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Abstract: Following the explosive growth in chemical and biological data, the shift from traditional
methods of drug discovery to computer-aided means has made data mining and machine learning
methods integral parts of today’s drug discovery process. In this paper, extreme gradient boosting
(Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of
the Gradient Boosting Machine, was investigated for the prediction of biological activity based on
quantitative description of the compound’s molecular structure. Seven datasets, well known in
the literature were used in this paper and experimental results show that Xgboost can outperform
machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis
Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities.
In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed
remarkable performance on both high and low diversity datasets.
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1. Introduction

Recent advancement in technology has been crucial to the explosive growth in the amount of
chemical and biological data available in the public domain. Hence, data driven drug discovery
and development process has attracted increased research interest in the last decade with a view not
only to design and analyze but apply effective learning methodologies to the rapidly growing data.
By leveraging one of the important principles of chemical/molecular similarity [1], where similar
biological activities and properties are expected of structurally similar compounds, approaches to drug
design through screening of large chemical databases have increased over the years. Virtual Screening
(VS), the use of computational approaches and tools through the search of large databases for target
or activity prediction, has notably witnessed a shift in trend from the traditional similarity searching,
through reference compounds, to the use of machine learning tools to learn from the massive big data
by training and prediction of unknown activity. In particular, the compound classification, in which
compound label prediction is based on knowledge acquired from a training set, has gained increased
research interest and many machine learning tools have been proposed to exploit the increasing big
data in drug discovery. Support Vector Machines (SVM) [2,3], DT [4], Random Forest [5], K Nearest
Neighbors (K-NN) [6], Naïve Bayes Classifier [7] and Artificial Neural Networks (ANN) [8] are some of
the most popular machine learning methods used for activity prediction in compound classification [9].

Despite records of successful application of these methods in cheminformatics and computer aided
drug discovery, each method has its peculiar shortcomings and practical constraints; such as predictive
accuracy, robustness to high dimensionality and irrelevant descriptors, model interpretability, and
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computational efficiency, that hinders its optimal performance. For example, DT is a method that
performs fairly well when it comes to most of the afore-stated criteria; however, its low predictive
accuracy has inspired methods involving an ensemble of trees to improve this shortcoming. One of
such efforts produced Random Forest which has been shown to be a reliable machine learning tool
for compound classification as reported in [5]. In the same vein, while bearing in mind the No free
Lunch Theorem [10]; that there is no best algorithm for all problems, we present herein the findings on
another impressive ensemble of tree method called Extreme Gradient Boosting (Xgboost) for bioactive
molecule prediction.

Xgboost is an efficient and scalable variant of the Gradient Boosting Machine (GBM) [11] which has
been a winning tool for several Machine learning competitions [12,13] in recent years due to its features
such as ease of use, ease of parallelization and impressive predictive accuracy. In addition to the
obvious fact that alternative approaches to target prediction gives a wider perspective of the data
rather than a single approach [14], we show in this paper that Xgboost not only produces comparable
or even better predictive accuracy than the state of art in bioactivity prediction, but possess the intrinsic
ability to handle the highly diverse and complex feature space of descriptors, especially in situations
where the class distribution is highly imbalanced.

2. Methods

2.1. Tree Ensemble

As described by Chen and Guestrin [15], Xgboost is an ensemble of K Classification and Regression
Trees (CART) {T1(xi, yi) . . . ..TK(xi, yi)} where xi is the given training set of descriptors associated with
a molecule to predict the class label, yi. Given that a CART assigns a real score to each leaves (outcome
or target), the prediction scores for individual CART is summed up to get the final score and evaluated
through K additive functions, as shown in Equation (1):

^
y i “

K
ÿ

k“1

fkpxiq, fk P F (1)

where fk represents an independent tree structure with leaf scores and F is the space of all CART. The
regularized objective to optimize is given by Equation (2):

ObjpΘq “
n

ÿ

i

lpyi,
^
y iq `

K
ÿ

k

Ωp fkq (2)

The first term is a differentiable loss function, l, which measures the difference between the
predicted ŷ and the target yi. The second is a regularization term Ω which penalizes the complexity
of the model to avoid over-fitting. It is given by Ω p f q “ γT ` 1

2λ
řT

j´1 w2
j Where T and w are the

number of leaves and the score on each leaf respectively. γ and λ are constants to control the degree
of regularization. Apart from the use of regularization, shrinkage and descriptor subsampling are
two additional techniques used to prevent overfitting [15].

Training. For a training dataset of molecules with vectors of descriptors and their corresponding
class labels or (e.g., active/inactive) or activity of interest, the training procedure in Xgboost is
summarized as follows;

i For each descriptor,

‚ Sort the numbers
‚ Scan the best splitting point (lowest gain)

ii Choose the descriptor with the best splitting point that optimizes the training objective
iii Continue splitting (as in (i) and (ii)) until the specified maximum tree depth is reached
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iv Assign prediction score to the leaves and prune all negative nodes (nodes with negative gains)
in a bottom-up order

v Repeat the above steps in an additive manner until the specified number of rounds (trees K)
is reached.

Since additive training is used, the prediction ŷ at step t expressed as

^
y i
ptq
“

K
ÿ

k“1

fkpxiq “
^
y i
pt´1q

` ftpxiq (3)

And Equation (2) can be written as

ObjpΘqptq “
n

ÿ

i

lpyi,
^
y i
pt´1q

` ftpxiqq `Ωp ftq (4)

And more generally by taking the Taylors expansion of the loss function to the second order

ObjpΘqptq “
n

ÿ

i“1

rlpyi,
^
y i
pt´1q

q ` gi ftpxiq `
1
2

hi f 2
t pxiq `Ωp ftq (5)

where gi = B
ŷpt´1q

i
lpyi, ŷpt´1q

i q and hi = B2
ŷpt´1q

i
lpyi, ŷpt´1q

i q are respectively first and second order statistics

on the loss function. A simplified objective function without constants at step t is as follows

ObjpΘqptq “
n

ÿ

i“1

rgi ftpxiq `
1
2

hi f 2
t pxiqs `Ωp ftq (6)

The objective function can be written by expanding the regularization term as

ObjpΘqptq “
n
ř

i“1
rgi ftpxiq `

1
2 hi f 2

t pxiqs ` γT` 1
2λ

T
ř

j“1
w2

j

“
T
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rp

ř
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1
2 p

ř

iPIj

hi`λqw2
j s ` γT

(7)

where Ij “ ti|qpxiq “ ju is the instance set of leaf j, for a given structure q pxq the optimal leaf
weight, w˚j , and the optimal objective function which measure how good the structure is are given by
Equations (8) and (9) respectively

w˚j “ ´
Gj

Hj ` λ
(8)

Obj˚ “ ´
1
2

T
ÿ

j“1

G2
j

Hj ` λ
` γT (9)

where Gj “
ř

iPIj
gi Gj “

ř

iPIj
gi and Hj “

ř

iPIj
hi.

Equation (10) is used to score a leaf node during splitting. The first, second and third term of the
equation stands for the score on the left, right and the original leaf respectively. Moreover, the final
term, γ, is regularization on the additional leaf.

Gain “
1
2
r

G2
L

HL ` λ
`

G2
R

HR ` λ
´
pGL ` GRq

2

HL ` HR ` λ
s ´ γ (10)
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2.2. Machine Learning Algorithms

The performance of Xgboost was compared with four machine learning algorithms that have
been used in the previous studies for activity prediction (Lavecchia 2015):The Support Vector Machine
LibSVM (LSVM) [16], Random Forest (RF) [5], Naïve Bayes (NB) [17], and the Radial Basis Function
Network (RBFN) [18] Classifiers.

3. Experimental Design

3.1. Datasets

This work was evaluated on seven carefully selected datasets that have been used to validate
fingerprint based molecule classification and activity prediction in the past. A description of COX2
cyclooxygenase-2 inhibitors (COX2) (467 samples), benzodiazepine receptor (BZR) (405 samples) and
estrogen receptor (ER) (393 samples) datasets [19,20] is shown in Table 1. The compounds are classified
as active or inactive, and divided into training (70%) and validation (30%) sets for the purpose of this
work. The table shows the mean pairwise Tanimoto similarity that was calculated based on ECFC_4
across all pairs of molecules for both active and inactive molecules.

Table 1. Activity Classes for cyclooxygenase-2 (COX2) estrogen receptor (ER) and benzodiazepine
receptor (BZR) Datasets.

Datasets
Number of Compounds Pairwise Similarity (Mean)

Active Inactive
Active Inactive

Training Validation Training Validation

Cyclooxygenase-2 inhibitors 211 92 116 48 0.687 0.690
Benzodiazepine receptor 214 92 70 29 0.536 0.538

Estrogen receptor 86 55 190 62 0.468 0.456

The fourth dataset utilized as a part of this study is Directory of Useful Decoys (DUD), which
was presented by [21]. Although recently compiled as a benchmark data, its use in virtual screening
can be found in [22,23].The decoys for each target have been chosen to fulfill a number of criteria to
make them relevant and as unbiased as possible. Only 12 subsets of the DUD with only 704 active
compounds were considered and divided into training (70%) and validation (30%) set in this study as
shown in Table 2.

Table 2. Number of Active (Na) compounds for 12 Directory of Useful Decoys (DUD) datasets.

No Activity Class Na

Training Validation

1 FGFR1T 90 30
2 FXA 106 40
3 GART 27 13
4 GBP 38 14
5 GR 55 23
6 HIVPR 42 20
7 HIVRT 32 11
8 HMGA 24 11
9 HSP90 24 13
10 MR 10 5
11 NA 35 14
12 PR 22 5

The last three datasets (MDDR1-3), selected from the MDL Drug Data Report MDDR [24], have
been previously used for LBVS [22,25] and activity prediction [26]. The MDDR data sets contain
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well defined derivatives and biologically relevant compounds that were converted to Pipeline Pilot’s
ECFC_4 fingerprints and folded to give 1024 element fingerprints. A detailed description of each
dataset showing the training (70%) and validation (30%) sets, activity classes, number of molecules per
class, and their average pairwise Tanimoto similarity across all pairs of molecules is given in Tables 3–5.
The active molecules for each dataset were used. For instance, the MDDR1 (Table 3) contains a total of
8294 active molecules, which is a mixture of both structurally homogeneous and heterogeneous active
molecules (11 classes). The MDDR2 (5083 molecules) and MDDR3 (8568 Molecules) in Tables 4 and 5
respectively, contain 10 homogeneous activity classes and 10 heterogeneous ones respectively [27].

Table 3. Activity Classes for MDDR1.

Activity Index Activity Class Active Molecules Pairwise Similarity

Training Validation Mean

31420 renin inhibitors 783 347 0.573
71523 HIV protease inhibitors 535 215 0.446
37110 thrombin inhibitors 561 242 0.419
31432 angiotensin II AT1 antagonists 674 269 0.403
42731 substance P antagonists 859 387 0.339
06233 5HT3 antagonists 530 222 0.351
06245 5HT reuptake inhibitors 257 102 0.345
07701 D2 antagonists 268 127 0.345
06235 5HT1A agonists 589 238 0.343
78374 protein kinase C inhibitors 326 127 0.323
78331 cyclooxygenase inhibitors 427 209 0.268

Table 4. Activity Classes for MDDR2.

Activity Index Activity Class Active Molecules Pairwise Similarity

Training Validation Mean

07707 adenosine (A1) agonists 136 71 0.424
07708 adenosine (A2) agonists 119 37 0.484
31420 renin inhibitors 791 339 0.584
42710 monocyclic β-lactams 78 33 0.596
64100 cephalosporins 911 390 0.512
64200 carbacephems 115 43 0.503
64220 carbapenems 732 319 0.414
64300 penicillin 88 38 0.444
65000 antibiotic, macrolide 268 120 0.673
75755 vitamin D analogous 323 132 0.569

Table 5. Activity Classes for MDDR3.

Activity Index Activity Class Active Molecules Pairwise Similarity

Training Validation Mean

09249 muscarinic (M1) agonists 620 280 0.257
12455 NMDA receptor antagonists 990 410 0.311
12464 nitric oxide synthase inhibitors 348 157 0.237
31281 dopamine β-hydroxylase inhibitors 76 30 0.324
43210 aldose reductase inhibitors 663 294 0.37
71522 reverse transcriptase inhibitors 501 199 0.311
75721 aromatase inhibitors 444 192 0.318
78331 cyclooxygenase inhibitors 449 187 0.382
78348 phospholipase A2 inhibitors 430 187 0.291
78351 lipoxygenase inhibitors 1478 633 0.365
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The datasets were divided into training (70%) and validation (30%) sets for the purpose of this
experiment. Ten-fold cross-validation was used for the Training set. In this cross-validation, the
data set was split into 10 parts; 9 were used for training and the remaining 1 was used for testing.
This process is repeated 10 times with a different 10th of the dataset used to test the remaining 9 parts
during every run of the 10-fold cross validation. Figure 1 pictorially illustrates the various stages
involved in the work under study.
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3.2. Xgboost and Machine Learning Algorithms Parameters

Identifying the optimal parameters for a classifier can be time consuming and tedious and
Xgboost is not an exception. This is even more challenging in Xgboost due to the wide range of
tuneable parameters for optimal performance; a few of which, using the R [28] implementation of
Xgboost, we have restricted our scope to in this work. Thus, by using brute force, we obtained the
best performance for Xgboost when eta, gamma, minimum child weight and maximum depth were
0.2, 0.16, 5 and 16 respectively. Where; eta is the step size shrinkage meant to control the learning
rate and over-fitting through scaling each tree contribution, gamma is the minimum loss reduction
required to make a split, minimum child weight is the minimum sum of instance weight needed in a
child and max depth is the maximum depth of a child. Other tree booster parameters like maximum
delta step, subsample, column sample and the number of trees to grow per round are left at their
default values of 1 respectively. For LSVM, WEKA workbench offers a way to automate the search
for optimal parameters. By using grid search, a peak performance with the radial basis kernel was
obtained when gamma and cost were 5.01187233627273 ˆ 104 and 20 respectively. RF performed best
when the maximum depth of tree was not constrained and the number of iteration set to its default
value of 100. The NB classifier achieved best performance when kernel estimator parameter is used
instead of normal distribution. For RBFN, we converted numeric attributes to nominal and set the
minimum standard deviation to 0.1 to get the best performance.

3.3. Evaluation Metrics

The choice of performance evaluation for both model building and validation have been carefully
selected from the most commonly used metrics in the literature. The selected evaluation metrics
includes the accuracy, area under curve (AUC), sensitivity (SEN), specificity (SPC) and F-measure
(F-Sc). The one run definition of AUC (Equation (11)) also known as balanced accuracy which is given
by the average of the sum of sensitivity and specificity has been used in this work.

AUC “ ppSEN ` SPCqq{2 (11)

while sensitivity (SEN) (Equation (12)) and specificity (SPC) (Equation (13)) show the ability of
the model to correctly classify true positive as positive and true negative as negative respectively,
AUC simply describes the tradeoff between them.
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SEN “ tp{ptp ` fnq (12)

SPC “ tnptn ` fpq (13)

where tp, tn, fp and fn are true positive, true negative, false positive and false negative respectively.
In addition to the accuracy (Equation (14)) which is the sum of the correctly classified divided by the
total number of classes, F-measure (FSc) (Equation (15)), which is the harmonic mean of precision and
recall is included to serve as measure the model’s accuracy.

ACC “ pptp ` tnq{ptp ` tn ` fn ` fpqq (14)

F Sc “ 2 pprecisionˆ recallq{pprecision ` recallq (15)

This work aims to introduce Xgboost for activity prediction through its performance on known
datasets in drug discovery. To achieve this aim, the performance of Xgboost was compared with
four state of the art machine learning algorithms used in drug discovery based on the afore-stated
evaluation metrics. The prediction performances of the different machine learning algorithms on the
datasets under study are tabulated in Tables 6–12. The best values for each metric is shaded.

Table 6. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on MDDR1 Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.9484 0.9958 0.9721 0.9575 0.9830 0.9579 0.9960 0.9769 0.9594 0.9536
RF 0.9474 0.9963 0.9718 0.9621 0.9514 0.9502 0.9957 0.9730 0.9590 0.9525

LSVM 0.9258 0.9943 0.9600 0.9425 0.9264 0.9357 0.9948 0.9653 0.9497 0.9371
RBFN 0.7566 0.9773 0.8670 0.7719 0.7451 0.7751 0.9777 0.8764 0.7746 0.7553

NB 0.7648 0.9781 0.8715 0.7826 0.7578 0.7488 0.9762 0.8625 0.7626 0.7383

Table 7. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on MDDR2 Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.9779 0.9981 0.9880 0.9834 0.9689 0.9820 0.9983 0.9902 0.9849 0.9673
RF 0.9562 0.9979 0.9771 0.9837 0.9689 0.9468 0.9977 0.9723 0.9823 0.9597

LSVM 0.9590 0.9978 0.9784 0.9817 0.9667 0.9436 0.9974 0.9705 0.9790 0.9547
RBFN 0.9507 0.9961 0.9734 9.9646 0.9402 0.9420 0.9960 0.9690 0.9658 0.9312

NB 0.9546 0.9963 0.9755 0.9677 0.9458 0.9401 0.9967 0.9684 0.9724 0.9403

Table 8. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on MDDR3 Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.9407 0.9937 0.9672 0.9440 0.9348 0.9493 0.9937 0.9715 0.9447 0.9448
RF 0.9209 0.9929 0.9569 94.099 0.9350 0.9316 0.9928 0.9622 0.9397 0.9405

LSVM 0.8800 0.9885 0.93425 90.4651 0.8948 0.8983 0.9902 0.9443 0.9171 0.9120
RBFN 0.7053 0.9643 0.8348 68.0613 0.6597 0.7254 0.9657 0.8456 0.6890 0.6710

NB 0.6803 0.9613 0.8208 65.7276 0.6402 0.6636 0.9594 0.8115 0.6415 0.6211
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Table 9. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on DUD Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.8677 0.9920 0.9298 0.9113 0.8616 0.8569 0.9953 0.9261 0.9471 0.8673
RF 0.8861 0.9935 0.9397 0.9294 0.8908 0.9078 0.9951 0.9515 0.9471 0.9123

LSVM 0.8659 0.9919 0.9289 0.9113 0.8683 0.8738 0.9941 0.9340 0.9375 0.8862
RBFN 0.8228 0.9895 0.9061 0.8871 0.8344 0.8503 0.9931 0.9217 0.9279 0.8537

NB 0.8783 0.9910 0.9346 0.9032 0.8730 0.9177 0.9942 0.9559 0.9375 0.9193

Table 10. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on COX2 Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.9361 0.9444 0.9403 0.9388 0.9535 0.9570 0.9362 0.9466 0.9500 0.9622
RF 0.9763 0.8879 0.9321 0.9450 0.9581 0.9783 0.8750 0.9266 0.9429 0.9574

LSVM 0.9526 0.9138 0.9332 0.9388 0.9526 0.9565 0.8958 0.9262 0.9357 0.9514
RBFN 0.9293 0.7203 0.8248 0.8379 0.8658 0.9250 0.7000 0.8125 0.8286 0.8605

NB 0.6777 0.9569 0.8173 0.7768 0.7967 0.7065 1.0000 0.8533 0.8071 0.8280

Table 11. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on BZR Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.9764 0.9028 0.9396 0.9577 0.9718 0.9884 0.8000 0.8942 0.9339 0.9551
RF 0.9720 0.9143 0.9431 0.9577 0.9720 0.9674 0.8966 0.9320 0.9504 0.9674

LSVM 0.9579 0.8714 0.9147 0.9366 0.9579 0.9348 1.0000 0.9674 0.9504 0.9663
RBFN 0.9947 0.7263 0.8605 0.9049 0.9330 1.0000 0.6444 0.8222 0.8678 0.9048

NB 0.9112 0.8571 0.8842 0.8979 0.9308 0.8478 0.9655 0.9067 0.8760 0.9123

Table 12. Sensitivity, Specificity, Area under Curve, Accuracy and F-measure on ER Dataset.

ML
Algorithm

Training Validation

SEN SPC AUC ACC F-Sc SEN SPC AUC ACC F-Sc

XGB 0.7671 0.8522 0.8097 0.8297 0.7044 0.8837 0.7703 0.8270 0.8120 0.7755
RF 0.6860 0.8895 0.7878 0.8261 0.7108 0.6364 0.8226 0.7295 0.7350 0.6931

LSVM 0.6628 0.9316 0.7972 0.8478 0.7308 0.6727 0.9194 0.7960 0.8034 0.7629
RBFN 0.7089 0.8477 0.7783 0.8080 0.6788 0.8478 0.7746 0.8112 0.8034 0.7723

NB 0.9767 0.6368 0.8068 0.7428 0.7029 0.9818 0.5645 0.7732 0.7607 0.7941

The classification performance of the MDDR1-3, DUD, COX2, BZR and ER datasets are reported
in Tables 6–12 respectively.

The experimental results on MDDR1-3 Validation datasets (Tables 6–8) shows that Xgboost
produced the best accuracy, sensitivity, specificity, AUC and F-Sc across all the activity classes compared
to the other machine learning methods (RF, LSVM, RBFN and NB) despite the obvious imbalance
distribution of activity classes in the most of the datasets. Hence, the Xgboost method performed
well for the high diverse dataset (MDDR3), and these results are particularly interesting since the
MDDR3 is made up of heterogeneous activity classes which are more challenging for most machine
learning algorithms.

For DUD Validation dataset (Table 9), Xgboost and RF produced the best accuracy (0.9471)
compared to the other methods. In addition, Xgboost produced the best specificity across all DUD sub
datasets. However, NB obtained the best sensitivity, AUC and F-Sc results.
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For COX2, ER and BZR Validation datasets (Tables 10–12), it is shown that Xgboost performed
well and produced the best accuracy and AUC for COX2 and ER datasets. In addition, it obtained the
best F-Sc results for COX2 dataset compared to the other state-of-art methods.

Visual inspection of the results shows that Xgboost produced the best accuracy for all used
datasets (except for BZR dataset which produced the second best accuracy). While the performance
of Xgboost on most activity classes in terms of accuracy and AUC remains the best, it still produces
the best average performance across all evaluation metrics. In addition, the good performance of
Xgboost is not only restricted to homogenous activity classes since it also performed well on the
heterogeneous dataset.

Moreover, a quantitative approach using Kendall W test of concordance was used to rank the
effectiveness of all used methods as shown in Table 13. This test shows whether a set of raters make
comparable judgments on the ranking of a set of objects. Hence, the XGB, RF, LSVM, RBFN and NB
methods were used as the raters, and the accuracy measure (using MDDR1-3, DUD, COX2, BZR and
ER datasets respectively) were used as the ranked objects. The outputs of this test are the Kendall
coefficient (W) and the associated significance level (p value). In this paper, if the value is significant at
a cutoff value of 0.01, then it is possible to give an overall ranking for the methods.

The results of the Kendall analysis for the seven datasets are shown in Table 13. The columns
show the evaluation measure, the value of the Kendall coefficient (W), the associated significance level
(p value), and the ranking of prediction methods. The overall rankings of the four methods show that
Xgboost significantly outperforms the other methods using accuracy measure across all datasets.

Table 13. Rankings of Prediction Methods based on Kendall W Test Using Accuracy Measure.

Measure W P Ranks

Accuracy 0.65 0.001 XGBOOST > RF > LSVM > RBFN > NB

4. Conclusions

This paper investigated the performance of Xgboost on bioactivity prediction and found out
that Xgboost is indeed a robust predictive algorithm. Experimental results show that Xgboost is not
only effective as a predictive model for homogeneous dataset but can replicate such effectiveness on
structurally heterogeneous dataset. Experimental results show that Xgboost produces an impressive
predictive accuracy, ranging from 94.47% accuracy in the heterogeneous data to 98.49% in the
homogeneous one. In addition to the obvious fact that Xgboost has been shown in this work to
be a good predictive tool for bioactive molecule, we are hopeful that by this Xgboost would be seen
as an invaluable addition to already known computational approaches to target prediction and thus
leading to a wider perspective of the data rather than a single approach.
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