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Abstract: Apicomplexan parasites are the causal agents of different medically important diseases,
such as toxoplasmosis, cryptosporidiosis, and malaria. Toxoplasmosis is considered a neglected
parasitosis, even though it can cause severe cerebral complications and death in immunocompromised
patients, including children and pregnant women. Drugs against Toxoplasma gondii, the etiological
agent of toxoplasmosis, are highly toxic and lack efficacy in eradicating tissue cysts, promoting the
establishment of latent infection and acute relapsing disease. Cryptosporidiosis has been recognized
as the most frequent waterborne parasitosis in US outbreaks; anti-cryptosporidium drug discovery
still faces a major obstacle: drugs that can act on the epicellular parasite. Severe malaria is most
commonly caused by the progression of infection with Plasmodium falciparum. In recent years, great
progress has been made in the field of antimalarial drugs and vaccines, although the resistance
of P. falciparum to artemisinin has recently gained a foothold in Africa. As seen, the search for
new drugs against these parasites remains a challenge. Peptide-based drugs seem to be attractive
alternative therapeutic agents recently recognized by the pharmaceutical industry, as they can kill
different infectious agents and modulate the immune response. A review of the experimental effects
of bioactive peptides on these parasites follows, along with comments. In addition, some biological
and metabolomic generalities of the parasites are reviewed to elucidate peptide mechanisms of action
on Apicomplexan targets.

Keywords: Apicomplexan; bioactive peptides; toxoplasmosis; cryptosporidiosis; malaria

1. Introduction

Parasitism is a biological interaction present in nature. Some parasites can cause a
severe clinical picture, and others can even cause host death. Millions of people are infected
by parasites worldwide, mainly in lower- and middle-income countries. Among the most
important human parasites are single-cell protozoan organisms, which are divided into
different phyla [1,2]. The protozoan phylum Apicomplexa is a large group of intracellular
alveolates; its name is derived from the complex of organelles located at the apical end
that allow them to survive in the host cell. Apicomplexan parasites cause important in-
fectious diseases in humans, including malaria, toxoplasmosis, and cryptosporidiosis [3].
Some intestinal coccidian infections and toxoplasmosis are considered by the World Health
Organization (WHO), neglecting parasitosis; therefore, they are not a priority for phar-
maceuticals to invest in the research of new compounds for their control, and malaria is
one of the most dangerous infections that caused approximately 627,000 human deaths in
2020 [4]. Anti-Toxoplasma drugs are highly toxic and ineffective in destroying tissue cysts,
and cryptosporidiosis treatments are partially effective mostly in immunocompromised
patients. Despite antimalarial drug research on the development of novel treatments, the
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emergence of strains resistant to first-line drugs is increasing; therefore, new alternatives
are necessary [5,6]. Based on this background, a search for active molecules is needed.
Drug development against these parasites has been approached from different perspec-
tives, including in silico models, hybrid compound design, bio-guided studies in natural
products, and even the use of combined therapies with known antibiotic drugs [7].

An interesting emerging category of active molecules is antimicrobial peptides (AMPs),
which are attractive alternative therapeutic agents. Peptides are a diverse group of proteins
of 10–100 amino acid residues. They have amphipathic structures, contain up to 50%
hydrophobic residues, and possess a net positive charge of +2 to +9 [8]. AMPs are found
naturally in tissues and cells from multicellular organisms and play a crucial role in the
innate immune response to protect themselves since these organisms do not develop an
adaptive immune system such as vertebrates. The interest in these compounds is due to
their biochemical features that can interfere with ion channels and structural components
of the cell membrane [9,10]. The first AMP was identified in mid-1990 from Drosophila
melanogaster; at the time of this writing, at least 5000 AMPs have been reported [11,12].

The applications of AMPs are still under constant investigation, and in the last decade,
their interesting antibacterial drug resistance, anticancer, anti-inflammatory, immunomod-
ulatory, and antiparasitic activities have been reported [13–15]. However, the clinical
application of AMPs has been limited due to the toxicity and stability of these molecules
and other drawbacks, such as high production costs compared to conventional antibiotics.
Although there are no commercial AMP products to date, we cannot ignore the great
potential of AMPs. These molecules offer great alternatives due to their results in in vitro
models [16,17].

In this review, we provide an in-depth overview of the main Apicomplexan human
parasites and AMPs with antiparasitic activity, as well as their mechanisms of action.

1.1. Toxoplasmosis

This parasitic infection is caused by Toxoplasma gondii, an obligate intracellular dis-
tributed worldwide that infects a wide range of homothermic animals, including hu-
mans [18,19]. It is recognized as the main public health problem in human and veterinary
medicine and is one of the five neglected parasitic infections cited by the WHO. T. gondii
sexual reproduction involves species from the Felidae family, including domestic cats [20].
T. gondii affect approximately one-third of the human population, and climate change is
increasing its prevalence of infection [21,22]. Epidemiological studies worldwide revealed
that the prevalence in pregnant women is approximately 1.1% and could be related to
cultural habits, such as eating undercooked meat (one of the main risk factors for T. gondii
infection), especially of pork, lamb, or venison [23–25]. Humans can also be infected by
eating raw shellfish (like oysters, clams, and mussels), by accidental ingestion of oocysts in
contaminated soil, or by congenital transmission [25].

The toxoplasmosis incubation period is 10 to 14 days, and 90% of cases are asymp-
tomatic. In symptomatic individuals, lymphadenitis, lymphadenopathy, fever, sore throat,
headache, and myalgia have been reported [26]. The presence of hepatosplenomegaly,
pulmonary or cardiac symptoms, conjunctivitis, and skin rash were recorded. Clinical
manifestations are generally self-limited within 3–4 weeks. In immunocompetent individu-
als, neurological symptoms rarely occur; in some exceptional cases, moderate cognitive
impairment has been reported [26]. In immunocompromised people with toxoplasmosis,
parasites have a predilection for immune privilege sites, and extensive cell lesions are
present, which can lead to encephalitis, retinochoroiditis, pericarditis, interstitial pneu-
monia, and Guillain-Barre syndrome. Encephalitis is an important clinical manifestation,
especially in patients with AIDS, and congenital infections can lead to death [27].

In the biological life cycle of T. gondii, four parasitic forms are involved: tachyzoites,
bradyzoites, tissue cysts, and oocysts. Definitive hosts ingest prey infected with tissue
cysts, mainly in the skeletal muscle or brain. Due to digestive action, the bradyzoites
contained in the tissue cysts invade the enterocytes and, through schizogony replication,
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differentiate into macro- and microgametes. Subsequently, fertilization takes place, which
gives rise to a zygote. This zygote transforms into an immature, noninfectious oocyst
that is released into the environment along with the host’s feces. The noninfecting oocyst
sporulates and becomes infective, and contaminates water, soil, and food in favorable
environmental conditions. Intermediate hosts (i.e., warm-blooded animals, including
humans) become infected through the consumption of water and food contaminated with
sporulated oocysts or raw or undercooked meat with tissue cysts. Oocysts and tissue
cysts release sporozoites and bradyzoites, respectively, and differentiate into tachyzoites
within the intestinal epithelium. After replication, the tachyzoites exit the cell, destroying
it, and the infection spreads to neighboring cells. The immune response will eliminate
most parasites; those that are not removed will become bradyzoites and will form tissue
cysts that can remain in the host’s organs and tissues throughout life (chronic infection). In
immunocompromised individuals, bradyzoites differentiate back to tachyzoites, causing
severe or fatal acute disseminated infection [18,28,29] (Figure 1).
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Figure 1. Active invasion of T. gondii. In Apicomplexan, three types of secretory organelles are
observed: micronemes, rhoptries, and dense granules, carrying characteristic proteins. Attachment to
host cell membrane via micronemes (MIC) proteins (1). Invasion and moving junction development
by secretion of proteins from rhoptries neck (RON) and rhoptires (ROP) (2,3). Internalization via se-
cretion of RON/AMA proteins (4). Parasitophorous vacuole development via granule dense proteins
(GRA) (5). Proliferation and tachyzoite asexual replication (6). Increases immune response, intercon-
version to bradyzoite, and tissue cyst formation (7). Decreases immune response, interconversion
to bradyzoites-tachyzoites, and dissemination of the parasite (8). Tachyzoites cause acute infection,
leading to severe toxoplasmosis. While several drugs are available against tachyzoites, there is no
treatment against tissue cysts, which are responsible for chronic infection. An ideal anti-Toxoplasma
drug should be effective against both stages and prevent interconversion. Protein targeting secretory
organelles is a matter of interest. Created with BioRender.com under license to publish by Anacleto SJ.

A combination of dihydrofolate reductase inhibitors such as pyrimethamine and
trimethoprim, and dihydropteroate synthetase inhibitors (sulfonamides) are currently used
as the first-choice treatment for toxoplasmosis; nevertheless, drug-resistant strains have
been reported. It is worth mentioning that in the last decade, more than 50 resistant strains
were identified and have developed resistance mainly to sulfonamides [30,31]. In addition
to this, the presence of adverse effects and the fact that treatments are only effective in the
acute phase of infection, turn out necessary to have new alternatives to treatment that are
safe, effective, affordable, and active against the tissue cysts. For this reason, the recent
emergence of AMPs offers wide potential for the discovery of new anti-Toxoplasma drugs.
In Figure 2, drugs that have been tested against Toxoplasma are described.
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1.2. Cryptosporidiosis

Cryptosporidium spp. is an important public health problem currently recognized as
the main cause of diarrhea in humans and farm animals, causing significant morbidity and
mortality worldwide, mainly in children. Approximately 40 species have been described
in the Cryptosporidium genus. Two species are the most common, Cryptosporidium hominis
and C. parvum, both of which can infect humans. C. parvum also infects cattle [32,33]. In
low-income countries, 54% of children have had diarrhea associated with cryptosporid-
iosis. Children and immunocompromised patients are the most vulnerable groups to
Cryptosporidium infections. It is estimated that two million children die worldwide annually,
and 7 million cases are associated with morbidity in Asian and African populations [34]. In
the last seventeen years, the incidence of Cryptosporidium infection in HIV-positive patients
has increased up to 41.3% in Russia [35].

Cryptosporidium incubation period takes a week after the ingestion of infective oocysts.
The clinical manifestations include diarrhea, fever, nausea, vomiting, abdominal pain,
general malaise, and malnutrition. Chronic diarrhea in HIV patients is recognized as a
classical clinical manifestation, and severe dehydration, weight loss, and malnutrition that
can lead to death have been observed [36,37].

There are different parasitic stages in the life cycle of Cryptosporidium spp.: oocysts,
sporozoites, trophozoites, and merozoites. The oocyst is the infective stage and can be
consumed in contaminated water or food. Four sporozoites are contained inside each
oocyst and are released by digestive processes in the intestinal epithelium. A schizogonic
division takes place, resulting in the production of eight merozoites (type I merozoites),
which reinvade new cells, and after a period of intracellular growth (type II merozoite),
merozoites differentiate into micro and macrogametocytes that lead to fertilization and
zygote formation. Mature zygotes develop into infective thin or thick-walled oocysts that
are released from enterocytes. Infective thin-walled oocysts are broken in the intestine and
lead to reinfections, while infective thick-walled oocysts are released into the environment
through feces, contaminating water, soil, and food [38–41] (Figure 3).
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challenges a major problem: the discovery of systemic drugs that can reach epicellular parasites
(preventing schizogonic reproduction); and the absorption by patients undergoing diarrhea. Created
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Only nitazoxanide has demonstrated efficacy in human cryptosporidiosis. A number
of new targets have been identified for chemotherapy, and progress has been made in
developing drugs for these targets (Figure 4).
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Figure 4. Cryptosporidium drug targets. Cryptosporodium lacks many drug targets present in other
Apicomplexans because of a simplified metabolism and the absence of de novo nutrient synthetic
pathways. Mic micronemes. Rop, rohptry. Gra, dense ganule. Apc, apical complex. C, cytoplasm.
Ami, amylopectin granules. Cem, cell membrane. Rib, ribosome. Nuc, nucleus. Mi, mitochondrion.
Created with BioRender.com under license to publish by Anacleto SJ.

1.3. Malaria

Malaria is a parasitic disease considered a major public health problem because it
causes a great number of morbidity and mortality cases, mostly in tropical and subtropical
zones worldwide. In 2020, 241 million malaria cases were reported, and 627,000 deaths
occurred, which represented a substantial increase compared to what was reported in
2019 [42]. Malaria is caused by Plasmodium parasites, which are intracellular Parasites
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transmitted mainly by the bite of female mosquitoes of the genus Anopheles. There are more
than 120 Plasmodium species capable of infecting mammals, birds, and reptiles; nevertheless,
only five species can infect humans, P. malariae, P. falciparum, P. knowlesi, P. ovale, and P.
vivax [43,44].

In humans, parasites replicate asexually, while sexual reproduction takes place in
Anopheles mosquitoes. Sporozoites injected by the Anopheles mosquito while feeding, reach
the liver through the bloodstream and invade hepatocytes forming merozoites [45]. In the
liver, P. ovale and P. vivax sporozoites can convert into hypnozoites, which are dormant
forms that can relapse months or years later [44]. After liver parasite replication, merozoites
are released into the bloodstream, and the intraerythrocytic cycle begins, in which rings,
trophozoites, schizonts, merozoites, and gametocytes are developed [43]. Gametocytes are
ingested by Anopheles mosquitos, and the cycle begins again. In the midgut of the mosquito,
gametocytes develop a zygote, then a mobile ookinete capable of traversing the intestinal
wall and forming an oocyst that, when mature, will develop sporozoites that will be
released to invade the salivary glands [46,47]. During the intraerythrocytic cycle (Figure 5),
the clinical features observed include high fever, chills, headache, myalgias, arthralgias,
nausea, vomiting, and diarrhea [48,49]. P. falciparum infections can cause complicated
malaria as a consequence of the cytoadherence phenomenon in which infected erythrocytes
adhere to the vascular endothelium of different organs, causing cerebral malaria, acute
respiratory distress syndrome, acute renal failure, anemia, thrombocytopenia, and placental
malaria [48]. The intensity of clinical manifestation during complicated malaria varies
according to age and the intensity of transmission, and if not treated promptly, mortality is
high [40].
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Figure 5. Plasmodium spp. intraerythrocytic cycle. Most antimalarial drugs target the asexual
erythrocytic stages (rings, throphozoites, and schyzonts).

Multiple antimalarial drugs are used, including chloroquine, mefloquine, pyrimethamine,
primaquine, and artemisinin derivatives [49] (Figure 6). Unfortunately, it is estimated that
malaria morbidity and mortality have increased since 2020 due to the convergence of mul-
tiple factors, such as COVID-19 and Ebola outbreaks, natural disasters, and drug resistance,
mainly to chloroquine and recently to artemisinin derivatives [44]. Malaria parasites have
developed immune evasion strategies. Therefore, it is essential to find new alternatives for
malaria control [42,44,50].
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Figure 6. Plasmodium spp. drug targets. Antimalarial drugs such as aryl amino alcohol (chloroquine,
mefloquine, primaquine), antifolate compounds (pyrimethamine), and artemisinin derivatives (arte-
sunate, artemether) target the asexual erythrocytic stages of the parasite. Mic micronemes. Rop,
rohptry. Gra, dense ganule. Api, apicoplast. Dva, digestive vacuole. Nuc, nucleus. Rib, ribosome. Mi,
mitochondrion. C, cytoplasm. Cem, cell membrane. Created with BioRender.com under license to
publish by Anacleto SJ.

2. Antimicrobial Peptide Classification

The need to categorize everything that is known has facilitated the management of
information in different settings, and chemical structures also have their own classification
according to the functional groups present in their chemical structures. However, peptides
are made up of a series of amino acids that are present in different functional groups
depending on their biological activities. According to various authors, AMPs can be cate-
gorized according to different features, such as their charges (cationic, anionic), biological
activities (antibacterial, antifungal, antiprotozoal, etc.), mechanisms of action, and even
the source from which they were isolated (either from natural sources or synthetically)
(Figure 7). A general form of classification is based on their physicochemical characteristics,
which can be divided into four main groups: (1) α-helices, (2) β-pleated sheets, (3) those
with mixed structures, and (4) those with atypical conformations [51–53]. The α helical
structure is characterized by coiling on itself through peptide bonds and creating a type of
tube. This conformation, in addition to providing amphipathic characteristics, allows it
to be easily inserted into the cell membrane, creating channels [54]. β-pleated sheets are
structures that fold back on themselves through N-H bonds of amino acids that conform
by forming hydrogen bonds with the C=O groups of the opposite amino acids. Mixed
structures can be present, within the same chain of amino acids, of the two conformations,
both helical and β-pleated sheets. Finally, the atypical structures present forms that do not
correspond to those mentioned above [55–57].
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3. Mechanisms of Interaction by AMPs

Currently, research on AMPs has constantly been increasing, together with new re-
search techniques such as bio-guided studies, in silico analysis, and synthesis, offering a
broad number of peptides that have been described and evaluated in different biological
models and clinical phases. To date, according to the Database of the Antimicrobial Activity
and Structure of Peptides, 19,398 have been described, 82.5% of which are synthetic, and
the rest have been isolated by natural sources, such as animals (75%), bacteria (12%), plants
(9%) and fungi (4%) [58]. The knowledge of their mechanisms of action is continually in-
creasing. It is noted that several peptides active against Apicomplexa parasites act directly
on components of the cell membrane and extracellular components and the mechanism of
surface membranes, mainly because AMPS are cationic and amphipathic molecules [59].
Most AMPs interfere with the correct functioning of the cytoplasmic membrane. With
the progress in the discovery of AMPs and the elucidation of their mechanisms of action,
researchers managed to understand different pathways by which they interact in both the
host and host cells. Once the AMPs enter the cell, they can interact with components of the
cytoplasm, altering the electrochemical balance as well as inhibiting metabolic processes es-
sential for the survival of the parasite, altering cellular homeostasis and essential processes
for cell replication [60].

AMPs’ mechanisms of action have been categorized into two main groups: those that
exert a direct effect on killing cells and those that modulate the immune response. The
first group is subdivided into two subgroups, those that kill directly by permeabilizing
the cell membrane due to hydrophobic and electrostatic interactions of the peptides, and
the second group, those peptides that kill by affecting the internal components of the cell
acting as metabolic inhibitors [60–63].

4. Peptides Active against Apicomplexan Parasites
4.1. Toxoplasma gondii

Regarding AMPs that can modulate the immune response, it has been shown in vivo
that HPRP-A1/A2 (amphipathic α-helical peptide) treatment induced a Th1/Tc1 response
and elicited proinflammatory cytokines in mice infected with T. gondii; it is the only peptide
with this type of mechanism of action in the parasite. These peptides affect the viability of
tachyzoites at low concentrations; in addition, their activities against gram-negative and
gram-positive bacteria and some pathogenic fungi have been reported [64]. A group of
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peptides that weaken the cell membrane, CA (2–8) M (1–18), lycosin-I, XYP1, XYP2, XYP3,
longicin and longicin P4, have been tested in in vitro models against T. gondii. Lycosin-I
was the most active, with an IC50 of 10 µM. However, other effects on the integrity of the
tachyzoites were reported, such as the aggregation of the parasites induced by longicin P4,
which in an in vivo model has managed to prolong the survival of mice for up to 11 days
compared to the control [64–70].

Venoms from invertebrates such as spiders, scorpions, amphibians, and some reptiles
are composed of different peptides, which in turn act mainly as modulators of ion channels
and have been widely investigated in the pharmacological field for different diseases such
as cancer and AIDS [71]. Some of these toxins have been evaluated against Toxoplasma [71];
however, peptides responsible for this activity have not been identified, although it is worth
continuing with this research to identify the active peptides and elucidate their mechanisms
of action. It should be noted that of the venoms and secretions evaluated, those obtained
from the spiders Ornitoctonus huwena and Chilobrachys jingzhao were active against T. gondii
tachyzoites at 3 µg/mL and increased the survival rate in vivo. There is only one study
reporting peptide efficacy against T. gondii tissue cysts. The venom of the scorpion Tityus
serrulatus was evaluated, and the Pep 1 peptide decreased the number of cerebral tissue
cysts in infected mice, although its mechanism of action is still unknown [72–74].

Peptides with interesting biological activities have also been detected in marine organ-
isms, as is the case of the conotoxin isolated from Conus californicus that affected tachyzoites
in concentrations from 10 nM; of all the peptides investigated, it showed the highest
activity [75].

Synthetic peptides represent an important component of known peptides to date,
many of which have been identified from natural sources. Of the five synthetic peptides
evaluated, Ac2-26 identified in human cells was able to reduce the parasite load from a
concentration of 5 µM. (Table 1) [76].

Table 1. AMPs with in vitro anti-Toxoplasma activity on tachyzoites.

AMP Name Type Source Evaluated
Concentrations Cytotoxicity

Activity and
Possible

Mechanism of
Action

IC50

Frog skin secretion
[71] ND

Phyllomedusa
distincta [Amphibia]

Corythomanti
greening [Amphibia]

25 µg/mL and
22 µg/mL

respectively

None in human
Fibroblasts Inhibits invasion ND

CA (2–8)
M(1–18) [65]

Cecropin/
melittin hybrid

peptide
Synthetic 5 µM None in human

fibroblasts

Reduces viability
Membrane

lytic activity
ND

Ac2-26 peptide
mimetic of Annexin

A1 [76]
Human peptide Synthetic 5 µM ND Decreases

proliferation rate ND

Lycosin-I [68] Linear peptide Lycosa singoriensis
[Arachnida] 20 µM

Cytotoxic at
34.69 µM
in human
fibroblasts

Invasion
and proliferation

inhibition.
Cell membrane

alteration

28 and 10.08 µM for
intracellular and

extracellular
tachyzoites,
respectively

Longicin [69] Cationic
Haemaphysalis

longicornis
[Arachnida]

50 µM ND

Reduces
proliferation. Cell

membrane
disruption

ND

ND [72] Venoms
Ornitoctonus huwena
Chilobrachys jingzhao

[Arachnida]
12.5 µg/mL Cytotoxic to

Hella cells
Proliferation and

invasion reduction ND

XYP1 [67] Cationic synthesized 2.5–40 µM
Low cytotoxicity at

20 µM in
human fibroblasts

Inhibition of
viability, invasion,
and proliferation.

Damage to
membrane

associated proteins
(HSP29)

38.79 µM
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Table 1. Cont.

AMP Name Type Source Evaluated
Concentrations Cytotoxicity

Activity and
Possible

Mechanism of
Action

IC50

cal14.1a [75] Conotoxin
Conus

californicus
[Gastropoda]

10–50 µM
Not detected up

to 50 µM in
Hep-2 cells

Affects viability
and

replication by
disrupting cell

membrane

ND

ND [73] Venom
Hemiscorpius

Lepturus
[Arachnida]

50 µg/mL
CC50 72.46

µg/mL (Vero
cells)

Reduces viability
and

invasion.
Probably

damaging ion
channels and

enzymatic
activity

39.06 µg/mL

Killer peptide
(KP) [77] Decapeptide Synthetic 25–200 µg/mL

Nontoxic to Vero
cells.

Genotoxic
effects were

reported

Reduces invasion
and proliferation.

Maybe
triggers an

apoptosis like cell
death

ND

Longicin P4 [70] ND
Haemaphysalis

Longicornis
[Arachnida]

50 µM Nontoxic up to
25 µM

Reduces
proliferation.

Induces
aggregation and

affects membrane
integrity

ND

HPRP-A1/A2
[64]

Cationic
peptide Synthetic 10–40 µg/mL

Nontoxic in
peritoneal

macrophages.

Reduces viability,
adhesion, and

invasion
ND

Sub6-B, Pep1,
Pep2a and Pep2b

[74]

Venom
fractions

Tityus
serrulatus

[Arachnida]
100 µg/mL

Nontoxic in
peritoneal

macrophages

Reduces invasion
and replication.

Disruption of cell
membrane

ND

ND: Not Determined.

4.2. Cryptosporidum spp.

AMPs that have been active in in vivo and in vitro evaluations against specific par-
asitic states of Cryptosporidium spp. are summarized in Table 2. Although human cryp-
tosporidiosis is mainly caused by two species, Cryptosporidium hominis and Cryptosporidium
parvum, AMP investigations against this parasite have specifically used C. parvum in both
its sporozoite and oocyst forms and through evaluations in cell cultures and in vivo. The
use of the meront phase has also been reported to determine the parasite load in these
investigations. Approximately 16 cationic peptides have been tested to determine their
anti-Cryptosporidium activity; three of them have been evaluated in more than one trial with
similar results, and even combined treatments have been carried out to improve activity, as
in the case of indolicidin, ranalexin, and magainin II. However, these combinations cannot
be effectively compared because the pharmacological parameters of IC50 are not reported,
and even in most of these evaluations, only 1 to 3 different concentrations up to 50 mM
were evaluated. Evaluating these AMPs at different concentrations to determine their IC50
values, as well as their average cytotoxicity is of great importance to continue their research.
Those with the best activity were the Buforin II and Magainin II peptides, which affected
approximately 99.8% of the parasites in vitro at a concentration of 10 µg/mL [78–85].
However, the coupling of the peptide octarginine and the antibiotic nitazoxanide showed
excellent results, lowering the IC50 value to 2.9 nM compared to the IC50 of nitozoanide
alone, which was 197 nM. Of all the peptides evaluated, this combination showed the best
results [86].
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In in vivo experiments, peptides, such as glucagon-like peptides, in a treatment of
50 µg/kg of weight in calves infected with C. parvum, managed to reduce the symptoms
of the infection, and eliminate the release of oocysts in the feces. Other peptides that
act by regulating the immune response, SA35, and SA40, were isolated from C. parvum.
These peptides were tested in mice infected and immunized with 5 µg of each peptide.
Evaluations of the parasite load generate specific IgA antibodies and reductions of up to
96% of all intestinal forms of the parasite (Table 2) [87,88]. To date, the efficacies of none
of these peptides have been demonstrated in clinical trials. However, it should not be
ignored the biological activities that they present in low concentrations, and the synergistic
effects that some reported peptides exert in combination with commercial antibiotics. The
search for new alternatives for the treatment of cryptosporidiosis should focus on not only
AMPs but also their combination with other active molecules, with the goal of attacking
the parasite by different mechanisms of action.

Table 2. Synthetic AMPs with in vitro anti-Cryptosporidium activity.

AMP Name Type Evaluated
Concentrations Cytotoxicity Activity and Possible Mechanisms of

Action

Buforin II [85] α-Helical 20 µM None in
A549 cells.

Reduces sporozoites viability.
Cell membrane Disruption

Ranalexin [84] Cationic 64 µg/mL Non in
A549 cells.

Sporozoites growth suppression.
Cell membrane Disruption

Ranalexin,
Magainin II.

Indolicidin [82]

Cationic, helix
and

tridecapeptide
50 mM Non in

A549 cells

Sporozoites growth suppression.
Cell membrane damage by synergic

effect between peptide and
lipophilic antibiotics

Shiva-10 [89] Lytic peptide 10 µM ND Reduces sporozoite viability.
Membrane lytic effect

Cecropin P1,
magainin II,

ranalexin, and
indolicidin [83]

Cationic
peptides 50 µM ND

Reduction in the proliferation of schizonts.
Inhibition of

Na/H and Na/Ca2 exchanges in the cell
membrane

KFFKFFKFF and
IKFLKFLKFL [81]

Cationic
peptides 100 µg/mL ND Reduction in the viability of

sporozoites. Cell membrane disruption

SMAP-29,
BMAP-28, PG-1,

Bac-7 [80]

Helical
peptides 100 µg/mL ND

Strong cytotoxic effect on sporozoites.
Alterations in the glycoprotein of the apical

complex

Indolicidin,
Magainin II,

Ranalexin [79]

Cathionic
peptides 50 µM ND Reduction in merozoites proliferation

Octaarginine-6-
FAM-Nitazoanide
combination [86]

Cathionic
peptides 197 nM

No cytotoxic
effects in human

ileocecal
adenocarcinoma

cells

Reduction in trophozoites
and meronts replication

Lactoferrin B,
cathelicidin LL3,

indolicidin,
βdefens1in,

ß defensin 2. [90]

Cathionic peptides 10 µg/mL

Low cytotoxic
effect in
human

colorectal
adenocarcinoma

cells

Inhibition of
sporozoites

attachment and
invasion.

Transmembrane pore
formation

Buforin II,
Magainin II,

Lasalocid. [78]
Cathionic peptides 10 µg/mL ND

Reduction in oocysts
infectivity. Membrane

disruption

ND: Not determined. IC50 values were not established.
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4.3. Peptides Active against Plasmodium spp.

Peptides against Plasmodium have multiple mechanisms of action that cause decreases
in parasitemia (Table 3), and one of the predominant mechanisms is the interaction of
peptides with enzymes causing their inhibition and, consequently damage to the metabolic
pathways in which they participate. For example, for the maintenance and processing
of genetic material, peptides can inhibit the enzyme purine nucleoside phosphorylase of
P. falciparum, and the enzyme dihydrofolate reductase-thymidylate synthase, resulting in
the death of the parasite [91,92]. Another example of enzyme inhibition occurs during
the erythrocyte cycle, during the digestion of hemoglobin in the digestive vacuole for
protein biosynthesis and heme crystallization, a process that is catalyzed by enzymes such
as falcispainins that, if their function is inhibited, the parasite cannot obtain the amino
acids necessary for protein synthesis and therefore would die; this strategy is used by
certain peptides, such as CYS-IHL and CYS-cIHL, that are capable of inhibiting these
enzymes [93,94].

Table 3. AMPs with in vitro anti-Malarial activity.

AMP Name Type Source Evaluated
Concentration Cytotoxicity Activity and Possible

Mechanisms of Action IC50

Pep1 BM [91] ND Synthetic 20 µL ND
Inhibition of purine

nucleoside phosphorylase
in P. falciparum rings

16.14 µg/mL

JR21 [92] ND Synthetic 10 µM ND

Dihydrofolate reductase-
thymidylate synthase

inhibition in P. falciparum
rings

3.87 µM

CYS-IHL [94] Linear Synthetic 69.91 µM Noncytotoxic in human
liver carcinoma cell.

Hemoglobinase activity
inhibition in late P.

falciparum Trophozoites
27.55 µM

Kakeromamide B
[95] Cyclic

Moorea
producens

[Cyanobacteria]
11 µM Noncytotoxic in HEK293T

and HepG2 cells

Reduction in proliferation
of P. falciparum sexual

blood-stages and P. berghei
liver-stage. High affinity to

actin, sortilin and
subunit A of

glutamyl-tRNA
amide transferase

8.9 µM

[Gly]1-Pol-CP-
NH2
[96]

ND
Synthetic

derived from
Pol-CP-NH2

6.25 µM

Cytotoxic in
human mammary

adenocarcinoma, Hep G2,
SHSY-5Y, and SK-mel-147

Cell membrane disruption
in P. falciparum sporozoites ND

Crotamine [97,98] Cationic Crotalusdurissusterrificus
[Lepidosauria] 20 µM

No hemolytic activity in
human

erythrocytes

Peptide–membrane
interactions and H+

homeostasis disruption in
P. falciparum asexual blood

stages

1.87 µM

(L-cyclohexyl
alanin-D-

arginine) 3 [99]
ND Synthetic 59.16 ng/mL

No cytotoxic
effects in human
erythrocytes and

leukocytes

Chromatin compaction
and

mitochondrial membrane
disruption in P. falciparum

asexual blood stages

8.94 ng/mL

rR8-JR21 [92] ND Synthetic 13.22 ND

Dihydrofolate
reductase-thymidylate
synthase inhibition in P.

falciparum ring stages

1.53 µM

LZ1 [100] Linear peptide
Synthetic
derived

fromcathelicidin-BF

25 µM and
4 mg/kg ND

Blockade of ATP
production by selective
inhibition of pyruvate

kinase activity in P.
falciparum blood stages.

3.045 µM

Mtk-1 y Mtk-2
[101] Rich in proline Drosophila melanogaster

[Insecta] 50 µM
Hemolytic

activity in pig and mouse
(CD1) erythrocytes

Cell membrane disruption
in P. falciparum asexual

blood stages
ND

Stomoxyn [101] ND Lucilia sericata
[Insecta] 50 µM

Hemolytic
activity in

highest
concentrations in pig and
mouse (CD1) erythrocytes

Cell membrane disruption
in P. falciparum asexual

blood stages
ND
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Table 3. Cont.

AMP Name Type Source
Evaluated
Concentra-

tion
Cytotoxicity Activity and Possible

Mechanisms of Action IC50

CecA y CecB
[101]

Linear
cations

Galleria mellonella
[Insecta] 50 µM

Hemolytic
activity in

highest
concentrations in pig

and mouse (CD1)
erythrocytes

Cell membrane
disruption in P.

falciparum asexual blood
stages.

ND

[Arg]3-VmCT1-
NH2,

[Arg]7-VmCT1-
NH2
[102]

Synthetic 5 µM/L

Lower Cytotoxic effects
in MCF-7 human breast
epithelial cells, CC50 20

and 18 µM/L

Cell membrane
disruption in P.

gallinaceum sporozoites

0.57,
0.51 µM/L

VmCT1-NH2
[102]

Vaejovis
mexicanus [Arachnida] 5 µM/L

CC50 8.3 µM/L in
MCF-7 human breast

epithelial cells

Cell membrane
disruption in P.

gallinaceum sporozoites
0.49 µM/L

ND: not determined.

Peptide–membrane interactions and H+ homeostasis disruption in P. falciparum asex-
ual blood stages

Other targets of peptides are proteins and membranes, which, if damaged, can modify
the morphology of the parasite; however, not all peptides have parasiticidal effect, and
some only stop the development of Plasmodium spp., which is reflected in the slowed
kinetics of the life cycle [92,94–98].

In addition to reducing parasitemia, some peptides are capable of modifying the
immune response in the host by reducing the overproduction of proinflammatory cytokines
and, as a consequence, modulating damage to organs that are severely affected, such as the
liver [99].

Nevertheless, more information is needed to elucidate the mechanisms of action of
antimicrobial peptides against Plasmodium spp.

5. Concluding Remarks and Future Research Directions

Antimicrobial peptides have been described in many species, including fungi, plants,
insects, and humans (allowing access to an endless number of possible peptides with
diverse biological activities), and are currently presented as a therapeutic solution to control
different pathogenic microorganisms. Microorganisms that cause diseases in humans are
constantly evolving, which represents a challenge in the pursuit of effective treatments
against these pathogens. Some characteristics that make peptides attractive as potential
drugs are that they have been evolving for almost the same amount of time as the species
that produce them, and their effects on the control of microorganisms are very remarkable.
Some peptides are being used in experimental phases, and others are already marketed,
e.g., peptides against fungal agents such as Candida albicans, Cryptococcus neoformans, and
Fusarium oxysporum. Some peptides have been developed for topical application against
human papilloma virus, and others have been developed against protozoa and nematodes,
gram-negative bacteria, tumors, and as neuroprotectors.

Endogenous bioactive peptides can be produced in different cell types, such as neural
cells, immune cells, or glands, while exogenous peptides can be obtained from nutrients,
insects, nematodes, or marine organisms. Cecropin is one of the most explored insect
peptides that can destroy cell membranes and inhibit proline uptake.

Unlike other parasites, Apicomplexans have complex life cycles comprised of different
stages characterized by rapid replication, which enables adaptation to drug treatment.
The Apicomplexa invasion process involves secretory organelles housing proteins that
allow host-cell entrance and the development of an intracellular compartment in which
the parasites reproduce asexually. As intracellular organisms, their nutritional needs rely
on biosynthetic pathways or salvaging metabolites from their host [103]. Apicomplexa
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drug targets include calcium-dependent protein kinases, mitochondrial electron trans-
port chain, proteins secretion pathways, type II fatty acid synthesis, DNA synthesis and
replication, and, DNA expression, among others [104]. Most of the peptides reviewed in
this text produce the disruption of parasite cell membranes, in contrast to conventional
chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes.
Nonetheless, plasma membrane disruption, produces fast depolarization triggering protein
and DNA/RNA inhibition synthesis, which can lead to parasite death. Some peptides are
rich in amino acids, such as tryptophan and lysine, that might have an effect on anionic
biological membranes, producing pores, which allow peptides to distribute into internal
membranes and organelles [64].

Unlike Apicomplexan, hemoflagellate protozoa, such as Trypanosoma and Leishmania,
have less complex life cycles. Various research groups have been dedicated to the discovery
and structural elucidation of novel peptides against these parasites since the early 90s.
Extracellular forms (promastigote and trypomastigote) are the most common stages used
for the screening of peptides’ activity [105]. The antiprotozoal activity is supposed to
occur by membrane disruption, apoptosis, or by immunomodulatory responses. In vivo
assessments are considerably underexplored, due to their rapid degradation by endogenous
proteases [105]. It seems that peptide-based antiprotozoal drug development, presents
several challenges related to the complex life cycles. Therefore, computational models and
tools for the prediction of peptide activity are urgently needed. However, peptides have
some advantages over traditional drugs, such as slower emergence of resistance [106].

There are some issues to consider while scaling up peptide design. Peptides have
various limitations that could hinder their anti-Apicomplexa therapeutic use. They have
unfavorable plasma stability, are unable to cross the cell membrane to target intracellu-
lar targets, degrade easily, and have poor penetration of the intestinal mucosa; thus, it
can be assumed that they are not good candidates to treat intracellular parasites. [107].
Nonetheless, the results obtained so far show that they can be a good alternative to control
these parasites. It must be taken into consideration, that novel peptides must easily reach
intracellular targets with little or no toxicity to mammalian cells. To improve these disad-
vantages, encapsulation into a micro- or nanoparticle, can be achieved, as well as in silico
sequence-based prediction of cell-penetrating and toxicity. Penetratin-like peptides bind to
glycosaminoglycans at the cell surface. Natural DNA-binding peptides can be the source
for designing cell-penetrating peptides, such as those rich in lysine, or arginine [107].

Although there are currently some pharmacological alternatives for the control of
Apicomplexan parasites, these are sometimes inefficient, especially due to resistance mecha-
nisms and severe side effects, and they do not act against all parasite stages and sometimes
restrict access to some intracellular locations. Based upon the abovementioned results,
it seems that synthetic peptides, as well as those derived from natural sources, could
be promising alternatives for the treatment of infectious diseases. It is necessary to de-
velop new anti-Apicomplexan compounds combining drug research pathways, such as
in silico rational drug design and bio-guided natural substance studies, to identify new
molecules that might be able to act directly in the parasites or indirectly by activating the
host immune system.

As reported in the literature, peptides show a broad antimicrobial spectrum; therefore,
it would be recommended to explore their synergistic ability in combination with those
drugs in which resistance is reported, their capacity to decrease or increase the adverse
effects of currently used drugs, and their distribution in the parasite and in the host
cell. Genetic engineering or chemical modification of these peptides to improve their
functional properties would also be recommended. There is a high potential for the use of
antimicrobial peptides, and more research in this field can lead to promising results that
can have considerable effects on the control of human Apicomplexan parasites.
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