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Abstract: Actinobacteria is found to have a potent metabolic activity against pathogens. The present
study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated
from Indian marine mangrove sediments. The samples were collected from the coastal regions of
Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 165 rRNA analysis
and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were
screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans
and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS.
The 31 actinobacterial strains were isolated and 165 rRNA gene sequencing revealed that this
ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based
screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains
and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates)
were found to have a potential antifungal activity against all the tested C. albicans. GC-MS results
revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides.
Overall, the strains possess a wide spectrum of antifungal properties which affords the production of
significant bioactive metabolites as potential antibiotics.

Keywords: actinobacteria; antifungal; polyketide synthase; non ribosomal peptide synthase;
Candida albicans

1. Introduction

Bacterial cell factories and their wide applications in search of added value products such as
molecular therapeutics is booming currently; they have a promising future as the safest and most
efficient medicinal product discovery [1]. Flora and fauna as well as microorganisms are good sources
to obtain a wide variety of natural medicinal products [2,3]. Actinobacteria are very significant in this
regard [4], taken into account their intrinsic pharmacological importance [5]. The secondary metabolites
produced by these gram positive bacteria, have a wide spectrum of activities such as antimicrobial,
antiviral, immune-modulatory and as anticancer agents [6]. Peptides and polyketides are noticeable
and they are a potential group of natural products, mainly synthesized by two major types of enzymes:
non-ribosomal peptide synthases (NRPS) and polyketide synthases (PKS) [7]. Microbes harbouring
these biosynthetic gene clusters are probable source of novel natural products. Polyketides have
extensive applications as antibiotics in the pharmaceutical industry [8]. With several classes of PKS
genes known, type I PKS encompasses multidomain enzymes and type II PKS is comprised of many
enzymes [9]. NRPS are modular enzymes with multiple domains, namely acetylation, condensation,
and thioesterase [10]. Analysing the biosynthetic genes depicts the potential of the microbe to produce

Mar. Drugs 2018, 16, 60; d0i:10.3390/md 16020060 www.mdpi.com/journal/marinedrugs


http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
https://orcid.org/0000-0003-1576-5324
http://dx.doi.org/10.3390/md16020060
http://www.mdpi.com/journal/marinedrugs

Mar. Drugs 2018, 16, 60 20f 18

a particular type of natural product [11]. Moreover, gene guided metabolite studies also help in the
avoidance of the redundant discovery of known compounds [12]. These genes have served to be
a great source of interesting natural products with pharmacological relevance [1].

Apart from traditional techniques, such as identification or screening of pharmacologically
important microbes isolated from various ecosystems, the 165 rRNA phylogenetic analysis seems to be
an efficient method to point out medicinally important actinomycetes [13]. Mangrove ecosystems are
very promising sources of actinobacteria [14]. These microorganisms have been identified as producers
of antimicrobial compounds including cypemycin, neomycin, bottromycins, chloramphenicol and
grisemycin [15]. In fact, our current research aimed to identify actinomycetes with antifungal properties.
Referring to few previous reports [16,17], the present work focuses on identifying microbial leads
for antifungal metabolite production and to screen the isolates for the presence of biosynthetic genes.
The result reveals the occurrence of secondary metabolite genes in the majority of the isolates and
enunciates their great probability in biosynthesizing novel metabolites, hence prioritizing the isolates
for natural product discovery.

2. Results

2.1. Isolation and Identification of Mangrove Actinobacteria

From 10 marine sediment samples collected, approximately 31 actinobacterial isolates were
isolated and characterized. Figure 1 illustrates the isolation and morphology of the strains. Table 1 lists
the strains obtained in this study along with the sampling location. From each of the sampling sites,
sediments from different spots were collected to study the diversity and abundance of the organisms.
In this study, 31 strains have been isolated from Muthupet (6 isolates) and from Andaman and the
Nicobar Islands (25 isolates). Identification of the strains was done by 16S rDNA gene sequencing using
the primers 27F and 1492R. Most of the actinobacteria isolated were found to fall under Streptomyces
genus, while few of the strains were of the genera Rhodococcus (1), Corynebacterineae (1) and
Actinomycetales (1). Significantly, the strains listed in Table 2 were identified as novel species based on
the blast similarity of 165SrDNA gene sequences. In our study, among all media used, Starch casein
agar media proved to be effective for the isolation of actinobacteria.

Figure 1. (a) Sampling of mangrove sediments; (b) Pure culture of Actinobacteria: 1. VITGAP080, 2.
VITGAP240, 3. VITGAP241, 4. VITGAP258; (c) Gram staining of Streptomyces albidoflavus (VITGAP241).
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Table 1. Isolates obtained in this study and their accession ID.

Sequence-ID Genbank Accession Numbers Organism Sampling Location Latitude and Longitude
VITGAP080 KY608546 Streptomyces rochei Muthupet, Thiruvarur, Tamil Nadu 10.39N, 79.49 E
VITGAP095 KY608547 Streptomyces variabilis Muthupet, Thiruvarur, Tamil Nadu 10.39N,79.49 E
VITGAP103 KY608548 Streptomyces sp. Muthupet, Thiruvarur, Tamil Nadu 10.39N,79.49 E
VITGAP104 KY608549 Streptomyces sp. Muthupet, Thiruvarur, Tamil Nadu 10.39N, 79.49 E
VITGAP105 KY608550 Streptomyces sp. Muthupet, Thiruvarur, Tamil Nadu 10.39N, 79.49 E
VITGAP229 KY608585 Streptomyces sp. Port Mout, Andaman and Nicobar Islands 1140N,9241E
VITGAP231 KY608586 Streptomyces sp. Port Mout, Andaman and Nicobar Islands 1140N,9241E
VITGAP232 KY608587 Streptomyces sp. Port Mout, Andaman and Nicobar Islands 11.40N, 9241 E
VITGAP233 KY608588 Streptomyces clavuligerus Port Mout, Andaman and Nicobar Islands 1140N,9241E
VITGAP235 KY608589 Streptomyces sp. Port Mout, Andaman and Nicobar Islands 1140N,9241E
VITGAP238 KY608590 Streptomyces sp. Port Mout, Andaman and Nicobar Islands 11.40N, 9241 E
VITGAP240 KY608591 Streptomyces lividans Corbyn, Andaman and Nicobar Islands 11.38N, 9244 E
VITGAP241 KY608592 Streptomyces albidoflavus Corbyn, Andaman and Nicobar Islands 11.38N,92.44 E
VITGAP242 KY608593 Streptomyces sp. Corbyn, Andaman and Nicobar Islands 11.38 N, 92.44 E
VITGAP244 KY608594 Rhodococcus sp. Corbyn, Andaman and Nicobar Islands 11.38 N, 9244 E
VITGAP245 KY608595 Streptomyces violascens Corbyn, Andaman and Nicobar Islands 11.38N,92.44 E
VITGAP246 KY608596 Corynebacterineae bacterium Corbyn, Andaman and Nicobar Islands 11.38 N, 9244 E
VITGAP247 KY608597 Streptomyces sp. Sippighat, Andaman and Nicobar Islands 11.36 N, 92.41 E
VITGAP248 KY608598 Streptomyces sp. Sippighat, Andaman and Nicobar Islands 1136 N, 9241 E
VITGAP250 KY608599 Streptomyces sp. Sippighat, Andaman and Nicobar Islands 1136 N, 9241 E
VITGAP253 KY608600 Streptomyces sp. Wandoor Jetty, Andaman and Nicobar Islands 11.35N, 92.37 E
VITGAP255 KY608601 Actinomycetales bacterium Burmanalla, Andaman and Nicobar Islands 11.33N, 9243 E
VITGAP256 KY608602 Streptomyces sp. Burmanalla, Andaman and Nicobar Islands 11.33N, 9243 E
VITGAP257 KY608603 Streptomyces sp. Burmanalla, Andaman and Nicobar Islands 11.33N, 9243 E
VITGAP258 KY608604 Streptomyces sp. Burmanalla, Andaman and Nicobar Islands 11.33N, 9243 E
VITGAP259 KY608605 Actinomycetales bacterium Burmanalla, Andaman and Nicobar Islands 11.33N,9243 E
VITGAP261 KY608606 Streptomyces sp. Burmanalla, Andaman and Nicobar Islands 11.33N, 9243 E
VITGAP263 KY608607 Streptomyces chumphonensis Burmanalla, Andaman and Nicobar Islands 11.33 N, 9243 E
VITGAP270 KY608608 Streptomyces sp. MundaPahad, Andaman and Nicobar Islands 1129N,9242E
VITGAP271 KY608609 Streptomyces sp. Kalapahad, Andaman and Nicobar Islands 11.36 N, 9240 E

30f18
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Table 2. Novel actinobacterial strains obtained in this study; 165 rDNAgene sequence similarities.

40f18

Isolate No. Genbank Accession No. of the Isolates Sampling Location of the Isolates Closest Organism Genebank No. Similarity Percentage
VITGAP080 KY608546 Muthupet, Thiruvarur, Tamil Nadu Streptomyces rochei strain KP823705 96%
VITGAP095 KY608547 Muthupet, Thiruvarur, Tamil Nadu Streptomyces variabilis KU981101 95%
VITGAP 103 KY608548 Muthupet, Thiruvarur, Tamil Nadu Streptomyces sp. CP013142 95%
VITGAP 105 KY608550 Muthupet, Thiruvarur, Tamil Nadu Streptomyces sp. JQ009379 96%
VITGAP 235 KY608589 Port Mout, Andaman and Nicobar Islands Streptomyces sp. KX279534 83%
VITGAP 240 KY608591 Corbyn, Andaman and Nicobar Islands Streptomyces violascens KU973980 91%
VITGAP 253 KY608600 Wandoor Jetty, Andaman and Nicobar Islands Streptomyces sp. KU884356 94%
VITGAP 255 KY608601 Burmanalla, Andaman and Nicobar Islands Actinomycetales bacterium EU368818 88%
VITGAP 257 KY608603 Burmanalla, Andaman and Nicobar Islands Streptomyces sp. JE736620 97%
VITGAP 258 KY608604 Burmanalla, Andaman and Nicobar Islands Streptomyces sp. KR817750 87%
VITGAP 261 KY608606 Burmanalla, Andaman and Nicobar Islands Streptomyces sp. KX928494 92%
VITGAP 263 KY608607 Burmanalla, Andaman and Nicobar Islands Streptomyces chumphonensis NR_126175 94%
VITGAP 271 KY608609 Kalapahad, Andaman and Nicobar Islands Streptomyces sp. KT588654 92%
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2.2. Genetic Screening

PCR screening of the actinobacterial strains revealed the presence of PKS type I, PKS type II and
NRPS biosynthetic genes. Amplicons of desired size [PKS type I (bp-1.2kb), PKS type II (bp-500bp),
NRPS (bp-700bp)] shows the presence of the biosynthetic gene. Table 3 lists the biosynthetic genetic
potential of the actinobacterial strains. Among the 31 strains obtained, only 14 strains showed the
presence of type I PKS gene and 6 of the strains showed the presence of type II PKS gene. Interestingly,
all strains harboring type II PKS were also found to harbor type I PKS.

The biosynthetic potential of the actinobacterial strains reveals that type I PKS are more abundant
than that of type II. Type I PKS was found to be harbored by about 20.8% of the actinobacterial strains,
while type II PKS was found only with 8.3%. Remarkably, approximately 34.7% of strains showed
the presence of NRPS gene. Almost all the strains harboring the genes belong to Streptomyces genus,
while one of the strains revealing the presence of type I PKS is Rhodococcus. Interestingly, strains
belonging to other genera, namely Corynebacterineae, did not harbor any of the studied genes.

Table 3. Biosynthetic potential of the actinobacterial isolates.

Strains PKS (Type)  PKS (Type II) NRPS
VITGAP080 + + +
VITGAP095 +
VITGAP105 +
VITGAP240 + +
VITGAP241 + + +
VITGAP242 + + +
VITGAP244 +
VITGAP248 +
VITGAP250 +
VITGAP253 +
VITGAP255 +
VITGAP257 +
VITGAP258 + +

‘+” indicates the presence of biosynthetic gene.

2.3. Phylogenetic Analysis of the Actinobacteri Strains

Phylogenetic analysis was performed by constructing the neighbor joining phylogenetic tree
of all the strains to analyze the evolutionary relationship, and the distance was calculated by
maximum-parsimony method using MEGA software (Figure 2). Based on the query coverage and
the percentage of identity, the top aligned sequences were retrieved (Table 4). Significance of the
branch order was determined by bootstrap analysis of 1000 replicates, see Figures 3—7 (These figures
depict the evolutionary relationships of taxa of the query sequences NRPS (VITGAP241), Type I PKS
(VITGAP-240, VITGAP-241) Type I PKS (VITGAP-240, VITGAP-241). The optimal tree with the sum of
branch lengths for each sequence are 1.31645770, 1.25726471, 1.52648453, 4.16276907, and 16.20030581
respectively. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree.
The analysis involved 16, 16, 14, 11 and 7 nucleotide sequences. Codon positions included were 1st +
2nd + 3rd + Noncoding).
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_95: KY608591 Streptomyces sp. (VITGAP 240)
74 KYE02592 Streptomyces sp. MITGAP241)
EE — KUJ981092.1 Streptomyces albidoflavus stramn
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KF973303.1 Streptomyces somaliensis strain
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I—KJ494332.1 Streptomyces sp.

ol — 23240941 Actinomycetales bacterium

Figure 2. Phylogenetic tree based on 165 rRNA gene sequences of the strains.

Streptomyces sp. (VITGAP240 & VITGAP241) share the conserved domain with a common ancestor.
Actinomycetales bacterium is found be the new diverse species among the entire group of the Streptomyces
family with minimum bootstrap value. Streptomyces sp. in two clades are common along with their
closely related species, Streptomyces violascens strain.
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Figure 3. Dendrogram of NRPS (VITGAP241).

CPO04370.1 Streptomyces albus J1074 complete genome

KUBE4419.1 Actinorycete OACtB1Z type | polyketide synthase gene partial cds

CPO09B02.1 Streptomyces sp. FR-008 complete genome

FJ042500.1 Streptomyces sp. PRSI type | PKS gene partial cds

ABA31684.1 Streptornyces sp. ID0S-A0139 gene for polyketide synthase patial cds clone: ID139m-NE

KUBB4417 1 Actinomycete OACtBO0 type | polyketide synthase gene partial cds

Mi5564705 Streptomyces lividans strain type | polyketide synthase gene (VITGAP240)
CPO09802.1 Streptormyces sp. FR-008 complete genormel(2)

EE CPO04370.1 Streptomyces albus J1074 complete genorme(2)

83

CPO09302.1 Streptomyces sp. FR-005 complete genome(3)
r AY310323.2 Streptornyces sp. FR-008 heptaene macrolide complex synthesis gene cluster complete sequence(d)

gg | CPO1E824.1 Streptormyces sampsonii strain KJ40 complete genome
AY310323.2 Streptomyces sp. FR-003 heptaene macrolide complex synthesis gene cluster complete sequence

85 <|— CPO16E24.1 Streptomyces sampsonii strain KJ40 complete genome(2)
46 | AY310323.2 Streptomyces sp. FR-008 heptaene macrolide cornplex synthesis gene cluster complete sequence(2)

Figure 4. Dendrogram of Type I PKS (VITGAP240).
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KUB84417.1 Actinomycete OACtE00 type | polyketide synthase gene partial cds

Cr14485.1 Streptomyces albus strain SM254 complete genome

FI042500.1 Streptomyces sp. PKSIT type | PKS gens partlal cds

AB431204.1 Srrepromyces klleus gene tor polyketide synthase partial cds strain: NBRC 12766 clone: t2112766m-N11
63 | AB431684.1 Streptomyces sp. ID05-A0139 gene for polyketide synthase partial cds clone: ID139m-NE

Cr04370.1 Streptomyces albus J1074 complete genome

CP009802.1 Streptomyces sp. FR-008 complete genome

9 KUB84419.1 Actinomycete OACtE12 type | polyketide synthase gene partlal cds

KUB84425.1 Actinomycete OACtEEL type | polyketide synthase gene partial cds

ABA31802.1 Streptomyces =p. ID05-A0225 gene for polyketide synthase partial cds clone: ID225m-M5
AY310323.2 Streptomyces sp. FR-008 heptaene macrolide complex synthesis gene cluster complete sequence(2)

37| CPO16B24.1 Streptomyces Sampsonii strain K40 complete genome(2)

4{ CrPO14485.1 Streptomyces albus strain SM254 complete genomef3)
&l 43 | CPO09802.1 Streptomyces sp. FR-008 complete genome(3)
MG564706 Streptomyces alhidollawis strain type | polyketide synthase gene (WITGAR241)

KUBB4421.1 Actinomycete OACTE35 type | polyketde synthase gene partal cds

‘l\‘r’310323.2 Streptomyces =p. FR-008 heptaene macrolide complex synthesis gene cluster complete sequence

| crolsaza.1 Streptomyces Eampsonii strain K40 complete genome

AY¥310323.2 Streptomyces sp. FR-008 heptaene macrolide complex synthesis gene cluster complete sequence(3)

CPOM3T0.1 Streptomyces albus 11074 complete genome(2)
%CPDIMES.I Streptomyces albus strain SM254 complete genome(2)

CPO08802.1 Streptomyces sp. FR-008 complete genome(2)

Figure 5. Dendrogram of Type I PKS (VITGAP241).
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Figure 6. Dendrogram of Type II PKS (VITGAP240).

Table 4. Query coverage and percentage of identity of the sequences.

Sequence Query Coverage % of Identity No of Hits
NRPS_VITGAP241 99% >83% 15
Type I PKS VITGAP-240 99% >89% 15
Type I PKS VITGAP-241 80% >79% 13
Type II PKS VITGAP-240 56% >70% 10

Type II PKS VITGAP-241 68% >67% 6
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MGE64711 StreptomyCces strain Type || Palyketide Synthase partial sequence (VITEAR241)
16

CrO03041.1 Pseudomonas Huorescens ARG complete genome
2

Cr017296.1 Peeudomonas fuorescens strain Ptld complete genome
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| LT629744.1 Pseudomonas sp. hs2935 genome assembly chromosome: |

100 [
Cr023969.1 P=eudomaonas =p. FDAARGOS 380 chromosome complete genome

Figure 7. Dendrogram of Type II PKS (VITGAP241).

2.4. Antifungal Activity Prospect Evaluations

Actinobacterial strains harboring biosynthetic genes were tested for their antifungal activity against
16 clinical isolates of C. albicans obtained from diagnostic centers in Tiruchirappalli, Tamil Nadu, India.
Among the 14 bio-potential strains, only 2 of them (VITGAP240 and VITGAP241) exhibited an effective
anti-candidal activity against the tested pathogens. Interestingly, these two bioactive strains possessed both
type I and II PKS genes, hence attracting further attention. VITGAP241 also showed the presence of the
NRPS gene. VITGAP241 exhibited more pronounced activity (18 mm diameter) than VITGAP240 (13 mm
diameter). Figure 8 illustrates the bioactivity of the strains VITGAP240 and VITGAP241.

Efficient antifungal activity was exhibited by the actinobacterial strains. As of our knowledge,
this is the first report analyzing the antifungal potentiality of actinobacteria of Indian origin against
Candida albicans (clinical pathogens). Though many of the strains possessing the genes were not
functionally active, the two strains exhibiting bioactivity, harboured one of the biosynthetic genes
supporting our hypothesis.

fah b}

Figure 8. VITGAP240 & VITGAP241 showing significant activity against: (a) Clinical isolate 1 of
Candida albicans (b) Clinical isolate 2 of Candida albicans.
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2.5. Antibiotic Sensitivity Assessment of Actinobacteria Strains

To assess the antibiotic sensitivity, the strains were screened against the following antibiotics:
piperacillin, co-trimoxazole, ofloxacin, amikacin, erthyromicin, cefuroxime, tobramycin, ampicillin,
tetracycline, ceftriazone, polmycin, nitrofurantin, rifampicin, clindamycin, netillin, ceftrazidime,
novobiocin, aztreonam, cephotaxine, chloramphenicol, streptomycin, penicillin, methicillin,
jancomycin, gentamycin, and vancomycin (Table 5). Based on PCR screening (Table 3), the potential
strains which harbored PKS and NRPS gene and a few strains which did not show the presence of the
genes were also chosen randomly for the assay to compare the strains.

All the tested strains displayed significant sensitivity against most of the antibiotics used.
The Highest sensitivity was obtained against netillin, novobiocin, cephotaxine (60% each), and lowest
sensitivity was obtained against piperacillin, erthyromicin, nitrofurantin, chloramphenicol and
jancomycin (6.6%). The strains exhibited resistance against the following antibiotics: aztreonam,
streptomycin, penicillin, and methicillin. The strain VITGAP240 exhibited resistance to the
following antibiotics: piperacillin, amikacin, erthyromicin, cefuroxime, ampicillin, polmycin,
nitrofurantin, rifampicin, clindamycin, ceftrazidime, aztreonam, chloramphenicol, streptomycin,
penicillin, methicillin, jancomycin and gentamycin. The strain VITGAP241 exhibited resistance
to piperacillin, ofloxacin, erthyromicin, cefuroxime, tobramycin, ampicillin, ceftriazone, polmycin,
nitrofurantin, clindamycin, ceftrazidime, aztreonam, streptomycin, penicillin and methicillin. Hence,
the strains VITGAP240 and VITGAP241 proved to be promising and pharmacological important
targets for the future, especially for antifungal based secondary metabolite profiling studies.

Table 5. Antibiogram profile of the strains (R-resistant, S-sensitive).

Strains without the

Antibiotics Strains with the Biosynthetic Genes Biosynthetic Genes

80 95 240 241 242 105 248 250 253 255 258 103 105 261 263

Piperacillin R R R R S R R R R R R R R R R
Co-Trimoxazole R S S S S S S S R R S R R R R
Ofloxacin S S S R S R S R R S R R S S R
Amikacin S S R S S R S R R R R R R S R
Erthyromicin R S R R R R R R R R R R R R R
Cefuroxime S S R R R R S R R R R R R R R
Tobramycin R S S R R R R R R R R R R R R
Ampicillin R S R R R S S R R R S R R R R
Tetracycline R S S S S R R S R R S R R S R
Ceftriazone S S S R S R S R R R S R R R S
Polmycin S S R R R R S R R R R R R R R
Nitrofurantin R R R S R R R R R R R R R R R
Rifampicin S S R S S R S R R R R R R S R
Clindamycin R R R R S R R R R R R R R R R
Netillin S S S S S R S R R R S R S S R
Ceftrazidime R S R R S R R R R R R R R R R
Novobiocin S S S S S R S R R S S R S R R
Aztreonam R R R R R R R R R R R R R R R
Cephotaxine S S S S S R S S R R S R R S R
Chloramphenicol R R R S R R R R R R R R R R R
Streptomycin R R R R R R R R R R R R R R R
Penicillin R R R R R R R R R R R R R R R
Methicillin R R R R R R R R R R R R R R R
Jancomycin R R R S R R R R R R R R R R R
Gentamycin S S R S R R S R R R S R S S R
Vancomycin R R S S R R R R R R R R R R R

2.6. GCMS Analysis and Screening of Bioactive Compounds

The crude extract of secondary metabolites was analyzed with the GCMS technique to identify
the possible bioactive compounds’ availability. Figure 9 representatively illustrates a sample’s GCMS.
Figures 10-12 are the segregated compounds (Heterocyclic, Peptides, and Polyketides). Maximum of
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these compounds were found as unidentified or unpublished. Identified compounds were found with
structural clarity and mostly equipped with functionally important scaffolds/groups. The confirmed
nature allowed us to screen them as the most suitable medications against fungal infections.

, 14-Jul-2017 + 00:34:17,
240-(17is-1554) Scan El+
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2611
| I.
2573
e AL T R UL E SR AT ELTT RSP THIL SN GEEEORE PR YL RP RIS E IO CH PR e e peoss Time
19.91 2091 21.91 22.91 23N 2491 25.91

Figure 9. GCMS result of Actinobacteria secondary metabolite from marine mangrove sediment.

2.7. Pharmacological Property Predictions of Screened Compounds

In order to find the most suitable antifungal medications, the compounds that were categorized
from GCMS studies were predicted for their possible biological activity potentials through
Molinspiration and PASS (Figure 13). Among the segregated Heterocyclic (Cpd1-Cpd8) (Figure 10),
peptides (Cpd9-Cpd12) (Figure 11), and polyketides (Cpd13-Cpd16) (Figure 12), a significant protease
inhibition ability was found especially for peptide and polyketides. Particularly, the Molinspiration
predictions revealed the strong Protease inhibitory potentials of all peptides (Cpd9-Cpd12) and
polyketides (Cpd13-Cpd16) with a positive score range of 0.3 to 1. Apart from this, PASS prediction
possible activity score of 0.922 (as NADPH peroxidase inhibitor) was found to have been established to
the Heterocyclic compound; Cpd1 indicated its potential antifungal medicinal value. The opportunistic
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human fungal pathogen Candida albicans was already proven to use an NADPH oxidase enzyme (NOX)

and reactive oxygen species (ROS) to regulate morphogenesis in an animal host [18,19]. So, this PASS
score is a gateway to evaluate Cpdl as a possible antifungal drug.
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Figure 13. Bioactivity prediction results of isolated compounds from Actinobacteria: (a) Overall
bioactivity of the compounds (b) Individual bioactivity of the compound.

3. Discussion

Mangrove ecosystem remains untapped and thus seems to be a promising source as a rare
actinobacteria enabling pipeline of novel natural products. Marine actinobacteria are well known to be
valuable antifungal drug sources [20]. The present study has focused on targeting the biosynthetic
genes in actinobacteria from the Andaman Islands, for production of novel antifungals. In this
study, a potential strain has been identified from mangrove soil sediments which exhibits excellent
inhibitory activity against clinical C. albicans. Biosynthetic genetic assessment was performed for the
identified strain and then bioactive metabolites were extracted. To the best of our knowledge, this is
the first study to evaluate the antifungal activity of Actinobacteria isolated from the Andaman Islands,
against clinical pathogens of C. albicans. There are only a few reports about the actinobacteria from the
Andaman islands, India which focuses on screening of enzymatic activity [21], antibacterial activity [22],
and antifungal activity against multidrug resistant pathogens (C. albicans) [23]. Significantly, the study
opens a new horizon by providing insights into the diversity and bio-potential of prominent strains
isolated from mangrove ecosystem of the Andaman Islands.

Among all fungi, C. albicans, asymptomatically inhabits and affects various systems of healthy
human beings and it is the most common microbe found in the oral and gastrointestinal tract in
40-60% cases of Candidiasis [24,25]. The occurrence of candidiasis even in HIV-infected and cancer
patients, seems to clearly depict the increasing threat alarm [26]. Only rare species of Candida cause
candidiasis due to the uncontrolled growth of fungus [27]. Henceforth, there is a thrust area in finding
the prospective natural compounds against fungi.

Genes coding for secondary metabolites are highly conserved in the phylum of actinobacteria.
The gene cluster analysis affords to identify the positive strains for the production of novel
metabolites [28]. In this study, PCR screening for biosynthetic genes of the strains was performed.
Degenerate PCR primers targeting conserved motifs in these genes helped to infer the biosynthetic
potential of the strains [11]. The results revealed the existence of biosynthetic genes (PKS type I and
II, NRPS), which helped in prioritizing the strains with inherent potential to synthesize secondary
metabolites. NRPS positive strains are widely present, however, PKS type I and II are less frequent due
to the lack of genes in those strains or less similarity of degenerate primers used in unusual domains
present in the corresponding genes [29]. Among all the PKS and NRPS positive strains screened,
only VITGAP240 and VITGAP241 were found to be potentially active against clinical isolates of
C. albicans. Though gene-metabolite correlation helps in prioritizing the strains, the study indicates that
all genetically positive strains were not functionally active because of cryptic-silent gene clusters [11].
Fermentation broths of two strains, namely VITGAP240 and VITGAP241, exhibited bioactivity against
clinical isolates of C. albicans.

Among various compounds identified from the strain VITGAP241 crude extract through GC-MS
analysis, only 16 compounds were selected based on the protease activity (generally acting as
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antifungal agents) [30] prediction using Molinspiration and PASS online tools. The obtained secondary
metabolites of Actinomycetales highlights a potential source of numerous novel therapeutics with
antifungal, antibacterial, antiviral, antiparasitic and antitumour etc. properties [28]. The compounds
were grouped into polyketides, peptides and heterocyclic compounds. To the best of our knowledge
the identified compounds from the strain Streptomyces sp. VITGAP241 have been reported for the first
time by highlighting their extensive potential activity.

In addition to that, among the identified compounds, Cpd10 (L-Leucyl-Glycyl-L-Leucine) was
found to have a carboxylic acid group which ensures the assured exchange of electrons to form
hydrogen bonds within a minimal A range. The anticipated interaction to achieve maximum
expected therapeutic value, compound/drug dissolution, pharmacokinetic/pharmacodynamics
and ADMET properties are made easy due to this facilitated functional group availability.
Importantly, the Ligand-Receptor combinations requires -SH complex to inhibit the corresponding
enzymes that are involved in the disease generation and development [31]. Hence, Cpd12
(T-Butoxycarbonylalanyl-Alanyl-Amino-2-(Ethylthio)-2-Aminoethane) was found to have established
with a -5 unit along with all other essential functional units which includes three carbonyl, methoxy,
amino and methyl. Moreover, Cpd16 has the maximum protease inhibition activity of all other
identified compounds. Further, polyketides that are widely substituted with -OH, -O, -CHO are
normally involved in the bi-functional including electron donation and acceptation. This facilitates
the internal temporary bridging between the compounds and the target proteins which depicts
the promising medicinal value. The compounds Cpd13 (Galactose, 4,6-o-octylidene-), Cpd14
(-Alpha.-d-mannofuranoside, 1-nonyl-), Cpd15 (D-Glucopyranose, 4,6-o-octylidene-) and Cpd16
(.Alpha.-d-mannofuranoside, 1-o-decyl-) were commonly found to have -OH, -O, -CHO as their
core functional units. The other group, Peptides, well-known protease inhibitors, were also established
with -5, -NH, -O, -OH, -OMe and -Me. These are the best examples for mixed functional substituents
i.e., electron donor, acceptor, functionally activators and deactivators that makes the compounds have
a balanced interaction between the target proteins.

The strains were further allowed to assess the drug resistance which reveals the significant
activity against the antibiotics. In particular, VITGAP240 exhibits the resistance against 17 antibiotics,
whereas VITGAP241 exibits resistance to 14 antibiotics. This clearly indicates that these two bioactive
strains encompass a wide spectrum of antimicrobials with their putative activity. The presence of
multiple biosynthetic genes could be involved in the production of various compounds which shows
the potential drug resistance [32]. Further investigation about the bioactive ingredients of potential
strains shed light in understanding the relation between the biosynthetic gene and metabolites for the
scientific community. Concomitantly, the strain Streptomyces sp. VITGAP241 harbor great potential to
synthesize metabolites which could contribute to a large extent in drug discovery.

4. Materials and Methods

4.1. Isolation of Marine Mangrove Actinobacteria

Marine mangrove sediments were collected aseptically in sterile plastic containers from Muthupet
(3 October 2015) and Andaman, Nicobar Islands (20 February 2016), India. The collected samples
were transferred to the lab, stored at 4 °C and processed within 2-3 days. One gram of collected
wet sediment was suspended in 99 mL of 50% sterile sea water and kept for shaking at 120 rpm
for 3 h in rotary shaker. The enriched sediment sample was subjected to serial logarithmic dilution
in 0.8% saline down to 10~%. 0.1 mL of aliquot from each dilution; it was then plated in Starch
casein agar, Actinomycetes isolation agar, International Streptomycetes project-2 and Bennett’s agar
medium and incubated at 28 °C for 7-10 days [33]. Pre-treatment of the sediment samples was also
done to avoid fungal growth, wherein, the sediment samples after a brief period of air drying, were
subjected to heating at 65 °C for 20 min [34]. The pre-treated sediment samples were then processed
in the same way as wet sediment processing. Actinomycetes were initially recognized by traditional
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morphological criteria including their characteristic leathery colonies, pigmentation including chalky
white appearance, morphology of substrate and aerial hyphae [35].

4.2. Genomic DNA Extraction for Identification Through 16S rRNA Sequencing

The isolates obtained from the sediments were processed for the genomic DNA extraction, using
HiPurA™ Streptomyces DNA Purification Kit (MB527, Himedia, Mumbai, India) for immediate use or
for storage at —20 °C. Concentration and purity of the extracted DNA was then evaluated by running
on Agarose gel and by NanoDrop (Thermo Scientific) readings.

4.3. Amplification of 16S rRNA Gene and Sequencing

The genomic DNA obtained from the actinobacterial strains was further subjected to PCR
amplification of 16S rRNA gene using the primers 27F-(5'-AGAGTTTGATCCTGGCTCAG-3') and
1492R-(5'-ACGGCTACCTTGTTACGACTT-3') [36]. The PCR mixture consisted of 5 uL. of master mix
(Ampligon), 0.5 pL each of forward and reverse primer, 3.5 puL of ddH,O, 0.5 puL of template DNA
(20 ng/pL) and the conditions were as follows: initial denaturation at 94 °C for 8 min; 30 cycles at 94 °C
for 1 min, 57 °C for 1 min, and 72 °C for 2 min; and a final 8-min extension at 72 °C. Further detection of
the PCR product was done by agarose gel electrophoresis. The purified PCR products were sequenced
by MacroGen Co. (Seoul, Korea). Phylogeny prediction was done using MEGA 4.0. DNA sequences
were deposited in NCBI with following accession numbers: KY608546-KY608550, KY608585-KY608609.

4.4. PCR Screening for Biosynthetic Genes

PCR amplifications with final volume of 100 uL were performed with following
primers: PKS type I degenerate primers, KI1F-(5-TSAAGTCSAACATCGGBCA-3') and
M6R-(5'-CGCAGGTTSCSGTACCAGTA-3') using the following conditions: initial denaturation of
95 °C for 10 min; 35 cycles of 95 °C for 30 s, 55 °C for 60 s, and 72 °C for 2 min; and a final extension at
72 °C for 10 min, PKS type II degenerate primers KSaF-(5-TSGRCTACRTCAACGCSCACGG-3') and
KSBR-(5'-TACSAGTCSWTCGCCTGGTTC-3') using the following conditions: initial denaturation
of 95 °C for 10 min; 30 cycles of 95 °C for 30 s, 58 °C for 30 s, and 72 °C for 45 s; and a final
extension at 72 °C for 10 min, for NRPS, A3F-(5-GCSTACSYSATSTACACSTCSGG-3') and
A7R-(5'-SASGTCVCCSGTSCGGTAS-3') using the following conditions: initial denaturation of 95 °C
for 10 min; 35 cycles of 95 °C for 30 s, 61 °C for 45 s, and 72 °C for 1 min; and a final extension at 72 °C
for 10 min [37,38]. Amplified fragments were then analyzed using 100 bp DNA ladder (HiMedia) in
agarose gel (1.2%). The biosynthetic genes of the bioactive isolates were sequenced by MacroGen Co.
(Seoul, Korea). The sequences were deposited in NCBI with following accession numbers: PKS
type I—VITGAP240 (MG564705), VITGAP241 (MG564706), PKS type II—VITGAP240 (MG564711),
VITGAP241 (MG564712), NRPS—VITGAP241 (MG564713).

4.5. Phylogenetic Analysis of the Strains

For the phylogenetic assessment, the gene sequences were aligned in Alignment Explorer
of MEGA software, version 4 [39] using ClustalW preference. The trimming and verification
of the sequence alignment were carried out by utilizing the MUSCLE (UPGMA) algorithm [40].
The neighbour-Joining [41] and maximum-parsimony methods were used to compute the evolutionary
distances. Bootstrap analyses were performed with 1000 replications to evaluate the tree
robustness [42].

4.6. Evaluation of Antifungal Activity

Actinobacterial strains harboring the biosynthetic genes were selected for evaluation of
anti-candidal activity by agar well diffusion method [43]. 16 clinical isolates of C. albicans were
obtained from diagnostic centers of Tiruchirappalli, Tamil Nadu. These isolates were inoculated in
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Sabouraud dextrose broth and incubated for growth until 10° CFU/mL (0.5 McFarland) was obtained.
100 pL of the fungal suspensions were seeded onto Sabouraud dextrose agar plates and wells of 6 mm
diameter were punched using sterile borer. The actinobacterial strains were inoculated in Starch casein
broth and incubated at 28 °C, 150 rpm for 7 days. The culture supernatant was then collected after
centrifugation of the culture at 10,000 rpm for 10 min. The culture supernatant was extracted with
equal amount of ethyl acetate and subsequently evaporated to obtain the crude extracts. 50 uL of the
actinobacterial culture extract were added to the wells and tested for anti-candidal activity. The plates
were incubated at 28 °C for 24-48 h. The experiments were performed in triplicates.

4.7. Antibiotic Susceptibility Test

Standard antibiotic discs (30 mcg/disc) were used to evaluate the antibiotic sensitivity blueprint
of the isolates. The potential isolates were inoculated in starch casein broth and incubated at 28 = 2 °C,
150 rpm for 7 days. The grown cultures were then plated on Starch casein agar plates and the antibiotic
discs were placed on the top of the spread culture. The plates were then incubated at 28 °C for
2448 h. The plates were then observed for the occurrence of inhibition zone and the diameters
were measured [44]. Based on the zone formed, the isolates were considered either as susceptible (S),
or resistant (R) for the antibiotics tested.

4.8. GCMS Results and Screening of Pharmacologically Important Bioactive Compounds

In order to screen the bioactive or medicinally important secondary metabolite compounds,
the Gas Chromatography Mass Spectrometry (GCMS) analysis was executed for the crude extract
followed by the Thin Layer Chromatography (TLC) confirmations. TLC was performed using
pre-coated silica-in alumina plate Fpss4 (Merck) to separate the individual compounds from the
non-volatile mixture (crude extract of the Actinomycetes sp.). Crude samples were spotted on the
TLC plates and eluted from 0 to 100% n-Hexane/Ethyl acetate. The obtained spots were analyzed
(TLC chamber) and noted for easy elution at suitable elution % using n-Hexane/Ethyl acetate (2:8) of
individual spot via column chromatography. To determine the eluted individual compounds, GCMS
analysis was carried-out using the Clarus 680 GC fused silica column, packed with Elite-5MS (5%
biphenyl 95% dimethylpolysiloxane, 30 m x 0.25 mm ID x 250 um df) and the components were
separated using Helium as carrier gas at a constant flow of 1 mL/min. The injector temperature was set
at 260 °C during the chromatographic run. The 1 puL of extract sample was injected into the instrument.
The oven temperature was as follows: 60 °C (2 min); followed by 300 °C at the rate of 10 °C min~!;
and 300 °C, where it was held for 6 min. The mass detector conditions were: transfer line temperature
240 °C; ion source temperature 240 °C; and ionization mode electron impact at 70 eV, a scan time 0.2 s
and scan interval of 0.1 s. The spectrums of the components were compared with the database of
spectrum of known components stored in the GCMS NIST (2008) library. ChemDraw (Version 15.0)
was used to elucidate the structural confirmations of the bioactive compounds. The bioactive materials
that were isolated from Actinomycetes sp. were categorized according the availability of functional
groups under three major types i.e., polyketides, peptides and heterocyclic compounds. Their physical
and chemical properties were unveiled.

4.9. Pharmacological Property Predictions of Screened Compounds

The categorized compounds from GCMS analysis were predicted for their possible biological
activity potentials through Molinspiration and PASS [45,46].

5. Conclusions

Marine actinobacteria are known to produce many secondary metabolites and its diversity in
Indian marine ecosystem is being explored. Our present study evidently revealed the potential
of actinobacteria isolated from Indian marine environments which allow the synthesis of a wide
spectrum of antifungal compounds. A wide spectrum of the characterized bioactive compounds
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were the products of gene clusters that expressed coordinately. Moreover, the importance of PKS and
NRPS genes for the expression of antifungal activity in marine actinobacteria has been established.
Further, we found that the PCR based prescreening of target genes encoding for bioactive compound
synthesis is one of the effective approaches for the detection of novel and active secondary metabolites.
There are many questions with regard to the evolution and distribution of actinobacteria in the marine
ecosystem, as well as unique sources for the isolation of novel actinobacteria which produce bioactive
metabolites; this study depicts the potential of actinobacteria to synthesis bioactive compounds with
the promising antifungal activity. Hence, further characterization of antifungal compounds generated
by these actinobacteria could solve the emerging the problem of antibiotic resistance in C. albicans.
Future studies should include isolation, identification and characterization of the bioactive compounds
responsible for the bioactivity; insights about molecular interaction (between target receptor and
potentially identified compounds); a suitable in vitro or in vivo model to validate medicinal effects of
the compounds; establishment of Structure-Activity Relationship and finally ADMET, PK/PD and
druggability validations.
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