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1. Introduction

In order to replace the missing teeth, oral implants can be considered 
a preferred option. This procedure was first proposed by Brånemark in 
the 1960s [1-5]. Many reports have covered the chemical and physical 
features of these implants including their design factor, surface structure 
and properties as well as implant microstructure. Moreover, many fac-
tors are believed to be important in the implant therapy prediction and 
clinical consequences. 

Implants with good biocompatibility, sufficient corrosion and tough-
ness can be categorized as ideal implants. Other ideal properties can be 
their great strength and resistance to fracture and wear [6-9]. The biolog-
ical responses of dental implants as well as their chemical composition 

are the main properties that are significant in the categorization of these 
materials. Note that the principles of design of implant should be neces-
sarily based on the material physical features [10].

Building fillers with the more similarity to human teeth is of great 
importance since current fillers cannot present enough functional and 
reinforcing impact for dental composites. Although, in the research of 
monomer structures as well as filler compositions, repair failure can still 
happen because of reconstruction fracture and the secondary-carriers 
[11-13].

Ceramics lack the electric current conduction and they can be ap-
plied for the production of purification and dissociation membranes of 
biological fluids in medical equipment. In this regard, they can be suit-
able to manufacture porous components for dosage drug administration. 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Nowadays, zirconia has been favored greatly for dental implants; however its disadvantages such as poor mechan-
ical properties and brittleness makes it unsuitable. On the other hand, bioactive glasses coating have been utilized 
on tougher substrates such as zirconia. Bioactive glass coatings can decrease the healing time and hence accel-
erate the formation of the bond between bone and implant. Hence, in this study, we introduce the novel zirconia/
bioactive glass composites with high mechanical strength and bioactivity to achieve the ideal implant in dentistry. 
Furthermore, a review of bioactive glass coatings (i.e., 45S5 and 58S) on zirconia as well as surface modification 
methods (i.e., sol-gel, laser cladding, plasma spraying, etc.) is provided. 
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In medical field, they are appropriate to make prosthesis. Ceramics en-
joy excellent integration capability with the tissue of human bone that 
can be considered as a superiority over the implants with metallic nature. 
Their biological inertness and electrical passivation have made ceramics 
a promising material for the medical equipment. In comparison with me-
tallic implants, zirconia-based ceramics show minimum ion release and 
they are biologically inert [14-32].

Modern Ti implant technologies are being introduced owing to pos-
sible combination of immunologic and aesthetic aspects of Ti and Ti 
alloys. Nevertheless, these characteristics should be maintained during 
the improvement of this technology. To sustain these properties, dental 
implantology started to apply Zr as a desirable alternative to Ti [29].

Ti and Zr are similar in terms of biocompatibility and osteointegra-
tion. However, since Zr is more bioinert than Ti, it is protected more 
against the attack by different organisms fermentation systems as well 
as degradation. This can present a minimum release of ion as compared 
with the metallic implants. It is well understood that the ion released 
from metallic implants can exert different unwanted effects including 
inflammatory, toxic, mutagenic and allergic reactions. A decrease in the 
lifetime and mechanical properties of the metallic implant can be made 
because of the in vivo corrosion of these implants [33].

The demand for zirconia dental implants is increasing recently. In 
comparison with the Ti dental implants, their increased esthetic feature-
owing to similarity to the human tooth color is the main benefit of these 
implants [34-45]. To enhance the zirconia bioactivity and morphological 
properties for proliferation, excellent cell attachment and the acceptable 
differentiation during the surrounded bone cure, many efforts have been 
made [46, 47].

In terms of advantages, some documents have mentioned that zirco-
nia decreases the risk of explosive reactions in surrounding peri-implant 
tissues, because it can reduce the biofilm aggregation and bacteria ad-
hesion [32, 36, 48, 49]. On the other hand, titanium is grey and it can be 
corroded [25, 50]. These two facts about Ti, which surely can influence 
the appearance and health system, can provide aesthetic disadvantag-
es that cannot be denied [46].Both of the materials would need 3 to 6 
months prior to the fixation of complete prosthetic reconstruction [18, 
51-56]. This time can be reduced by applying the bioactive glass coat-
ing. Furthermore, after implantation, the bone loss rate can be decreased, 
which is another benefit of these coatings [57-60].

2. Zirconia implants

Zirconia with better optical, aesthetic, mechanical and biological 
qualifications is a suitable substitute to traditional Ti implant system for 
oral recovery [61-64]; it is produced by the oxidation of zirconium [25, 
27, 65-67]. Zirconium, which is a transition metal [56, 68] with grey-
white color [69-73], can be used to make zirconia implant. 

Segments of the metal implant can be uncovered by recession of gin-
giva and the loss of apical bone, which this can disclose a discolored 
overlying gingiva [74-77]. Thus, it would be possible to use the zirconia 
ceramics because they enjoy great aesthetic, biological and mechanical 
characteristics and they lack electrical corrosion. Polyethylene and Ti 
show more inflammatory reactions than zirconia. Less inflammatory re-

sponse along with the lack of mutagenicity and toxicity in zirconia, can 
be considered as the most attractive zirconia properties [58]. 

3. Bioactive glass in biomedical applications

To regenerate the tissue, many medical approaches have been em-
ployed by bioglasses or bioceramics, which are manufactured in various 
phases and shapes. The capability of reaction with physiological media 
have been seen to be slower in bioceramics than that of bioactive glass-
es. This can result in better bonding with alive tissues and the formation 
of apatite layer. Hence, bioceramics require the special coated layer to 
improve their biomedical applications [78].

Because of the great bioactivity of BGs, they are one of the best 
biomaterials for renovation and bone repair. For the first time, they were 
introduced by Hench’s team at the late 1960s [39, 79-81]. Moreover, by 
combining great mechanical strength and excellent bioactivity of BGs, 
they can be successfully used as coatings on inert substrates [82]. Reac-
tion with the physiological fluids and the formation of chemical bonding 
between bones and bioglass can be occurred when bioglasses are im-
planted in the body [83-87]. A bioactive surface can be considered as 
important agent to avoid many simultaneous reactions, which take place 
between the implant and the targeted tissue at the implant surface [82].

Melting process, which starts from carbonates and oxides, is the 
most important technique of bioactive glass preparation. Then, sol-gel 
method with the ability of producing bioactive glasses with high bio-
activity was introduced. Their increased bioactivity, which is presented 
by this method, resulted from the microstructural properties and tailored 
composition. Furthermore, melting approach needs to be processed at 
higher temperature as compared with the sol-gel methodology, which 
can limit or avoid the flux addition for sol-gel method [88]. The bio-
active glass with its composite coatings can be classified as following 
categorization according to the coating structure.

3.1. 45S5 bioglass

Ceramic 45S5 BG with 24.5% sodium oxide, 45% silicon dioxides, 
24.5% calcium dioxide and 6% phosphorus pentoxide have attracted the 
attentions of researchers as a biomaterial substance because of its osse-
ointegration capability, bioactive surface and the ability of healing bone 
damages [89-91]. It can be prepared by melt-cast method with various 
crystallinity including amorphous and crystalline [92]. A schematic of 
melting process for producing melt-prepared glasses (MPG) is provided 
in Fig. 1.

In order to study the impact of bioactive glass 45S5 crystallization 
on the degradation and constitution of apatite, Plewinski et al. [93], per-
formed XRD analysis on the samples including samples treated by heat 
and amorphous samples. To guarantee the perfect amorphous sample 
crystallization, the heat-treatment was continued for 1 hour at 1000 0C. 
They found that the apatite layer could be formed on this crystallized 
bioglass, unlike the amorphous ones, under these conditions.

3.2. 58S bioglass 

58S bioactive glass is a great bioactive, biodegradable glass with 
the capability of bone bonding. Due to these qualifications, this bioac-
tive glass, with 33% calcium oxide, 58% silicon dioxide 9% phosphorus 
pentoxide, has been favored as scaffold substance [94-97]. The reaction 
of 58S bioactive glass with physiological fluids occurs after implan-
tation quickly and it makes bond to the tissue of bone. This happens 
without inflammatory, toxicity and foreign-body reaction. The fast ionic 
dissolution as well as the hydroxyl-carbonated apatite layer formation 
was seen after the rapid in-vivo surface reactions. By release of calcium, 
silicon and phosphorous ions, the gene expression as well as  the prolif-Fig. 1. Schematic of the melting process for preparing bioglass.
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eration of osteoblast takes place to form the bone quickly. 
58S-BG, produced by sol-gel approach, was used by Mokhtari et al. 

[98], to investigate the coatings of Chitosan-58S on nanotube of Titani-
um dioxide. A schematic illustration of sol-gel derived BGs is shown in 
Fig. 2. Based on the XRD results, the crystallization process of 58S-BG, 
which includes calcium silicate, calcium phosphate and Calcium Meta-
silicate, took place after the calcination at 1100 °C. This was continued 
by the structure transformation from amorphous to crystalline. Calcium 
Metasilicate was as the principal crystalline phase in the prepared pow-
der. This demonstrated the intense interaction between osseous tissue 
and wollastonite.

To improve the bioactivity and mechanical properties of 58S bio-
glass, Haftbaradaran et al. [99], examined the use of sol-gel prepared 
58S bioglass on fabricated-vitallium alloy. Based on the anticipations, 
the uncoated sample displayed a lower bioactivity as compared with the 
coated sample. 

Faure et al. [100], used an organic acid catalyst to synthesize the 
45S5 bioactive glass by a novel sol-gel approach. Instead of the con-
ventional HNO3 with high concentration, C₆H₈O₇ solution with a low 
concentration can be applied as a catalyst for hydrolysis reaction in the 
45S5 bioactive glass preparation. Nevertheless, in this study, the bioac-
tivity of the bioglass seems to be less than sol-gel bioactivity. In fact, 
sol-gel derived BG grains display extremely rough surfaces with great 
porosity. This, surely can present excellent exchange surface in physi-
ological medium. Therefore, the sol–gel bioglass exchange surface can 
be more important than the exchange surface of the produced bioglass 
by the melting method. 

In a study by Bui et al. [101], 58S-BG was prepared via a novel sol-
gel technique. In this new approach, a quick transformation process of 
sol to gel, was conducted by the addition of ammonia solution. Next, the 
freeze-drying method was applied to dry prepared gel after 6 h. During 
the in vitro evaluations, after 2 days, a clear dense HA layer was formed. 
This produced layer was as the bioactivity evidence of prepared bio-
glass.

4. Bioactive glass coating

Considering the investigations by many researchers, bioactive glass-
es possess potential of many wide applications such as the formation of 
HCA and bone, but their use as materials for coating, is more attractive 
than other applications, especially when they are used as an implant. 
Their mechanical integrity becomes important [102-105] when they are 
used as coating on tougher substrate [106-108]. The studies about coat-
ings have proved that depending on the approach of coatings and depo-
sition, the main chemical and physical characteristics will change [109-
113]. It was understood that chemical properties like long-term stability 
can also affect the bioactive glass coating performance [82].

Ceramics including Ca3(PO4)2, Zr, Al2O3 and BGs have gained more 
attentions recently for medical applications, since ceramic-based pros-
theses may provide a good opportunity to obtain more effective biomi-
metic properties [88].

4.1. Laser cladding 

Diverse materials can be bonded together by laser cladding tech-
nique, which can be defined as a deposition method. The principal of this 
method is the coating of a substrate by a laser melted powder substance. 
However, various profiles from this method can be applied. Industrially, 
a coating can be produced by the powder injection onto the substrate and 
the melting of it by laser beam [82].

There is a possibility to introduce variability by the operator during 
the coating preparation. Laser cladding is able to remove them by in-
creasing the products quality, because it can enhance the fabrication pro-
cess speed automatically (Fig. 3) [39, 114-116].

Great pores interconnectivity in the outer layer of porous layer and 
the desirable joining quality at the interface of substrate and coating 
observed by micro-computed tomography in the study by Baino et al. 

Fig. 2. Schematic illustration of the sol-gel process.

Fig. 3. Laser cladding process schematic for coating.

Fig. 4. Plasma spraying technique schematic illustration for deposition of BG 

coatings.
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[114]. They studied the laser cladding fabricated bioactive glass coating. 
The fabrication process was applied on the ceramic acetabular cups and 
the coatings can be made in a porous or pore-free form. The desired 
glass/ceramic joining was confirmed by indentation analysis. 

To promote the osteointegration physiologically, a valuable tech-
nique is proposed, in which a bioactive coating deposition is applied 
on the surface of implant to make contact with bone. Baino et al. [117], 
used two dissimilar approaches (i.e. laser cladding and sponge repli-
cation) to produce the porous coatings of bioactive glass on the Al2O3-
ZrO2 composite implant. The key for bone binding is the good ability 
of hydroxyapatite formation. An early evidence of modern porous glass 
coating biocompatibility and bioactive features was proved in this study. 

Laser cladding process, which is believed to be effective in bioactive 
glass coatings, was applied by Montealegre et al. [118], to coat the bio-
active glass on alumina/zirconia composite for orthopedic applications. 
Besides, for two different BGs, the technology could coat macroporous 
bioactive glass on alumina/zirconia composite. Moreover, the laser clad-
ding process provides a possibility to achieve dense and homogeneous 
BG coating. The structure and formulation of the powders of BGs are 
easily translated to the BG coatings. 

4.2. Sol-gel

The wet chemical technique of sol-gel shows high reactivity tobe-
cause of providing a high surface area [119-121]. This high possibility 
of reactivity, surely provides a low temperature for this process. This 
means that the process does not need high temperature sintering. More-
over, it does not need high values of pH [122-124].

Sol-gel, as an affordable process, have become favorite technique 
of coating for glass-ceramic composite or bioactive glass, since it has 
various benefits i.e. coating layer uniformity, fairly great adhesion pow-
er on complex substrate, high composition accommodation [125-127], 
and desirable purity [128]. This method can be combined with other ap-
proaches easily. To fix the bioactive coating on the substrate of ceramic, 
a high temperature is needed after heat-treatment. Thus, in spite of the 
convenience of this method, a high temperature can involve the mis-
match of the thermal expansion coefficient that can occur between the 
coating and substrate. This can be continued by the residual stress accu-
mulation on interface or the change of coated glasses composition [129].

The fabrication of a broad bioactive glass range is possible by sol-gel 
method that has increased the success of this process. Besides, this ben-
efit provides a possibility to make an improvement in cell adhesion and 
protein absorption, because the sol-gel process can give a high specific 
surface porous microstructure to the bioactive glass coating. 

In vitro behavior of porous zirconia was investigated by Mesqui-
ta-Guimarães et al. [130] via MG-63 cells. During the condensation, the 
optimization of 58S BG coating was followed by changing the number 
of immersions as well as controlling the sol-gel solution viscosity. In 
the 423-Z.BG structures, the improvement in the cell proliferation was 
occurred in the presence of 58S BG bioactive glass. This enhancement, 
which was continued to maximum level, may reveal that the coating 

affects the activity of cells positively to make the extracellular matrix. 
Araujo et al. [33], used a novel bioactive glass layer including a low 

ratio of Ca/P on a Zirconia-3% Yttria substrate to prepare the extremely 
bioactive glass coating. The prepared coatings in this study, had thick-
ness of 345 μm with crack-free surface, which are the representative of 
great glass/substrate biocompatibility in terms of the matching of expan-
sion coefficient.

In another study, Lin et al. [131], produced mesoporous bioglass 
(MBGs), which were coated by ZrO2 using dip-coating method to apply 
in the engineering process of bone tissue. To remove the excess sols, 
immersed-samples were centrifuged (30 s and 500 rpm). The results 
showed desired cell viability and biocompatibility and no cytotoxicity. 

The dip-coating method consists of three steps: (i) samples dipping, 
(ii) withdrawing them and (iii) drying. After immersing the samples in 
the solution, they should be withdrawn in a constant speed. In order to 
guarantee the spread of equal thickness all over the substrate surface, it 
is important to have a steady speed.

The application of the dip-coating technique under extreme condi-
tions as well as surface thickness distribution was studied by Faustino et 
al. [132] by making some models. The study and optimization of sol- gel 
method is required, since preparation, curing as well as aging time of 
sol-gel approaches are time consuming. Moreover, during heat-treat-
ment process, there is the possibility of phase separation. Thus, industri-
ally, these can make limitations in production process. 

4.3. Plasma spray

Recently, the deposition of bioactive glass coatings, has been applied 
by standard spray technique in various studies (Fig. 4). The suspension 
plasma spray (a modern spray method, SPS) is newly introduced, in 
which a liquid suspension can be applied as a substitute of a dry powder, 
as feedstock [133].

Cattini et al. [133], investigated the processing parameters of SPS 
on mechanical properties, in-vitro condition and microstructure. Mi-
cro-size powder suspension was used to produce a bioactive coating. A 
preliminary screening of processing parameters displayed that the spray 
distance, the flow rate of H2 and the inputs of plasma electric power 
may affect the microstructure. The optimum and suitable hydrogen flow 
rate, power and spray distance were 7.5 slpm, 36-40 kW and 50-70 mm, 
respectively, for biomedical applications.

Calvo et al. [134], melt-quenched the powders of 45S5 bioactive 
glass consisting of 24.5% calcium oxide, 45% silicon dioxide, 6% phos-
phorus pentoxide and 24.5 % sodium oxide. They investigated the use 
of atmospheric plasma spraying (PS) on the coatings of 45S5 bioactive 
glass. They milled the obtained frit via two dissimilar methods including 
wet and dry milling. To achieve a powder, consisting of porous agglom-
erates, the primer method was continued by spray drying while the latter 
should be followed by sieving. 

Great surface properties, which can guarantee the effective contact 
with body fluid and excellent adhesion power to the substrate, was ob-
tained by prepared coatings through atmospheric PS. All of the feed-

Table 1
Various techniques used for bioactive glass coating on zirconia substrates.

Methods Pros. Cons.

Plasma spray
A low probability of compromising glass bioactivity, a wide range 

of coating materials
Weak adhesion between substrate and glass

Laser cladding The possibility of flat coating on surfaces with curved geometry Need surface pre-treatment, lack of uniformity

Sol-gel
Multilayer coating, porous microstructure, versatile, large com-

positional range of bioactive glasses, controlled composition, and 
homogeneity

Due to the difference in CTE between substrate and coating, post heat treatment 
introduces internal stress

Enameling Large range of thickness, versatile, cheap simple
Thermal residual stress, the formation of chemical by-product, metal degradation, 

glass crystallization, compositional gradient
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stocks showed amorphous phase. 
Joulia et al. [135], studied the mechanisms of deposition in solution 

precursor plasma spray (SPPS) and SPS for yttria stabilized zirconia 
(YSZ). Their investigated the mechanisms of deposition in suspension 
and solution precursor plasma spraying by studying the characteristics 
of individual YSZ lamellae and of complete coatings. They found that 
plasma-spraying using liquid feedstock could be a promising method for 
depositing finely structured ceramic coatings. Table 1 summerizes var-
ious techniques used for bioactive glass coating on zirconia substrates

4.4. Enameling

Enameling is a kind of conventional treatment of surface, with the 
benefits of facile operation, inexpensive processing system that can pro-
vide the optimization possibility via altering the processing parameters 
[136-138]. Although this technique can involve the glass frit layer fus-
ing, the applied metal substrate for coating can control the introduction 
of a lower melting frit. The combination of the tailored-composite glass 
and the enameling method has been proved to be a suitable option for 
the fabrication process of a bioactive glass layer. This can be done onto 
a bioinert substrate of metal, which has the great adherence, bioactivity 
and thermal expansion coefficient. 

The enameling approach is facile and affordable, and it is usually 
used for coating a ceramic or metal by a glass. In this technique, the 
deposition of a suspension of powder glass or a thin glass layer onto a 
substrate of metal or ceramic could be followed by glazing the glass by 
a suitable heat treatment. 

In the zirconia, alumina and ceramic composites coating, the enam-
eling by the substrates, which are made by ceramic, has showed more 
promising results compared to the metal substrates. Moreover, the prop-
er engineering of processing system and glass structure can transfer the 
surface layer to a coating with functionally graded and enhanced me-
chanical properties [82]. 

5. Conclusions and future insights

The bioactive glasses are favored greatly due to their potential for 
biomedical applications such as improving the bond strength in forma-
tion of bone, accelerating healing time, etc. these characteristics have 
made them good candidates to be used as coating on appropriate sub-
strate such as ZrO2-based dental implants. This is because of poor me-
chanical properties and brittleness of zirconia. Thus, the composite of 
BGs and ZrO2-based material would be great for biological applications. 
Hence, a thorough review was performed about these implant compos-
ites. It was found that, through coating of BGs on zirconia substrate, 
reinforcing properties especially in dental implants would be obtained.

Coatings are the advantageous and extensive field for medical ap-
plications. Therefore, we can fabricate special coatings to promote the 
zirconia implants advantages and also decrease the risk factors and pos-
sibility of dental implant failure. 
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