > 100 > 100 > 100
95% C.I.[e]

13-epi-Cupressic acid (2) > 100 > 100 > 100
95% C.I.
ent-Manoyl oxide (3) > 100 > 100 > 100
95% C.I.
7a-Hydroxysandaracopimaric acid (4) > 100 > 100 > 100
95% C.I.
Imbricataloic acid (8) 0.201 0.114 0.060
95% C.I. 0.173 – 0.234 0.109 – 0.119 0.055 – 0.066

Biflavonoids
Cupressuflavone (9) 16.06 12.72 19.25
95% C.I. 14.75 – 17.49 12.17 – 13.29 17.99 – 20.60

Reference
Cisplatin 11.86 1.87 8.93
95% C.I. 9.66 – 12.49 1.07 – 2.26 7.23 – 9.86

[a] IC50 = The concentration of compound that affords a 50% reduction in cell growth (after 72 h of incubation). [b] Human breast
adenocarcinoma cell line. [c] Human malignant melanoma cell line. [d] Human colon carcinoma cell line. [e] C.I. = Confidence Interval.

Table 4. In vitro radical scavenging activities of essential oil from Juniperus turbinata

DPPH· ABTS·+ FRAP

TEAC[a] IC50
[b] TEAC[a] IC50

[b] TEAC[a]

[lM TE/g] [lg/mL] [lM TE/g] [lg/mL] [lM TE/g]

Essential oil
J. turbinata 383.2 � 4.7 110 � 1.5 160.4 � 2.1 90.2 � 4.2 139.0 � 1.2

Reference
Trolox 10.9 � 0.2 3.7 � 0.2

[a] TEAC = Trolox equivalent (TE) antioxidant concentration. [b] IC50 = The concentration of compound that affords a 50% reduction
in the assay. Values represent mean � SD from triplicate experiments.
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acid (4) > 13-epi-cupressic acid (2; Table 5). In particu-
lar, the strongest activity was observed for cupressu-
flavone (9; IC50 1.35 9 10�5

M) which was even higher
than that of the reference Trolox (IC50 1.74 9 10�5

M).
On the other hand, a negligible scavenging activity
was observed against the DPPH· radical. As a matter
of fact, the compounds ent-manoyl oxide (3), imbrica-
tolic acid (1) and 13-epi-cupressic acid (2) did not
react with DPPH· radical at all, whereas cupressu-
flavone (9) showed an activity that resulted 90 times
lower than that of Trolox.

All the isolated compounds exhibited a moderate
reducing capacity power measured with FRAP assay,
with cupressuflavone (9) > imbricataloic acid (8) >
ent-manoyl oxide (3) > imbricatolic acid (1) � 7a-
hydroxysandaracopimaric acid (4) > 13-epi-cupressic
acid (2; Table 5).

Among the bioactive compounds identified in the
J. turbinata ethanolic extract, the bioflavonoid cupres-
suflavone (9) seems to be important because of its
broad spectrum of biological activities.[68] Cupressu-
flavone (9) proved to be beneficial against oxidative
stress by enhancing the antioxidant defense status,
reducing lipid peroxidation and protecting against the
pathological changes in the liver and kidney tis-
sues.[69] Moreover, it showed neutrophil elastase inhi-
bitory activity[70] and a potential osteoprotective
effect.[71] Although imbricatolic acid (1) did not show
in our assays any notable antioxidant activity, it has
been reported to control the cellular cycle progress.[66]

Its synthetic derivatives were proved to exert topical
anti-inflammatory activity[72] and to inhibit protein tyr-
osine phosphatase-1B.[73] On the other hand, no infor-
mation is currently available on the biological
properties of imbricataloic acid (8).

Conclusions

The phytochemical investigations performed on the
population of J. turbinata growing in La Maddalena
Archipelago evidenced a significant rate of variability
compared with other accessions of the same species.
As a matter of fact, the essential oil was character-
ized by a new chemotype (a-terpineol-rich) which
was not reported previously in other Mediterranean
populations, whereas the ethanolic extract was the
source of a new natural product (15-formyloxyimbri-
catolic acid (7)) and showed a phytochemical pattern
quite different with respect to other Mediterranean
populations, evidencing the influence of the isolated
environment on the secondary metabolites expres-
sion. In addition, some of the isolated compounds,
namely imbricataloic acid (8) and cupressoflavone
(9), showed powerful cytotoxic and antioxidant activi-
ties, respectively. These findings support the tradi-
tional medical uses of the plant and encourage
further studies for the development of plant-borne
compounds formulations to be used in pharmaceuti-
cal and cosmetic applications.

Experimental Section

General

NMR spectra were recorded on a Varian Mercury
300 MHz instrument and/or on a Bruker Avance III
400 MHz instrument using CDCl3, CD3OD or (D6)DMSO
as solvents; d in ppm relative to Me4Si as internal
standard, J in Hz. The internal solvent signal (m5) at
3.31 ppm was set as reference for the spectra in
CD3OD, while the solvent signal (m5) at 2.50 ppm was
set as reference for the spectra in (D6)DMSO.

Table 5. In vitro radical scavenging activities of isolated diterpenes and bioflavonoids from Juniperus turbinata

Compound DPPH· ABTS·+ FRAP

TEAC[a] IC50
[b] TEAC[a] IC50

[b] TEAC[a]

[lM TE/g] 10�5
M [lM TE/g] 10�5

M [lM TE/g]

Diterpenoids
Imbricatolic acid (1) – > 1000 68 � 0.4 79 � 2.0 6 � 0.10
13-epi-Cupressic acid (2) – > 1000 37 � 0.04 146 � 9.8 3 � 0.06
ent-Manoyl oxide (3) – > 1000 146 � 1.9 41 � 2.1 8 � 0.12
7a- Hydroxysandaracopimaric acid (4) 11 � 0.10 358 � 9.8 46 � 0.3 118 � 12 6 � 0.09
Imbricataloic acid (8) 17 � 0.1 227 � 8.8 62 � 0.3 87 � 4.5 10 � 0.17

Biflavonoids
Cupressuflavone (9) 211 � 0.1 11 � 5.7 2391 � 0.150 1.35 � 0.18 26 � 0.44

Reference
Trolox – 1.22 � 0.07 – 1.74 � 0.11 –

[a] TEAC = Trolox equivalent (TE) antioxidant concentration. [b] IC50 = The concentration of compound that affords a 50% reduction
in the assay. Values represent mean � SD from triplicate experiments.
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Plant Material

Aerial parts, including leaves and twigs of J. turbinata,
were collected in La Maddalena Archipelago (Sardinia)
at the beginning of July, 2014. The botanical identifi-
cation was performed by one of us (M. B.). A voucher
specimen (Herbarium CAG 1653/A) has been stored
with the General Herbarium of the Department of Life
and Environment Sciences, University of Cagliari, Italy.

NMR and MS Experiments

Bidimensional spectra were performed on a Bruker
Avance III 400 MHz instrument, operating at 9.4 T at
298 K. HSQC experiments were acquired with a spec-
tral width of 15 and 250 ppm for the proton and car-
bon, respectively, an average 1J(C,H) value of 145 Hz,
a recycle delay of 2 s and a data matrix of 4K 9 256
points. HMBC experiments were acquired with a spec-
tral width of 15 and 250 ppm for the proton and car-
bon, respectively, a long range coupling constant of
nJ(C,H) value of 8 Hz, a recycle delay of 2 s and a
data matrix of 4K 9 256 points.

MS spectra were performed on a Q-TOF MICRO
spectrometer (Waters, Manchester, UK) equipped with
an ESI source that was operated in the negative and/
or positive ion mode. The flow rate of sample infusion
was 10 lL/min with 100 acquisitions per spectrum.
Data were analyzed using the MassLynx software
developed by Waters.

Solvents of RPE grade were purchased from
Sigma–Aldrich (Milan, Italy) or Carlo Erba Reagenti
(Milan, Italy); silica gel 60 (70 – 230 mesh ASTM) was
from Fluka.

Ethanolic Extracts Analysis

A portion of 260.1 g of fresh plant material, repre-
sented by leaves and terminal branches, was consecu-
tively extracted with ethanol 96% (3 times, 48 h
extraction, 2.5 L of solvent each extraction). Then, the
extracts were filtered and the solvent evaporated
under reduced pressure until an aqueous suspension
was obtained. The suspension was frozen to �20 °C
and then lyophilized at the same temperature. A total
amount of 21.3, 7.2 and 1.5 g of crude extract, respec-
tively, was recovered. From the preliminary TLC
screening, only the first and the second extract
resulted most suitable for fractionation (the three
extracts showed the same qualitative composition but
the first and the second ones showed more intense
spots in respect to the third one) and for this reason
we worked on these ones. The first chromatographic

separation was conducted on the second extract. A
portion of 1.8 g of extract was partitioned over silica
gel (33.6 g) using chloroform/methanol as eluting mix-
ture, starting with 9:1 and gradually increasing the
polarity to 8:2 during the chromatographic run. From
this separation were recovered and identified the fol-
lowing diterpenoids: (Fr. 9A) imbricatolic acid (1) and
13-epi-cupressic acid (2)[52] as a mixture (1:1; quantity
not estimated); Fr. 21-23A, a low polar fraction, in
which the presence of flavonoidic compounds was
firstly evidenced on TLC by fluorescence to UV light
and a yellow/orange reaction to 2 N H2SO4 reagent
after heating at 120 °C. This fraction resulted also pos-
itive to FeCl3 reagent. NMR analysis on Fr. 21-22A
(39.6 mg) revealed the presence of cupressuflavone
(9),[53][74] a symmetric 8,80 dimer of apigenin, as princi-
pal component, together with minor amounts of
amentoflavone (10)[75] and hinokiflavone (11)[53]

(4:2:1); Fr. 23A (18.8 mg) contained cupressuflavone
(9) as a quite pure compound.

A portion of the first extract (1.7 g) was partitioned
on silica gel (39.3 g) using BuOH saturated with water
(82:18, v/v) as first eluting mixture. From this first sep-
aration, a less polar fraction (Fr. 2-5B; 0.870 g) was
recovered. This fraction was further partitioned on sil-
ica gel (36.0 g) using chloroform/methanol as eluting
mixture, starting with 98:2 and gradually increasing
the polarity to 9:1. According to elution order were
obtained the following fractions: (Fr. 14-16C) ent-manoyl
oxide (3)[76] (18.3 mg), (Fr. 32-33C) a mixture of ter-
penoids (145.2 mg), (Fr. 35-37C) imbricatolic acid (1;
20.6 mg), (Fr. 65-66C) 7a-hydroxysandaracopimaric
acid (4)[77] (10.7 mg). The mixture of terpenoids
(Fr. 32-33C; 145.2 mg) was further chromatographed
on SiO2 column chromatography (5.0 g) starting the
elution with chloroform and then increased the polar-
ity during the chromatographic run to 99:1 with
methanol (v/v). In this manner, the presence of the
following diterpenoids was recognized: 13-epi-torusolal
(5),[54][78] sandaracopimaric acid (6)[77] and 15-formy-
loxyimbricatolic acid (7)[38] as a mixture (4:3:2; Fr. 34D;
4.3 mg), imbricataloic acid (8)[16] (Fr. 38-39D; 8.3 mg),
and 13-epi-cupressic acid (2; Fr. 61-64D; 5.6 mg). All
the isolated compounds were identified by compar-
ison of the obtained experimental data with those
available in literature.

Imbricatolic Acid (1). 1H-NMR (300 MHz, CDCl3):
4.82 (s, Ha–C(17)), 4.48 (s, Hb–C(17)), 3.67 (dd, 2J(H,
H)gem = 12.8, 3J(H,H) = 6.4, H–C(15)), 2.40 (br. d, 2J(H,
H)gem = 10.5, Ha–C(7)) 2.16 (br. d, 2J(H,H)gem = 10.5,
Hb–C(7)), 1.23 (s, Me(18)), 0.89 (d, 3J(H,H) = 6.2,
Me(16)), 0.58 (s, Me(20)). 13C-NMR (100 MHz, CDCl3):
183.3 (COOH); 148.2 (C(8)); 106.4 (CH2(17)); 61.2
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(CH2(15)); 56.6 (CH(5)); 56.3 (CH(9)); 44.1 (C(4)); 40.5
(C(10)); 39.5 (CH2(12)); 39.1 (CH2(1)); 38.7 (CH2(14));
38.0 (CH2(7)); 36.4 (CH2(3)); 30.2 (CH(13)); 29.0
(Me(18)); 26.0 (CH2(6)); 21.1 (CH2(11)); 19.9 (CH2(2));
19.8 (Me(16)) 12.7 (Me(20)). ESI-MS: 320.80 ([M – H]�).

13-epi-Cupressic Acid (2). 1H-NMR, (400 MHz,
CDCl3): 5.90 (dd, 3J(H,H)trans = 17.4, 3J(H,H)cis = 10.8,
H–C(14)), 5.20 (dd, 3J(H,H)trans = 17.4, 2J(H,H)gem = 1.2,
Ha–C(15)), 5.06 (dd, 3J(H,H)cis = 10.8, 2J(H,H)gem = 1.2,
Hb–C(15)), 4.83 (br. s, Ha–C(17)), 4.49 (br. s, Hb–C(17)),
2.39 (dd, 2J(H,H)gem = 10.6, 3J(H,H) = 2.7, Ha–C(7)), 2.00
(br. d, 3J(H,H) = 10.6, Hb–C(7)), 1.27 (s, Me(18)), 1.23 (s,
Me(16)), 0.59 (s, Me(20)). 13C-NMR (CDCl3, 100 MHz):
183.26 (COOH); 148.21 (C(8)); 145.11 (CH(14)); 111.86
(CH2(15)); 106.67 (CH2(17)); 73.88 (C(13)); 56.64 (CH(5));
56.48 (CH(9)); 44.29 (C(4)); 41.48 (CH2(12)); 40.69
(C(10)); 39.26 (CH2(1)); 38.86 (CH2(7)); 36.53 (CH2(3));
29.29 (Me(18)); 28.23 (Me(16)); 26.21 (CH2(6)); 20.13
(CH2(2)); 18.04 (CH2(11)); 12.89 (Me(20)). ESI-MS: 318.78
([M – H]�).

ent-Manoyl Oxide (3). 1H-NMR, (300 MHz, CDCl3):
5.88 (dd, 3J(H,H)trans = 17.3, 3J(H,H)cis = 10.8, H–C(14)),
5.14 (d, 3J(H,H)trans = 17.3, Ha–C(15)), 4.92 (d, 3J(H,
H)cis = 10.8, Hb–C(15)), 1.83 (d, 2J(H,H)gem = 12.3, H–
C(7)), 1.29 (s, Me(16)), 1.27 (s, Me(17)), 1.25 (s, Me(20)),
0.86 (s, Me(19)), 0.79 (s, Me(18)). 13C-NMR (75 MHz,
CDCl3): 147.9 (CH(14)), 110.2 (CH2(15)), 75.1 (C(8)), 73.2
(C(13)), 56.4 (CH(9)), 55.6 (CH(5)), 43,2 (CH2(7)), 42.1
(CH2(3)), 39.00 (CH2(1)), 35.7 (CH2(12)), 33.3 (Me(16)),
33.2 (C(10)), 29.7 (Me(19)), 28.5 (C(4)), 25.5 (CH2(1)),
21.33 (Me(18)), 19.9 (CH2(6)), 18.5 (CH2(2)), 15.4
(CH2(11)), 15.2 (Me(20)). ESI-MS: 313.21 ([M + Na]+).

7a-Hydroxysandaracopimaric Acid (4). 1H-NMR
(300 MHz, CDCl3): 5.76 (dd, 3J(H,H)trans = 17.4, 3J(H,
H)cis = 10.6, H–C(15)), 5.52 (br. s, H–C(14)), 4.98 – 4.87
(m, H–C(16)), 4.22 (br. s, H–C(7)), 2.40 (br. d, 3J(H,
H) = 10.5, Ha–C(12)), 2.19 (br. d, 3J(H,H) = 10.5, Hb–
C(12)), 1.18 (s, Me(19)), 1.03 (s, Me(17)), 0.80 (s, Me
(20)). 13C-NMR (75 MHz, CDCl3): 182.88 (COOH); 147.89
(CH(15)); 138.33 (C(8)); 134.71 (CH(14)); 110.88
(CH2(16)); 73.12 (CH(7)); 46.66 (C(4)); 46.03 (CH(9));
41.77 (CH(5)); 38.09 (CH2(1)); 37.91 (C(10)); 37.38
(C(13)); 36.76 (CH2(3)); 34.09 (CH2(12)); 31.47 (CH2(6));
25.65 (Me(17)); 18.07 (CH2(11)); 18.01 (CH2(2)); 16.71
(Me(19)); 14.45 (Me(20)). ESI-MS: 317.18 ([M – H]�).

13-epi-Torulosal (5). 1H-NMR (400 MHz, CDCl3):
9.75 (d, 3J(H,H) = 1.4, H–C(19)), 5.91 (dd, 3J(H,H)trans =
17.3, 3J(H,H)cis = 10.7, H–C(14)), 5.21 (dd, 3J(H,H)trans =
17.3, 2J(H,H)gem = 1.3, Ha–C(15)), 5.07 (dd, 3J(H,H)trans =
10.7, 2J(H,H)gem = 1.3, Hb–C(15)), 4.87 (s, Ha–C(17)),
4.53 (s, Hb–C(17)), 1.28 (s, Me(16)), 1.02 (s, Me(18)),
0.57 (s, Me(20)). 13C-NMR (100 MHz, CDCl3): 205.75
(CHO), 147.50 (C(8)), 144.98 (CH(14)), 111.76 (CH2(15)),

107.36 (CH2(17)), 73.62 (C(13)), 56.13 (CH(9)), 55.87
(CH(5)), 48.66 (C(4)), 41.26 (CH2(12)), 40.55 (C(10)),
38.49 (CH2(7)), 38.46 (CH2(3)), 34.47 (CH2(1)), 28.14
(Me(16)), 24.38 (Me(18)), 24.08 (CH2(C6)), 19.28
(CH2(2)), 17.97 (CH2(11)), 13.54 (Me(20)). ESI-MS: 303.21
([M – H]�), 327.27 ([M + Na]+).

Sandaracopimaric Acid (6). 1H-NMR (400 MHz,
CDCl3): 5.78 (dd, 3J(H,H)trans = 17.4, 3J(H,H)cis = 10.5,
H–C(15)), 5.23 (s, H–C(14)), 4.92 (dd, 3J(H,H)trans = 17.4,
2J(H,H)gem = 1.4, Ha–C(16)), 4.89 (dd, 3J(H,H)cis = 10.5,
2J(H,H)gem = 1.4, Hb–C(16)), 1.24 (s, Me(19)), 1.06 (s,
Me(17)), 0.86 (s, Me(20)). 13C-NMR (100 MHz, CDCl3):
180.24 (COOH), 148.18 (CH(15)), 136.60 (C(8)), 129.14
(CH(14)), 110.15 (CH2(16)), 50.58 (CH(9)), 48.93 (CH(5)),
47.17 (C(4)), 38.30 (CH2(1)), 37.75 (C(10)), 37.40 (C(13)),
37.00 (CH2(3)), 35.47 (CH2(7)), 34.46 (CH2(12)), 26.08
(Me(17)), 24.89 (CH2(6)), 18.57 (CH2(11)), 18.15 (CH2(2)),
16.87 (Me(19)), 15.21 (Me(20)). ESI-MS: 301.17
([M – H]�); 325.12 ([M + Na]+).

15-Formyloxyimbricatolic Acid (7). 1H-NMR
(400 MHz, CDCl3): 8.06 (s, H–C(21)), 4.85 (s, Ha–C(17)),
4.49 (s, Hb–C(17)), 4.22 – 4.17 (m, H–C(15)), 1.25 (s,
Me(19)), 0.93 (d, 3J(H,H) = 6.5, Me(16)), 0.62 (s, Me(20)).
13C-NMR (100 MHz, CDCl3): 181.37 (COOH), 161.19
(HCOO), 148.90 (C(8)), 106.41 (CH2(17)), 62.53
(CH2(15)), 56.59 (CH(5)), 56.32 (CH(9)), 44.09 (C(4)),
40.54 (C(10)), 39.15 (CH2(1)), 38.74 (CH2(7)), 38.11
(CH2(3)), 36.06 (CH2(12)), 35.14 (CH2(14)), 30.49
(CH(13)), 29.01 (Me(18)), 26.03 (CH2(6)), 21.08 (CH2(11)),
19.93 (CH2(2)), 19.63 (Me(16)), 12.82 (Me(20)). ESI-MS:
349.18 ([M – H]�); 373.13 ([M + Na]+).

Imbricataloic Acid (8). 1H-NMR, (300 MHz, CDCl3):
9.75 (t, 3J(H,H) = 2.3, H–C(15)), 4.84 (br. s, Ha–C(17)),
4.47 (br. s, Hb–C(17)), 1.25 (s, Me(19)), 0.97 (d, 3J(H,
H) = 6.7, H–C(16)), 0.60 (s, Me(20)). 13C-NMR (100 MHz,
CDCl3): 203.3 (CHO), 182.3 (COOH), 148.21 (C(8)), 106.6
(CH2(17)), 56.61 (CH(9)), 56.46 (CH(5)), 50.99 (CH2(14)),
44.28 (C(4)), 40.70 (C(10)), 39.31 (CH2(1)), 38.87
(CH2(7)), 38.19 (CH2(3)), 36.28 (CH(13)), 29.15 (Me(19)),
29.04 (CH2(12)), 26.21 (CH2(6)), 21.37 (CH2(11)), 20.33
(Me(16)), 20.06 (CH2(2)), 12.93 (Me(20)). ESI-MS: 319.26
([M – H]�).

Cupressuflavone (9). 1H-NMR (300 MHz, CD3OD):
7.48 (d, 3J(H,H) = 8.6, H–C(20), H–C(60), H–C(2‴), H–C(6‴)),
6.75 (d, 3J(H,H) = 8.6, H–C(30), H–C(50), H–C(3‴), H–C(5‴)),
6.60 (s, H–C(3), H–C(3″)), 6.48 (s, H–C(6), H–C(6″)). 1H-
NMR (300 MHz, (D6)DMSO): 10.32 (br. s, 7-OH), 7.50 (d,
3J(H,H) = 8.8, H–C(20), H–C(60), H–C(2‴), H–C(6‴)), 6.80 (s,
H–C(3), H–C(3″)), 6.74 (d, 3J(H,H) = 8.8, H–C(30), H–C(50),
H–C(3‴), H–C(5‴)), 6.46 (s, H–C(6), H–C(6″)). 13C-NMR
(75 MHz, CD3OD): 184.30 (C(4)=O, C(4″)=O), 166.11 (C(7),
C(70)), 164.22 (C(2), C(2″)), 162.91 (C(40), C(4‴)), 162.62
(C(5), C(5″)), 156.96 (C(9), C(9″)), 129.16 (CH(20), CH(2‴),
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CH(60), CH(6‴)), 123.15 (C(10), C(1‴)), 116.87 (CH(30), CH
(3‴), CH(50), CH(5‴)), 105.60 (C(10), C(10″)), 103.44 (CH(3),
CH(3″)), 99.94 (C(8), C(80)), 99.83 (CH(6), CH(6″)). ESI-MS:
536.79 ([M – H]�).

Amentoflavone (10). 1H-NMR (300 MHz, CD3OD):
7.93 (br. s, H–C(20)), 7.92 (br. d, 3J(H,H) = 9.0, H–C(60)),
7.51* (br. d, 3J(H,H) = 8.8, H–C(2‴), H–C(6‴)), 7.48*
(br. d, 3J(H,H) = 9.0, H–C(50)), 7.13 (br. d, 3J(H,H) = 8.7,
H–C(3‴), H–C(5‴)), 6.70 (s, H–C(3″)), 6.62 (s, H–C(3)),
6.41 (d, 4J(H,H) = 1.6, H–C(8)), 6.39 (s, H–C(6″)), 6.19 (d,
4J(H,H) = 1.6, H–C(6)); * partially overlapped signals.
ESI-MS: 536.99 ([M – H]�); 539.05 ([M + H]+).

Hinokiflavone (11). 1H-NMR (300 MHz, CD3OD):
7.92* (br. d, 3J(H,H) = 8.9, H–C(30), H–C(50), H–C(2‴),
H–C(6‴)), 7.13 – 6.98* (m, H–C(20), H–C(60), H–C(3‴),
H–C(5‴)), 6.86 (s, H–C(3)), 6.76 (s, H–C(3″)), 6.73 (s, H–
C(8″)), 6.48 (br. s, H–C(8)), 6.19 (br. s, H–C(6″)); * par-
tially overlapped signals. ESI-MS: 536.99 ([M – H]�);
539.05 ([M + H]+).

Hydrodistillation

A portion of fresh plant material (323.7 g), repre-
sented by leaves and terminal branches, was sub-
jected to hydrodistillation in a Clevenger-type
apparatus for 4 h using 1200 mL of distilled water.
The obtained oil was collected in a Clevenger trap,
dried on anhydrous Na2SO4, stored in hermetically
sealed glass vial with rubber lids, protected from light
by aluminum foil and kept at �20 °C until analysis.
The oil yield, on the fresh-weight basis of the plant
material, was 0.046% (w/w).

GC-FID and GC/MS Analysis

Firstly, an Agilent 4890D gas chromatograph equipped
with an ionization flame detector (FID) was used.
Separation was achieved by using a HP-5 capillary col-
umn (5% phenylmethylpolysiloxane, 25 m, 0.32 mm
i.d.; 0.17 lm film thickness; J and W Scientific, Folsom,
CA). The temperature program of the oven was as fol-
lows: 60 °C (5 min) then increased up to 220 °C with
a gradient of 4 °C/min, finally to 280 °C at 11 °C/min
held for 15 min. The temperature of injector and
transfer line was 280 °C. The carrier gas used was He
with a flow rate of 1.4 mL/min. The essential oil was
diluted in hexane and 1 lL of the solution was
injected into the GC system with a split ratio of 1:34.
The temperature-programmed retention indices were
calculated according to the Van den Dool and Kratz
formula[79] using a mixture of C8 – C30 n-alkanes
(Sigma, Milan, Italy) diluted in hexane. Analysis was
run in triplicate and data collected by the HP3398A

GC Chemstation software (Hewlett Packard, Rev.
A.01.01). Essential oil component percentages were
obtained by using a previously developed method by
calculating the FID-response factors for the main
chemical classes occurring in the essential oil.[80]

Qualitative analysis was performed on an Agilent
6890N gas chromatograph equipped with a 5973N
mass spectrometer. Separation of volatiles was
achieved on a HP-5 MS (5% phenylmethylpolysiloxane,
30 m, 0.25 mm i.d., 0.1 lm film thickness; J & W Sci-
entific, Folsom) capillary column using the same tem-
perature program reported above. The temperature of
injector and detector was set to 280 °C and He was
used as carrier gas with a flow rate of 1 mL/min. The
essential oil was diluted in hexane (1:100) and injected
(2 lL) into the GC/MS system using a split ratio of
1:50. Mass spectra were acquired using electron-
impact (EI) mode (ionization voltage: 70 eV) in the
range m/z 29 – 400. The MSD ChemStation software
(Agilent, Version G1701DA D.01.00) and NIST Mass
Spectral Search Program for the NIST/EPA/NIH Mass
Spectral Library v. 2.0[81] were used to analyze data.
The peak assignment was achieved by co-injection
with authentic standard whenever possible (see
Table 1), or by correspondence of the temperature-
programmed retention indices (RIs) and acquired mass
spectra (MS) with respect to those reported in com-
mercial[81 – 83] and home-made libraries.

Cytotoxicity Assay

A375 human malignant melanoma cell line and MDA-
MB 231 human breast adenocarcinoma cell line were
maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM). This medium was supplemented with 10%
heat-inactivated fetal bovine serum (HI-FBS), 100
IU/mL penicillin, 100 lg/mL streptomycin and 2 mM

L-glutamine. HCT116 human colon carcinoma cell line
was maintained in RPMI1640 medium supplemented
with 10% HI-FBS, 100 IU/mL penicillin, 100 lg/mL
streptomycin and 2 mM L-glutamine. The cultures were
maintained in a humidified atmosphere at 37 °C in
presence of 5% CO2. Cells were subcultured every
3 – 4 days. The cytotoxicity was assessed using the
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-
ium bromide) assay.[84] In brief, cells (2 9 104 cells/mL)
were seeded on 96-well plates and incubated for 24 h
in a humidified atmosphere of 5% CO2 at 37 °C. Then,
essential oil (1.56 – 400 lg/mL) and polar compounds
(0.001 – 100 lM) were added to the supernatant and
the samples were incubated for a further 72 h. At the
end of incubation, each well received 10 lL of MTT
(5 mg/mL in phosphate-buffered saline, PBS) and the
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plates were incubated for 4 h at 37 °C. After removal
of the supernatant, DMSO was added to solubilize
water-insoluble dark blue formazan crystals formed in
viable cells and the absorbance was measured at
540 nm using a Titertek Multiscan microElisa (Labsys-
tems, FI-Helsinki). The cytotoxicity was expressed as
the concentration of compound inhibiting cell growth
by 50% (IC50) and was calculated with GraphPad Prism
4 computer program (GraphPad Software, S. Diego,
CA, USA). Experiments were conducted in triplicate.

Antioxidant Activity

Free radical scavenging activity (DPPH·) was evaluated
on a microplate analytical assay according to the
procedures previously described by Srinivasan and
co-workers.[85] The stock solution was prepared by dis-
solving DPPH· in methanol and then stored at �20 °C
until use. The working solution was obtained by mix-
ing stock solution with methanol to obtain an absor-
bance of 1 unit at 517 nm. Discoloration was
measured at 517 nm after incubation for 30 min in
the dark. The free radical-scavenging activity of each
solution was then calculated as percent inhibition
according to the following equation:

% Inhibition ¼ 100 � ðAblank � AsampleÞ=Ablank

Antioxidant activity of the essential oil and isolated
compounds was expressed as IC50, defined as the con-
centration of the test material required to cause a
50% decrease in initial DPPH· concentration. Trolox
was used as reference. Results were expressed in lM
Trolox equivalents (TE)/g of essential oil.

The ABTS·+ assay was performed following the pro-
cedure described previously,[86] applied to a 96-well
microplate assay.[87] The ABTS·+ stock solution was pre-
pared by mixing the two solutions of ABTS·+ (7.4 mM)
and potassium persulfate (2.6 mM) in equal quantities
and allowing them to react for 12 h at room tempera-
ture and in the dark. The working solution was then
obtained by mixing ABTS·+ stock solution with metha-
nol (or ethanol) to obtain a final solution with absor-
bance about 1 unit at 734 nm. Absorbance values
were measured with a Varian Cary 1 spectrophoto-
meter and Trolox was used as reference compound.
Results were expressed in lM Trolox equivalents (TE)/g
of product or essential oil. The capacity of free radical
scavenging (IC50) was determined using an analogous
equation to those previously used in the DPPH·

method. All data of antioxidant activity were expressed
as means � standard deviations (SD) of triplicate mea-
surements. The confidence limits were set at P < 0.05.

SD did not exceed 5% for the majority of the values
obtained.

The reducing capacity power (FRAP) assay was car-
ried out according to Firuzi and co-workers,[88] with
minor modifications. The stock solutions included
300 mM acetate buffer, pH 3.6, 10 mM TPTZ (2,4,6-
tripyridyl-S-triazine) solution in 40 mM HCl, and 20 mM

FeCl3 � 6 H2O solution. The fresh working solution was
prepared by mixing 25 mL acetate buffer, 2.5 mL
TPTZ solution, and 2.5 mL FeCl3 � 6 H2O solution and
then warmed at 37 °C before use. Aliquots of diluted
essential oil and isolated compounds in methanol
allowed to react with 500 lL of the FRAP solution for
30 min in the dark. Samples were centrifuged at
11’500 g and the withdrawn aliquots of solutions con-
taining the colored product (ferrous tripyridyltriazine
complex; 280 lL) were read in 96-well microplates at
593 nm. The standard curve was linear between 25
and 800 lM Trolox used as positive control. Results
were expressed in lM TE/g of product or essential oil.
Additional dilution was applied when the measured
FRAP value resulted over the linear range of the stan-
dard curve.

Supplementary Material

Supporting information for this article is available on the
WWW under https://doi.org/10.1002/cbdv.201800148.
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