
REVIEW

Bioadhesion in the oral cavity and approaches for biofilm
management by surface modifications

Torsten Sterzenbach1
& Ralf Helbig2

& Christian Hannig1
& Matthias Hannig3

Received: 11 March 2020 /Accepted: 15 October 2020
# The Author(s) 2020

Abstract

Background All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial
colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is
associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis.
Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or
propagation of microorganisms.
Objectives and findings The present paper depicts the current knowledge on the impact of different physicochemical surface
characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental
research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or “easy-to-
clean” surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface
free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent
superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacte-
riostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could
represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly
in vivo or in situ studies were considered in the review.
Conclusion Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenom-
enon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith
hampers low-fouling strategies.
Clinical relevance Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral
health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.

Keywords Oral biofilms . Biofilmmanagement . Low-fouling surfaces . Nanostructured surfaces . Textured surfaces . Pellicle

The oral microbiota in health and disease

The oral bacterial community consists of more than 1000 dif-
ferent bacterial species and an estimated number of around 20
billion residents [1].Most of them (≈ 96%) belong to the phyla
of Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria,
Bacteroidetes, and Spirochaetes [2, 3]. Many of them are
capable of colonizing both nonshedding surfaces of teeth
(enamel or dentin) as well as epithelial mucosal surfaces.
There they can form biofilms (plaque), which are highly var-
iable in their composition depending on the specific surface,
the particular location within the oral cavity, and the overall
oral health status of the individual subjects, but also on envi-
ronmental conditions like carbohydrate intake or flow of gin-
gival crevicular fluid [4, 5]. Within healthy individuals, the
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host and microbial communities generally live in a homeostat-
ic balance, and the oral microbiota serves many beneficial
functions to the host. For example, it provides colonization
resistance toward the settlement by pathogenic microorgan-
isms [6]. Colonization resistance is mediated by several fac-
tors like competition for substrates, generating an inhibitory
microenvironment for settlement of pathogens, release of
antibactericidal substances, and stimulation of the host immune
system (recently reviewed in [7]). However, many factors can
disrupt this fragile equilibrium. This results in an imbalance
(dysbiosis) of the microbiota ultimately leading to selection and
enrichment of pathobionts [8]; for example, poor oral hygiene
but also inflammatory and autoimmune diseases, immunodefi-
ciency disorders, diet rich in low molecular carbohydrates, and
many more health issues can disturb a healthy oral microbiota
(recently reviewed in [9]). The breakdown of carbohydrates by
Streptococcus mutans and other microbial pathogens can lead to
an acidification of tooth surfaces. This may result in cavities due
to demineralization and dissolving hard tissues of the teeth [10].
The onset of inflammation leads to the development of gingivitis
[11]. This is caused by biofilm formation at the gingival margin.
Colonization and inflammation of the subgingival pocket and the
gingival crevice does not necessarily lead to the development of
periodontitis, but rather to a change in environmental conditions,
followed by an ecological shift toward Gram-negative and pro-
teolytic bacteria that trigger immunological reactions that can
lead to the clinical signs of periodontitis [12, 13]. Unlike gastro-
intestinal disorders, the onset of periodontitis is characterized by
an increase in microbial diversity [14, 15]. However, most oral
diseases are not caused by isolated infections with specific path-
ogens but are rather an intrinsic interplay between the host, key-
stone pathogens, and polymicrobial synergy and dysbiosis
(PSD) [16, 17]. Nevertheless, a myriad of species have been
connected to periodontal diseases, with the most frequent ones
being Fusobacterium nucleatum , Aggregatibacter

act inomycetemcomitans , Prevote l la in termedia ,
Porphyromonas gingivalis, or Tannerella forsythia [18, 19].

However, the oral microbiota and related biofilm devel-
opment do not only pose a major health issue on natural
dental or soft tissue but also on artificial dental materials
(e.g., resin-based composite fillings, crowns, dentures, or
implants). This may lead to inflammation and destruction
of soft and hard tissues surrounding dental implants. These
conditions can develop into mucositis and peri-implantitis
similar to gingivitis and periodontitis [20]. Also biofilm
formation at the margins of dental restorations can lead to
secondary caries [21]. Therefore, the development of arti-
ficial dental materials with reduced bacterial colonization
or “easy-to-clean” properties is of outstanding importance
for oral health. In this article, we will present and discuss
the background as well as current and potential new strat-
egies for the management of biofilm formation in the oral
cavity based on surface modifications.

Physicochemical basics of adhesion
and adsorption

Attachment of proteins or microorganisms to surfaces is a
multifaceted process and is mediated by a plethora of physical
and chemical interactions. In the following chapter, we will
present a brief overview of the processes involved in adhesion
of both proteins and microorganisms to surfaces in general.

Attachment of proteins to surfaces

In general, the Langmuir and the RSA (random sequential
adsorption) model originally described basic protein adsorp-
tion to surfaces (Fig. 1a) [22]. Both models in its basic form
cover adsorption of proteins in aqueous solutions to solid sur-
faces and assume that adsorption is reversible. In the
Langmuir model, it is furthermore assumed that adsorbed
molecules do not interact with each other, while the RSA
model describes the probability of a new particle adsorbing
to a surface in the presence of previously adsorbed particles.
The Langmuir model then predicts the change of surface cov-
erage over time as dθ

dt ¼ ka Cb 1−θð Þ −kdθ, where θ is the
surface coverage, ka and kd are the adsorption and desorption
constants, and Cb is the bulk concentration of the adsorbing
molecule. The actual surface concentration Ѓ is then calculat-

ed as Ѓ ¼ Ѓmaxθ ¼ Ѓmax
KCb

1þKCb
, with K being the associated

equilibrium constant [23]. In the RSA model, a function Φ (θ)
is added which describes the probability function that new
particles can adsorb in the presence of previously adsorbed
particles [24]. This can then be described as dθ

dt ¼ ka

CbΦ θð Þ−kdθ. In reality, the situation becomes more complex
since proteins can either be loosely, interchangeably, or irre-
versibly bound to substrate surfaces (Fig. 1b). This is often
accompanied by conformational changes of these proteins.
Often, these conformational changes are accompanied by al-
terations in properties like, e.g., enzymatic or adhesive activ-
ities [25–28]. We will not go into details for these models in
the context of this article, but they were recently nicely
reviewed by Kim [22] and Sanfeld et al. [29].

In competitive adsorption situations with multicomponent
solutions, it becomes more complex since various proteins
will be present with different concentrations and different ad-
sorption and desorption constants to surfaces. More abundant
proteins will adsorb to surfaces first but can be replaced by
less abundant ones with higher adsorption affinity. This can
lead to sequential absorbance maximums of different proteins
over time until an equilibrium is reached (Vroman effect) [30,
31]. Furthermore, in multicomponent solutions, protein–
protein interactions will lead to the formation of homo- or
heteromeric complexes [32].

External factors that modulate adherence to surfaces are
especially the pH and ionic strength of the surrounding
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medium. Around the isoelectric point, electrostatic protein–
protein repulsions are minimized. At pH values higher or low-
er than the isoelectric point, migration of proteins toward
charged surfaces is maximized in the case of opposite charges
and minimized in the case of similar charges between proteins
and surfaces (Fig. 1c) [33]. High ionic strength also reduces
electrostatic interactions between charged sites and increases
the likelihood of protein aggregation because of surface
charge neutralization [34].

Furthermore, the properties of the surface modulate adhe-
sive behaviors of proteins (Fig. 1c). Factors that modify ad-
sorption are among others surface free energy, charge, polar-
ity, or morphology. In general, proteins tend to adhere stron-
ger to surfaces with higher surface energy, to charged sur-
faces, and to nonpolar surfaces [35]. Although most proteins
adhere better to slightly hydrophobic compared with hydro-
philic surfaces, superhydrophobic surfaces generally yield re-
duced protein adsorption [36]. Depending on the properties of
the protein and surface, adsorption of proteins is often also
accompanied by orientational and conformational changes
that can influence the properties of the protein [37, 38].

Initial attachment of microorganisms to surfaces

The process of microbial adhesion can be divided into
different steps: transport of the microorganisms to the
surface, reversible adhesion to the surface, transition to
irreversible adhesion, and emerging biofilm formation.
Under flow chamber conditions, the initial transport of
bacteria to surfaces is governed by the theoretical depo-
sition rate according to the Smoluchowski–Levich (SL)

approximation: j
0

0 ¼ 0:538 D∞C
r

hPe
x

� �

1=3, where D
∞
is the

bacterial diffusion coefficient, C is the bacterial concen-
tration, Pe is the ratio between convection and diffusion,
r is the hydrodynamic radius of the bacterium, and x is
the distance from the inlet of the flow displacement

system [39]. It should be noted that the contribution
of gravity and interactions between depositing bacteria
and the substrate surface is neglected in this equation.
Real deposition rates are vastly influenced by factors
like surface charge, motility, and surface coverage.

Nonspecific forces involved in reversible attachment of bac-
teria to surfaces can be grouped into short to medium (e.g.,
surface free energy, hydrophobic and dipole–dipole interac-
tions, hydrogen, and covalent bonds) and long range forces
(van der Waals forces and Coulomb interactions).
Importantly, surfaces in the oral cavity are additionally covered
by the acquired pellicle, which modulates surfaces and offers
receptors, i.e., specific binding sites, but also counteracts adhe-
sion by antimicrobial activities as discussed later (“The ac-
quired oral pellicle” section). In addition, strong shear forces
in the oral environment influence adhesion [40] (Fig. 2).

Classically, bacterial attachment to surfaces is explained by
the DLVO (Derjaguin–Landau–Verwey–Overbeek) or the ex-
tended DLVO (XDLVO) theory (reviewed in [41, 42]). In
short, in the extended DLVO theory, total interaction forces
between bacteria and substrates (Ftotal) are calculated as the
sum of Lifshitz–van der Waals (FLW) forces, electrostatic in-
teraction forces (FEL), and acid–base interaction (FAB) forces,
which can be either attractive or repulsive (Fig. 3a). When
plotting the sum of these forces to the distance between bac-
teria and surface, in very close proximity, forces will have a
deep minimum and a secondary interaction minimum at a
distance of 20–50 nm. But between these minima, forces will
be strongly repellent leading to an energy barrier preventing
attachment (Fig. 3b). Pure Brownian motion cannot generally
pass this energy barrier so that bacteria remain trapped in the
secondary minimum. In the original theory, bacteria were
treated as colloidal round spheres, ignoring surface roughness
of bacteria and surface appendages attached to the bacterial
membrane (e.g., pili, fimbriae, flagella). It was suggested that
surface appendages have a high probability to pierce through
the energy barrier and thereby tether a bacterium to the surface

Fig. 1 Interaction and adsorption
of proteins to surfaces. a
Illustration of the Langmuir and
RSA (random sequential
adsorption) models (ka adsorption
constant, kd desorption constant).
b Depending on the state and
properties, proteins can loosely,
interchangeably, or irreversibly
attach to surfaces. c Factors that
influence protein adsorption are,
among others, properties of the
protein(s), pH of the surrounding
medium, and surface properties
like surface charge, surface
energy, or topography
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[43, 45]. At this stage, a firm anchorage between the bacteri-
um and the surface can be established involving covalent,
ionic, or hydrogen bonding [44] (Fig. 3c). In this respect, it
is important to note that adhesive strength is not mainly deter-
mined by contact area but rather by the amount and nature of
contacts between surfaces and macromolecules on the bacte-
rial surface [46, 47]. Recently, it was proposed that irrevers-
ible bacterial adhesion is the result of a multitude of reversible
binding tethers that continuously detach and re-attach. Tight
adhesion is achieved since these events do not happen simul-
taneously. Because these events do not occur at the same
position, they lead to nanoscopic displacement of a bacterium
thereby repositioning the bacteria on very small scales [48].

Bacteria that are in direct contact with a surface are sub-
jected to cell wall deformation due to adhesion forces [49].
This leads to an increase in contact area and triggers differen-
tial gene expression in bacteria in close proximity to the sur-
face [50]. These initial colonizers then signal to nearby bacte-
ria by quorum sensing to trigger the switch from a planktonic
to a biofilm stage in a larger population [51, 52]. Finally, also

hydrodynamics and shear stress modulate adhesion of micro-
organisms to surfaces [53, 54].

Influence of physicochemical properties on adhesion

Bacteria tend to adhere best to slightly hydrophobic or hydro-
philic surfaces, while strongly hydrophobic or hydrophilic
surfaces generally lead to reduced adhesion (will be discussed
later). Surface hydrophobicity or hydrophilicity correlates to
surface wettability, which is often expressed by the contact
angle (CA) of a water droplet on the substrate. Basically, the
intrinsic CA at the boundary of the three phases (substrate,

water, air) can be described by the Young’s equation cos θYð Þ

¼ γSV−γSL
γLV , where γSL, γSV, and γLV are the solid–liquid,

solid–vapor, and liquid–vapor interfacial energies, respective-
ly. The liquid–vapor interfacial energy is often referred to as
surface tension of the liquid. Hydrophobic surfaces have an
intrinsic CA greater than 90° and hydrophilic surfaces smaller
than 90° (Fig. 4a).

Fig. 2 Interactions influencing
bioadhesion and biofilm
formation in the oral cavity.
Different short, medium, and long
range forces influence adhesion
of bacteria to surfaces. The
pellicle masks some of these
properties while also providing
new ones. Providing receptors
and metabolic substrates promote,
while shear forces and
antimicrobial activities counteract
bacterial adhesion and biofilm
formation (modified according to
Hannig et al. [41])
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In the intrinsic or actual CA, θY is barely observable. One
reason is that real surfaces are not completely flat. Therefore,

the measured CA on real substrates can dramatically differ
from θY, especially on very rough or textured surfaces. The
Wenzel model [55] clarifies this behavior with a roughness
value r, which is the ratio of actual and apparent surface area
in a relation of the apparent (measured) CA (θ∗), and the
(actual) intrinsic CA (θY), defined by the Young’s equation,
cos(θ∗) = r cos(θY). Indeed, roughening of a surface can be
considered as amplification of surface chemistry, i.e., it in-
creases the CA of a water droplet on intrinsically hydrophobic
surfaces and decreases it on intrinsically hydrophilic surfaces
[56, 57].

So far, this scenario describes the wetting of chemically
homogeneous substrates. Cassie and Baxter [58] extended this
model for a droplet sitting on a multiphasic surface by
cos(θ∗) = f1 cos(θY1) + f2 cos(θY2) + fi cos(θYi), whereby fi is
the fraction of the different chemical phases, with ∑i f i ¼ 1,
and θYi being the respective intrinsic contact angles. One spe-
cial case for very rough hydrophobic surfaces on which drop-
lets can sit onto a so-called solid–air composite became very
famous under the name superhydrophobicity. Here, the sur-
face is only partially wetted (Cassie state)—in opposite to full
wetting (Wenzel state)—and air is trapped in the surface cav-
ities (Fig. 4b). This can be modeled by a droplet sitting on two
phases, which can be described by cos(θ∗) = f1 cos(θY) + f2
cos(θAir = 180°) = f1 cos(θY) − f2 where f1 and f2 are the area
fractions of solid and air under a drop on the substrate [59].
This wetting state is accompanied by very high CA (> 150°)
and a highly repellent character, which can be defined by a
critical tilt angle of the surface when the droplet starts to roll
off (< 5°) (Fig. 4c). The low roll-off angle and the small
topmost contact area on the rough surface reduce the temporal
window and spatial possibilities for bioadhesion events for
bacteria from a contaminated droplet. Furthermore, when im-
mersed, the formation of the liquid–air interface between solid

Fig. 4 Interaction of water with different surfaces. aWater contact angles
on different surfaces. Contact angles on hydrophilic surfaces are below
90°, while hydrophobic surfaces have contact angles of more than 90°. b
Depiction of Wenzel and Cassie–Baxter wetting regimes. In the Wenzel
state, cavities are fully wetted, while in the Cassie–Baxter state, air is

trapped within cavities. c Water roll-off angles on hydrophilic and
superhydrophobic surfaces. Hydrophilic surfaces possess relatively high
roll-off angles, while superhydrophobic surfaces have roll-off angles of
less than 5°

Fig. 3 Initial bacterial adhesion to a pellicle-coated surface. a Initial bac-
terial approach and adhesion to surfaces is mediated by both attractive
(green) and repulsive (red) short and long range forces [41]. bDepicted is
the Stern layer surrounding the pellicle-coated surface and bacteria and
the Gibbs free energy resulting from the sum of different forces (red
curve) in relation to the distance between a bacterium and the surface.
Small structures like fimbriae or flagella can overcome repulsive forces
[43]. c The establishment of covalent, ionic, and hydrogen bonds estab-
lishes firm bonds between bacteria and the surface [44]
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and liquid yields a protective layer, which is almost impossi-
ble to penetrate by bacteria and their appendages (fimbria,
flagella). This prevents the settlement of microorganisms on
the substrate and inhibits initial microbial adhesion.

Bioadhesion in the oral cavity

The acquired oral pellicle

Both soft (mucosal) and hard (enamel and dentine) tissues in
the oral cavity are covered by the acquired oral pellicle within
minutes (in more detail reviewed in [41, 60] (Fig. 5a). Almost
instantaneously, an electron-dense pellicle layer is formed by
adsorption of salivary proteins on the enamel surface [61, 62].
This is followed by a more continuous formation of a more

complex globular layer [63]. The pellicle is mainly composed
of selectively absorbed salivary proteins and peptides but also
contains proteins and other macromolecules from gingival
crevicular fluid, blood, bacteria, mucosa, and diet [62,
64–66]. Despite a large variability in individuals’ profiles, a
core set of 68 proteins present in the pellicle proteome of 24
individuals was identified including among others antibacte-
rial proteins (e.g., lysozyme, lactotransferrin, lactoperoxidase,
and cystatins), lubricants (e.g., mucin 7), proteins promoting
protein–substrate interactions (e.g., S100 family members,
annexin A1, or elongation factor 2) or protein–protein inter-
ac t ions (e .g . , 14-3-3 prote in family or gamma-
glutamyltransferase E), and proteins promoting pellicle integ-
rity (e.g., carbonic anhydrase 6) [67, 68]. The pellicle provides
many beneficial functions [61]. It serves as a lubricant and
provides protection of the dental surface. It also serves as a
protective layer against erosion by preventing decalcification

Fig. 5 Overview of the acquired
oral pellicle and biofilm
formation in the oral cavity. a
Depicted is the acquired oral
pellicle on enamel composed of a
thin basal pellicle and on top of it
granular and globular structures.
Early colonizers first adhere to
lectins and other receptors on the
acquired proteinaceous oral
pellicle via specific adhesins in
order to adhere tightly. b More
microorganisms integrate into the
developing biofilm structure by
duplication or coadherence of
further bacteria. c Depiction of a
fully developed biofilm in the oral
cavity. A multispecies biofilm is
embedded into an extracellular
matrix consisting among others of
proteins, lipids, extracellular
DNA, exopolysaccharides, and
amyloid structures
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of hard tissue [60]. Finally, the acquired pellicle contains sev-
eral antibacterial components, among them relatively high
concentrations of lysozyme and peroxidases. At the same
time, the acquired pellicle also consists of many components
that are beneficial to the adherence of bacteria and, henceforth,
biofilm formation [69]. Especially ligands for bacterial
adhesins like glycolipids, fibrinogen, or collagen play a major
role in this process. They serve as anchor points for the initial
adhesion of pioneer organisms like different Streptococcus
spp. or Actinomyces spp. [70, 71]. This leads to early phases
of biofilm formation and by the interconnection with other
species to the establishment of mature plaque (see next chap-
ter). However, it is important to note that according to recent
studies, the ultrastructure, enzyme activities, and proteomic
profile of the acquired pellicle do not show major differences
between otherwise healthy caries-active and inactive subjects
[67, 72, 73].

Furthermore, the oral pellicle affects the physicochemical
properties of surfaces (e.g., surface roughness, hydrophobici-
ty/hydrophilicity, wettability). For example, pellicle formation
leads to significantly altered water contact angles on resin-
based composites (concise, occlusin, heliomolar) compared
with untreated samples [74]. In addition, pellicle formation
can level out surface roughness [75–78].

This may lead to modification of bacterial adherence prop-
erties and degree of biofilm formation on natural and artificial
surfaces in the oral cavity [79, 80].

Oral biofilms

When forming biofilms on oral nonshedding surfaces, bacte-
ria first have to adhere to the pellicle-coated substrate (Fig.
5a). Specific adhesins generally mediate initial adhesion to
these surfaces [41, 69]. Most bacteria possess a plethora of
different adhesins that are grouped among others into fimbrial
adhesins, pili, autotransported adhesins, or surface proteins,
which vary strongly in their assembly mechanisms, structure,
and appearance [81–83]. For example, many pathogenic oral
bacteria possess adhesins binding to major components of the
oral pellicle like agglutinin, amylase, fibrinogen, fibronectin,
or mucins [84–88]. Furthermore, many bacteria possess
collagen-binding proteins [89, 90]. It is important to note that
the composition of biofilms on natural surfaces within the oral
cavity varies strongly depending on the localization (e.g., sub-
and supragingival plaque vs. buccal or gingival mucosal
biofilms) and between individuals [5].

Streptococci as well as Neisseria, Rothia, Actinomyces, or
Veillonella are frequently found among others in the early
stages of plaque formation, while after just 6 h, more than
90 different species belonging to 40 genera and 7 phyla were
detected in the in vivo supragingival oral dental biofilm [91]
(Fig. 5b). Later on, secondary colonizers like Fusobacterium
nucleatum, Treponema sp., Porphyromonas gingivalis, or

Aggregatibacter actinomycetemcomitans can be frequently
found [92]. Furthermore, a complex extracellular matrix de-
ve lops cons i s t i ng of sec r e t ed p ro te ins , l i p ids ,
exopolysaccharides, extracellular DNA, and amyloid struc-
tures [4, 93] (Fig. 5c). These microbial communities form an
intrinsic network of co-existence and interspecies
coaggregation [94]. Different species within the oral biofilm
coregulate the expression of adherence factors as well as other
virulence factors [4]. Furthermore, nutritional cross-feeding as
well as co-ordinated metabolism of complex substrates takes
place within biofilm communities (reviewed in [1]). In addi-
tion, bacteria in the oral environment also coregulate the ex-
pression of virulence factors (reviewed in [1]). For instance,
biofilm formation and virulence gene expression of S. mutans
is modulated by the presence of specific oral bacteria like
Streptococcus oralis or Lactobacillus casei [95]. In addition,
the surface can affect the transcriptional profile of bacteria
[96]. Although the microbiota on mucosal sites strongly over-
laps with the microbiota on nonshedding surfaces, several
differences exist on the phylum, family, and genus levels.
For example, buccal or keratinized mucosal surfaces show a
high abundance of Streptococcus and Gemella spp., the
tongue dorsum is characterized by Veillonella spp., and dental
plaque has Corynebacteriaceae spp. as a biomarker [97, 98].
On the species level, for example, Streptococcus mitis has an
exceptionally high abundance on keratinized gingiva, and for
example, F. nucleatum or Actinomyces naeslundii are mainly
found on the teeth, Fusobacterium periodonticum or
Actinomyces graevenitzii on the tongue, and Fusobacterium

sp. HMT248 or Haemophilus haemolyticus on keratinized
gingiva [5, 99].

Biofilms and pellicle formation on conventional
dental materials

Similar to natural oral substrates, restorative or prosthetic ma-
terials and devices like implants, dental fillings, or crowns are
almost instantaneously covered by an acquired pellicle. Here,
the pellicle also modulates the physicochemical properties of
the materials [74–78]. Thereafter, as on natural dental struc-
tures, biofilms will be formed, which often lead to secondary
caries, mucositis, or peri-implantitis and even the ultimate
failure of these medical devices. This was reviewed in 2009
in [41]. In the following chapter, we will present a short sum-
mary and update on biofilm and pellicle formation on conven-
tional dental materials.

Biofilm formation on restorative materials

A variety of different materials is routinely used for restoration
and sealing of cavities as for example resin-based composite
materials, amalgam, or glass ionomer cements as well as in-
lays, crowns, or fixed partial dentures made from gold alloys,
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ceramics, or cobalt chromium (CoCr) alloys. However, the
development of secondary caries due to biofilm formation
on these materials and especially at the marginal gaps is the
most common cause for their failure [100]. Amalgam-based
materials have been mostly substituted in recent years by
resin-based composite materials. However, besides the many
advantages of resin-based composite materials, they more of-
ten lead to secondary caries compared with classic amalgam-
based materials [101, 102]. Unlike on resin-based composites,
biofilms on amalgam surfaces consist of mostly nonviable
bacteria probably due to the slow release of mercury and silver
[103]. Additionally, dental resin-based composites tend to be
more susceptible to decay due to acid produced by cariogenic
bacteria [104]. However, it was also suggested that resin-
based composite materials and amalgam do not show differ-
ences in biofilm formation or microbiota composition in a
microcosm biofilm model, in situ or on freshly extracted teeth
with secondary caries [105–108]. Also, biofilms developed on
bovine enamel and on resin-based composites seem to differ
only slightly in situ [109]. Glass ionomer cements have the
ability to release fluorides over time in an acidified environ-
ment thereby offering protection from caries-promoting bio-
film development and decreased acid production at least under
in vitro conditions [110–112]. Biofilm formation by a mixture
of salivary microorganisms was also reduced on glass
ionomer cement materials compared with resin-based com-
posite materials or amalgam [113]. In addition, in vitro and
in situ glass ionomer cements seem to offer protection against
demineralization [106, 114]. Both in vitro and in situ biofilm
formation on ceramics are mainly influenced by the composi-
tion and roughness of the used materials [115–117].

Polished gold alloys accumulated less bacteria compared
with natural teeth in vivo although the composition of the
biofilms was comparable [118]. In addition, biofilms accumu-
lated on gold surfaces showed a low viability [119]. However,
according to a 14-day in situ study, biofilm formation on gold,
titanium, or zirconium abutment materials did not showmajor
differences [120]. Also, biofilm formation over 48 h did not
differ significantly between gold and ceramic bracket mate-
rials [121]. Studies on biofilm formation on CoCr alloys used
in dentistry are inconclusive although at least under in vitro
conditions biofilm formation seems to be in a similar range to
titanium [122–124].

Biofilm formation on dentures

A large percentage of denture wearers are affected by denture-
associated stomatitis, which is mainly caused by Candida

albicans [125], albeit also differences in denture-associated
biofilms on the genus and species level of other microorgan-
isms can be detected between patients affected by denture-
associated stomatitis and healthy subjects [126]. Dentures are
mostly manufactured from polymethylmethacrylate (PMMA).

However, at least in vitro alternativematerials likeMolloplast B
or Ufi-Gel showed lower colonization by C. albicans [127]. In
addition, excess of cement for fixation of crowns favor the
growth of periodontal microbiota [128], thereby cements on a
zinc oxide eugenol basis seemed better suited thanmethacrylate
cement for crowns cemented on implants [129, 130].

Biofilm formation on implants

Dental implants are generally made of titanium or zirconium.
Areas of these dental abutments accessible to the oral micro-
biota are globally covered within a short time period with
extensive biofilms after the lack of oral hygiene [131, 132].
This can lead to inflammatory lesions that may develop into
peri-implant mucositis or peri-implantitis [20, 133]. Altered
microbial communities characterize these infections.
However, these altered communities can be quite different
from the communities found in caries or gingivitis. The over-
all microbial diversity in peri-implantitis is lower compared
with healthy teeth and is dominated by Gram-negative bacte-
ria [134]. Species that generally cluster with peri-implantitis
are among others P. gingivalis, P. intermedia, Treponema
denticola, T. forsythia, and Fretibacterium fastidiosum

[135–137]. However, the microbiota of biofilms formed on
dental implants does not seem to differ between subjects with
or without former periodontitis [132].

Some studies suggest that abutments made of zirconium
generally accumulate less biofilm compared with titanium
in vivo [138, 139] although other studies did not find differ-
ences between these two materials [140]. The composition of
biofilm communities varied depending on implant materials in
short-term (24 h) splint experiments [141, 142]. Furthermore,
in a 6-month in vivo study, differences in the microbial com-
munity between titanium and zirconia implants could be de-
tected [143]. Also, biofilm formation on titanium or zirconium
abutments varies depending on surface modifications, rough-
ness, and surface free energy although results are also often
inconclusive [144]. In addition, it was suggested that titanium
ions released due to degradation of implants’ surfaces promote
microbial dysbiosis as well as inflammatory processes around
dental implants [145, 146].

Pellicle formation on conventional dental materials

To a large degree, biofilm formation on all these conventional
dental materials is modulated by the formation of the acquired
salivary pellicle formed on these materials as already outlined
before. It was shown already around 20 years ago that the
ultrastructural appearance of the in situ formed pellicle on
enamel and various restorative materials like amalgam, ce-
ramics, cements, resin-based composites, or titanium is very
similar [65, 147]. In concordance with these findings, early
plaque formation on these materials only showed minor, less
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pronounced variations. However, distinct differences were ob-
served between buccally and lingually mounted test pieces
[147]. Also at least under in vitro conditions, the composition
of a pellicle formed on titanium or zirconium did not vary
significantly in its protein content, while minor differences
were found to pellicles formed on hydroxyl apatite [148].
Furthermore, amylase and lysozyme activity in the pellicle
formed on different materials did not differ significantly in
situ indicating similar biological activity of the pellicle on
different dental materials [149, 150]. Nevertheless, in vitro
adsorption kinetics of individual isolated salivary proteins var-
ied between gold, titanium, and silica surfaces [151]. Also,
different compositions of titaniummodulated the composition
of in vitro formed salivary pellicles [152]. In addition, rough-
ening of titanium surfaces increased protein adsorption at least
under in vitro conditions [77].

In summary, conventional dental materials still pose the
problem of often extensive biofilm formation even under gen-
erally good oral conditions. This is caused by properties of the
deployed materials that may promote bacterial attachment or
the lack of anti-adhesive or antimicrobial properties.
Furthermore, the acquired oral pellicle that forms on all these
materials masks surface properties of these materials and, de-
spite antibacterial properties, also provides anchor points for
bacterial attachment. As a conclusion, there is a much-needed
demand for novel improved materials in dentistry with in-
creased low-fouling properties but that are otherwise fulfilling
their role in the substitution of natural dental structures.

Approaches for biofilm management
in dental research

As outlined before, conventional prosthetic and restorative
materials as well as implants in the oral environment often
pose the problem of extensive biofilm formation [120, 127,
128, 132, 153]. This leads in many cases to the failure of the
devices resulting in oral diseases like secondary caries, peri-
odontitis, or peri-implantitis. Hence, many different kinds of
strategies were developed to decrease adherence and/or bio-
film formation on artificial dental surfaces. These include ma-
terials that modulate adherence of microorganisms as well as
“easy-to-clean” surfaces that prevent tight attachment and al-
low easy removal of adhered microorganisms [154, 155].
Furthermore, concepts were developed that allow killing
(bactericidal) or growth inhibition (bacteriostatic) of microor-
ganisms upon surface contact. Strategies comprisemodulation
of surface architecture and topography as well as chemical or
mechanical modification of surface structures. Chemical mod-
ulations were applied to change surface energy (hydrophobic
vs. hydrophilic), or charge and mechanical properties were
controlled by alternation of the intrinsic material elasticity.
Often, different strategies are combined, such as mechanically

or chemically modulated topographies or incorporation of
functionalized nanoparticles into basic matrices. Many of
these strategies offer the advantage that they can be imple-
mented well in dental laboratories. Also, removable dentures
can also be modified at later time points by coating of the
surfaces.

These approaches will be discussed in more detail in the
following chapters. The review is designed as a narrative up-
date to a previous review from 2009 [41]. It focuses mainly on
novel strategies that have been tested under in vivo or in situ
settings and with proven or potential clinical relevance in den-
tal practice.We tomost part excluded studies based on in vitro
experiments that were only tested under in vitro settings or
with unlikely clinical relevance.

Biocompatibility of novel materials in dentistry

When designing novel strategies for the management of mi-
crobial adherence and colonization in the oral environment, it
is important to keep in mind the biocompatibility of these
materials. Biocompatibility refers to the question how these
materials interact with the host. In general, it is assessed re-
garding biodegradation of materials, cytotoxicity toward eu-
karyotic and microbial cells, interaction with natural materials
(e.g., teeth, bones) as well as inflammatory potentials,
immunotoxicity, or mutagenicity [156, 157]. Especially in
the oral environment, devices should often last for decades
with high durability and low level of biodegradation.
Therefore, assessment of biocompatibility should ideally also
consider long-term effects, which is often difficult to evaluate.

For example, dental casting alloys are generally composed
of often more than six different metals. Due to corrosion, these
components can be released and interact with the host [158].
Many of these alloys and its metals, particularly heavy metals,
show cytotoxicity toward cell lines and yeast [159–161].
Especially biodegradation of amalgam reached a lot of atten-
tion due to the biotoxicity of mercury [162]. Also, the remain-
ing unpolymerized fractions from resin-based composite ma-
terials or light curing glass ionomer cements (e.g., methacry-
lates) can lead to cytotoxicity, immunotoxicity, or hypersen-
sitivity [163, 164]. In addition, as outlined before, titanium
ions released due to degradation of implants’ surfaces may
promote microbial dysbiosis as well as inflammatory process-
es around dental implants [145, 146].

Similar problems may arise from the usage of nanoparticles.
Functionalization of prosthetic and restorative materials can
have beneficial effects on managing microbial colonization
but as a downside exhibit unwanted side effects (recently
reviewed in [165]). For example nanohydroxyapatite or TiO2

nanoparticles can lead to inflammatory responses and oxidative
stress [166].

Nanostructured bactericidal surfaces often pose the prob-
lem that they are also detrimental to eukaryotic cells. Surface
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structures can pierce eukaryotic cells, which may lead to cell
death or cell stress. Human fibroblast foreskin cells exhibited
altered morphologies on 3D nanoposts [167]. However, other
studies showed no effects of nanopores on attachment, mor-
phology, and metabolic activity of fibroblasts [168].

Surface roughness and topography

Traditionally, surface roughness of dental restorativematerials
was reduced to limit bacterial adhesion and biofilm formation
(recently reviewed in [169]). It is commonly believed that
higher surface roughness influences bacterial attachment
mainly by increasing the surface area (Fig. 6a). Additionally,
it was suggested that higher surface roughness leads to higher
microbial colonization since it offers shelter against shear
forces especially at initial attachment (Fig. 6b) and because
they are more difficult to clean compared with smooth sur-
faces [44, 76, 170]. Indeed, many in situ or in vivo studies
showed that reduction of surface roughness reduced bacterial
adhesion on commonly used implant materials. For example,
reducing surface roughness of titanium or zirconia alloys re-
duced colonization and biofilm formation [171–174].
However, other in vivo or in situ studies contradict this opin-
ion and suggest that modification of surface roughness only
plays a modest role in altering bacterial adherence and biofilm
formation [175–179]. Some in vivo and in vitro studies also
indicate that surface roughness on dental materials only has a
significant impact if the average height (Ra) is larger than
0.2 μm [44, 180–182].

In this respect, it is important to remember that all surfaces
exposed to the oral cavity are covered by the acquired pellicle
within short amounts of time. As outlined before, the pellicle can
level out surface roughness [75–78]. This might explain contra-
dictory results between different studies depending on the

exactly utilized model as well as between in vitro and in vivo
studies [179]. In addition roughness is commonly defined by
different parameters like average height (Ra), root mean square
roughness (Rq), and ten-point height (Rz) [183]. Depending on
the applied parameters and methods for assessing roughness as
well as the measured area, similar surfaces can end up having
different “roughness values,” while surfaces with different to-
pographies may have similar “roughness values” [184–186]. In
addition, bacteria can modulate the expression of virulence
genes depending on the surface topography. For example,
Escherichia coli differentially expresses among others type 1
fimbriae and the Cpx two-component system, a general stress
response system, when being grown on nanostructured gold
surfaces at least under in vitro conditions [187, 188].

Surface charge and energy

Similarly, charge and surface energy influence adherence of
microorganisms. Since the outer layer of bacteria is negatively
charged, they tend to adhere better to positively than negative-
ly charged surfaces according to in vitro studies [189, 190]
(Fig. 6c). Furthermore, bacteria tend to adhere best to surfaces
with moderate wettability compared with highly hydrophobic
or hydrophilic surfaces. In vitro studies suggest that in general
water contact angles in the range of 40° to 130° seem to lead to
the highest bacterial adhesion [191–193]. Accordingly, coat-
ing of stainless steel or alumina ceramic with hydrophobic
hexadecyltrimethoxysilane or perfluorodecyltriethoxysilane
reduced biofilm retention in a microcosm model using human
saliva [194]. Similarly, coating of titanium or stainless steel
surfaces with hydrophobic polytetrafluoroethylene strongly
reduced biofilm formation in in situ approaches [195, 196].
In addition, coating of enamel or titanium with a low surface
free energy nanocomposite (NANOMER) could successfully

Fig. 6 Interaction of bacteria with different surface properties. Rough
surfaces increase the surface area (a) or offer protection against shear
forces (b). c Since bacterial membranes are generally negatively
charged, positively charged surfaces are generally attractant and
negatively charged surfaces repellent. d Functionalized nanoparticles

embedded into surfaces with anti-adhesive or antimicrobial properties
can prevent attachment or proliferation of bacteria after surface contact
or they are released into the surrounding environment. e Nanotextured
superhydrophic surfaces are often bactericidal due to stretching of the
membrane
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and strongly reduce biofilm formation in situ [155]. Coating
with the nanocomposite reduced the thickness as well as the
protein–protein adsorption and interaction forces of the ac-
quired oral pellicle. This lead to easier removal of the pellicle
and, henceforth, easier detachment of the overlying biofilm
thereby promoting “easy-to-clean” properties.

Especially superhydrophobic surfaces tend to reduce bac-
terial adherence and biofilm formation. These often have
microscaled structures on their surface that result in high con-
tact angles. By this means, a superhydrophobic state is
reached leading to a self-cleaning effect by rolling off water
[197, 198]. This reduces bacterial colonization by simply
washing off colonizing bacteria and developing biofilm struc-
tures. Furthermore, air becomes entrapped between nanoscale
structures. Consequently, the contact area as well as the adhe-
sive forces between bacteria and substrate is reduced. In recent
years, many artificial superhydrophobic surfaces on, for ex-
ample, aluminum, titanium, or polypyrene were developed
that successfully reduced bacterial adhesion at least in vitro
[199–201]. Although almost no data are available upon the
suitability of these approaches for the oral cavity, these ap-
proaches justify further research for their applicability due to
the nontoxic nature of this approach. However, it should be
noted that some studies suggest that the effect of
superhydrophobic structures may be short lived. The
entrapped air-bubble layer can get lost over time since liquids
penetrate the nanostructures (in more detail later). This may
then actually promote bacterial adhesion due to increased sur-
face areas [202, 203].

Functionalization of dental materials with
antimicrobial activities

Another strategy to reduce bacterial attachment and biofilm
formation on dental implants as well as crowns or fillings is
either chemical modification of the materials or the linkage
with molecules with antimicrobial activity. A drawback of
these approaches might be sustainability since chemical mod-
ifications or antimicrobial activities may get lost over time.
We will give here an exemplary overview of studies with
promising potential.

In several approaches, copper, silver, gold, iron oxide, or
zinc oxide nanoparticles were incorporated into resin-based
composites like chitosan or other matrices and showed anti-
microbial activity at least in vitro [204–209]. They generally
act by disruption of the bacterial membrane through physical
interaction with the nanoparticles, generation of oxidative
stress, and enhanced release of free metal ions (Fig. 6d)
(reviewed in [210]). Incorporation of silver-doped bioactive
glass into resin-based composites allowed remineralization of
dental surfaces and protection against in vitro formed biofilms
by S. mutans and L. casei [211]. Titan substrates modified
with a thin layer of graphene oxide and silver nanoparticles

also reduced adhesion with increased bactericidal activity to-
ward S. mutans. Furthermore, expression of the genes
encoding for the main subunit of type 1 fimbria FimA and
for the glucosyltransferases GtfB and GtfC was significantly
reduced [212]. Unfortunately, all these studies were conduct-
ed in vitro, while to our knowledge, no in vivo or in situ data
are available yet. Also, modifications of PMMA were devel-
oped to reduce adherence of Candida spp. like incorporation
of nanodiamonds or silver/bromide/cationic polymer nano-
composite (AgBr/NPVP) as well as coating with polyacrylic
acid or polycationic acid [213–215].

Qua t e rna ry ammon ium me thy l a c ry l a t e s l i k e
dimethylaminododecyl methacrylate incorporated into
glass ionomer cement could reduce biofilm formation
and microbial viability in situ [216]. It also sustained its
properties and showed minimal signs of aging even after
incubation in water for at least 6 months, suggesting long-
term stability in the oral environment [217]. Incorporation
of chlorhexidine salts into glass ionomer cements could
also significantly limit microbial counts under in vivo
conditions in shorter-term studies up to 7 days, and even
after 1 year, still a reduction could be observed [218,
219]. Similarly, resin-based composite materials contain-
ing octenidine dihydrochloride (ODH) strongly reduced
biofilm formation as well as the fraction of viable micro-
bial cells in situ [220]. Chitosan itself also has antimicro-
bial activities at acidic pH [221]. It could reduce biofilm
formation in in vitro studies when being incorporated into
resin-based composite materials [222]. Some studies also
tried to successfully disrupt biofilm formation by
impairing adhesion between Streptococci and Porphyromonas

[223, 224]. Xu et al. [225] tested a combination of both chem-
ical and topological modifications of surfaces using polyure-
thane with a pillared topography and a S-nitroso-N-
acetylpenicillamine (SNAP) layer releasing NO. Although both
treatments alone were able to reduce biofilm formation by
Staphylococcus epidermidis, in combination, they showed a
synergistic effect.

In summary, chemical modifications of surfaces with anti-
microbial properties has promising potential. However, as al-
ready mentioned, sustainability of these structures or materials
for prolonged time periods in the oral cavity has to be evalu-
ated. Furthermore, biocompatibility of these approaches needs
further attention especially in regard to long-term toxicity. In
addition, long-term exposure to quaternary ammonium com-
pounds and other antimicrobial substances may lead to the
development of resistances in bacteria [226]. This may lead
to selection for resistant bacteria in the oral cavity hence
counteracting antifouling properties of the surfaces. If resis-
tance genes are encoded on mobile elements, they may also
spread to other species in the oral cavity [227]. Nevertheless,
promising potential definitely warrants further research in this
direction.
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A broader view on antibioadhesion strategies
in life sciences

The former chapter gave an overview about the state of the art
of biofilm management in dentistry, and it has been shown
that there is still a need for improvements. Therefore, in the
following chapter, wewill elucidate antibioadhesion strategies
in a broader context in order to figure out promising and ap-
propriate tools for future application in the oral cavity.Wewill
concentrate on research and perspectives of physicochemical
interfacial properties considering the challenge of
biocompatibility.

Surface structure

Parameters like surface structuring and roughness were inves-
tigated for decades and a vast amount of publications exists,
which describe their impact on bacterial colonization.
Structural parameters were evaluated from the nanoscale (ap-
proximate size of molecules and cell appendages) up to the
microscale (approximate size of cells or larger) [228, 229],
thereby microscaled structures are mostly periodic topogra-
phies described by their structural features and nanoscaled
structures usually are semiperiodic or random topographies
described by roughness parameters [230, 231]. Structures
much larger than cells do not directly have relevance for pre-
vention of biofouling processes as they provide niches that
can support undisturbed attachment and resistance against re-
moval. But large structures can have a secondary advantage if
they are part of a hierarchical structure in which they provide
mechanical support against abrasion of smaller structural
levels [232–234]. However, on simple surface structures,
strong interactions between bacteria and substrate as well as
clear adhesion patterns in the initial colonization phase could
be observed if the structural dimensions (size and spacing)
were in the cell size range [228, 230, 231, 235–240]. In con-
trast, for structure sizes slightly below the bacterial cell size
(submicron scale), inhibition of the initial microbial adhesion
could be observed [229, 241, 242]. For much smaller nano-
structures, the reported effects differ strongly between being
high and low adhesive [243, 244]. It has been shown that even
the smallest differences in surface nanoroughness can strongly
affect microbial cells’ attachment [245–250]. These variations
must be connected with certain spacings of bacterial adhesion
sites on the membrane or cell appendages, but there is no
direct evidence in the literature so far. Additionally, nano-
structured surfaces can alter protein adsorption in comparison
to the flat material, because small curvature radii of structural
features can influence protein conformation and disturb mo-
lecular alignment (Fig. 1c) [251]. Thus, depending on the
native protein shape (such as globular for BSA vs. elongated
for fibrinogen), small surface structures can either decrease or
increase adsorption [252]. However, there are many

contradictory experimental observations on the effect of
micro- and nanostructured surfaces on biomolecular adsorp-
tion and bacterial colonization [228, 235, 236, 238–240, 253,
254]. These contradictions arise often due to inconsistent
comparison of physicochemical properties of the samples
and the use of differing biomolecules/bacterial strains as well
as general differences between experimental setups/parame-
ters. This illustrates clearly that systematic research on the
effect of different scales on surface structures on bacterial
colonization in an easily accessible clinically relevant environ-
ment (oral cavity) is strongly required.

Surface free energy and elasticity

Controlling the surface chemistry (i.e., surface free energy
and/or elasticity) of a substrate is another promising approach
to control biofouling. Substrates with low and high surface
free energies in particular have been shown to affect biomol-
ecule adsorption and bacterial adhesion [255]. Hydrophilic
surfaces featuring high surface free energies, such as poly(eth-
ylene glycol) (PEG)-based coatings, can inhibit biofouling by
steric repulsion due to chain compression and the “barrier”
created by structured water associated with the PEG chains
[256]. An opposite approach is the use of hydrophobic coat-
ings with low surface free energies, sometimes called theta
surfaces [257]. These surfaces do not inhibit adsorption/
adhesion per se, but allow for an easy removal of adsorbates
and biofilms [257]. Furthermore, the use of soft surfaces could
reduce attachment of certain bacterial strains [258, 259].
However, there are also bacterial strains which adhere well
to soft substrates, especially if specific adhesion sites for
protein–protein or protein–saccharide interactions exist, i.e.,
on eukaryotic tissue, mucosa, or adsorbed protein layers on
artificial substrates [260–263]. Nevertheless, there are bacte-
rial strains which do not show significant changes of adhesion
over different magnitudes of material stiffness [264].

Bio-inspired strategies

In recent years, research on improved biomedical surfaces
started to focus on mimicking natural (e.g., shark skin, lotus
and taro leaves, cicadia wings, springtail’s cuticle, or pitcher
plants) antifouling (reduced microbial adherence or attach-
ment) or bactericidal (active killing of bacteria) surfaces (re-
cently reviewed in [265]). The antifouling properties of these
surfaces are generally explained by their hydrophobic nature
combined with a nanopillared geometry leading to a
superhydrophobic (“nonwetted”) state as explained by the
Wenzel and Cassie–Baxter model and the so-called lotus ef-
fect [266–268]. In this state, only a very small contact exists
between the contaminated liquid and the substrate, which re-
duces the spatial opportunity for bioadhesion, and liquids roll
off immediately at the slightest tilt, which reduces the
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temporal opportunity for fouling processes. Repellency
against aqueous media can be observed on many plants but
also on arthropod cuticles. Springtails were found to be even
more repellent as they can resist wetting against liquids with
low surface tensions (oil, ethanol, etc.) [269, 270] by
submicroscaled structures with overhanging cross-sectional
profiles [271]. Another strategy for preventing bacterial colo-
nization is the utilization of “slippery” covering layers on
harder substrates found on pitcher plants [272, 273]. The slip-
pery substrate strongly prevents bacterial adhesion, because
there is almost no appropriate counterpart for adhesion in the
slime.

Depend i ng on t h e s i z e a nd d i s t r i b u t i o n o f
nanotopographies, surface structures can also act bactericidal
than just prevent adhesion. The mechanism of cicadia wings
and similar structures is explained by their small feature size
(~ 50–100 nm) and the high aspect ratio [274–276]. This leads
to stretching and puncture of the bacterial membrane and sub-
sequent cell lysis either by suspension of the membrane be-
tween pillars (biophysical model) or by “tearing” of the mem-
brane due to an increase in the surface contact area (thermo-
dynamic model) [154, 277, 278] (Fig. 6e). While most of
these structures were never applied to the oral cavity, exposure
of springtail cuticles to saliva was tested in situ and a modu-
lated process of initial bioadhesion was observed. In contrast
to a pellicle homogenously coating all surface structures, there
was at least in part the formation of proteinaceous membrane-
like structures bridging the springtail’s cuticle nanostructures.
As a result, springtails could modulate bacterial adhesion on
short-term time points but lost its specific properties after ex-
posure for a few hours [241]. This clearly indicates the rele-
vance of early in situ experiments.

To transfer innovative biomimetic strategies to medical and
dental surface devices, silicon- or titania-based nanostructured
surfaces are increasingly evaluated for their suitability. For
example, nanostructures were generated on silicon surfaces
by ion etching via a silicon wafer ([279] or fabrication of
nanocone-shaped diamonds on silicon substrates [280].
In vitro, these structures were able to kill E. coli,
Staphylococcus aureus, or Pseudomonas aeruginosa.
Titanium surfaces containing nanowires with a diameter of
ca. 100 nm were efficient in killing motile bacteria like
P. aeruginosa, E. coli, or Bacillus subtilis [275]. In similar
approaches, nanoscale structures were introduced onto differ-
ent materials like alumina surfaces thereby limiting bacterial
attachment [281–283]. Nanopores of 20–25 nm were intro-
duced onto stainless steel by electrochemical etching [168].
This modification leads to substantially reduced adhesion of
S. aureus and E. coliwhile not affecting attachment, morphol-
ogy, and metabolic activity of fibroblasts, suggesting good
biocompatibility of these materials.

Unfortunately, most of these data were obtained under
in vitro laboratory conditions, while these structures were

rarely evaluated for their suitability in the oral cavity.
However, micropatterning of titanium surfaces by laser etch-
ing leads to reduced biofilm formation in situ compared with
machined or grit-blasted surfaces [284]. Also, few studies
were conducted in the oral environment. However, Miao
et al. showed reduced initial adhesion of the oral pathogen
S. mutans to nanotextured compared with smooth or
microtextured titanium surfaces while at the same time im-
proving attachment of human gingival epithelial cells or fibro-
blasts [285]. Also, a nanotextured titanium surface with an
average roughness of approximately 10 nm could reduce sur-
face colonization of A. actinomycetemcomitans compared
with untreated titanium surfaces [286].

Hence, promising in vitro results and a likely good biocom-
patibility of these materials definitely warrant further in vivo
or in situ studies to elucidate their applicability in the oral
cavity. Nanostructured implant materials mimicking natural
antifoulingmaterials definitely have the potential to efficiently
modulate and reduce biofilm formation on oral medical de-
vices and materials.

Heterogeneous surface properties

Recently, materials, which combine different or even opposite
physicochemical properties within a molecule, along a poly-
mer chain or across a surface area came into the focus of
intense research. Low bioadhesion could be shown for coat-
ings with zwitterionic polymers like phosphorylcholin or
polybetains [287–291]. The close proximity of negative and
positive charges leads to a strong hydration which reduces
protein adsorption. Furthermore, amphiphilic surfaces with
nanometer-sized hydrophilic and hydrophobic domains were
among others achieved by nanocomposites, block copoly-
mers, hyperbranched fluorpolymer–PEG, and fluorpolymer–
PDMS–PEG networks, whereas micrometer-sized domains
were realized using a Janus-particle–based system [255, 292,
293]. Low cell adhesion and good fouling release properties of
these bi- or multiphasic interfaces were reported to often out-
perform surfaces featuring just monophasic properties. For
some of the tested surfaces, also reduced protein adsorption
was reported. On chemically nanoscaled heterogeneous
silica–zirconia surfaces, the net amount of adsorbed albumin
was higher than predicted by the average of adsorption on
both monophases [294]. Other research groups have reported
an opposite effect on biphasic microscaled substrates [295,
296], but no convincing explanation of the altered adsorption
had been presented. Polyelectrolyte multilayer coatings were
found to reduce protein adsorption, whereby it was hypothe-
sized that the formed nanoscaled domains and the low surface
net charge are the origin of this effect [297]. However, it is
plausible that spatial alterations of different chemical phases
in the range of the protein sizes influence adsorption processes
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and conformational changes, analogous to surface structures
with curvature radii in the nanoscale [297–300].

Discussion

In recent years, a plethora of studies tested multitudes of ap-
proaches to construct novel low-fouling or antibactericidal
surfaces to reduce attachment of microorganisms or biofilm
formation on biomedical surfaces in dentistry and beyond. In
an ideal situation, prosthetic dental materials should closely
mimic natural dental structures without their downsides. They
should be resistant to erosion by substances produced by the
host and microbiota in the oral environment. In addition, most
prosthetic materials in the oral cavity should function for years
or even decades. Hence, low-fouling or antibactericidal activ-
ities must last for extended periods of time without deteriora-
tion or loss in functionality. This should be kept in mind es-
pecially for approaches employing chemical modifications or
nanocarriers. While they may well work on short-term per-
spectives, their long-term viability is often questionable.
Another important aspect is biocompatibility of restorative
materials in the oral environment. It is important that they do
not cause toxic reactions to the host both on a short- and long-
term time span. Especially approaches employing chemical
modifications, nanoparticles, or nanocarriers may present
problems with biocompatibility. While some studies exam-
ined biocompatibility, many studies lack data in that direction.
Importantly, novel materials must be moldable to be imple-
mented into the existing dental environment without cracks
and crevices. Other aspects to be considered are cost-
effectiveness and acceptance by patients.

In the oral cavity, surfaces are almost instantly covered by
the acquired pellicle [61, 147]. As outlined before, the

presence of the pellicle may mask or alter structural properties
of surfaces like roughness, wettability, and hydrophilicity or
hydrophobicity [74–76, 78, 80]. Furthermore, the pellicle it-
self presents attachment points for the adhesion of microor-
ganisms as well as possessing antimicrobial properties [61,
69]. Hence, surface modifications that work well in reducing
biofilm formation in implants outside of the oral cavity (e.g.,
joint replacements) may not be efficient in the oral cavity due
to the presence of the acquired oral pellicle. On the other hand,
these phenomena make the oral cavity a perfect model to
evaluate new strategies in an easily accessible and clinically
relevant model.

In addition, studies employing similar approaches have of-
ten inconclusive or even contradictory results. Similar ap-
proaches may have a protective effect in some studies, while
other studies showed no effect or even lead to enhanced mi-
crobial adhesion or biofilm formation (e.g., surface rough-
ness) [171–179]. Reasonsmay often be the design of the study
(e.g., in vitro vs. in situ or in vivo; models used for the study;
or time frames). Structural alterations of surface properties
also often affect several physical and chemical properties like
roughness, surface wettability, hydrophobicity, or hydrophi-
licity [301]. This makes it often challenging to pinpoint spe-
cific effects on adhesion or biofilm formation to one specific
property. Finally, different biophysical and biochemical prop-
erties (e.g., surface charge, Gram-positive or negative, arsenal
of adhesins) of different microorganisms can lead to a change
in biofilm community on different restorative materials [69,
189]. It is therefore important to consider that not only the
degree of biofilm formation must be considered but also the
composition of the community (pathogenic vs. commensal
microorganisms).

Traditionally, many studies focused on altering surface
properties of structures like surface roughness or surface

Fig. 7 Interaction of bacteria and
proteins with biphasic interfaces.
a Bacteria can adhere to surfaces
with various interfacial properties
but might have problems to adapt
to surfaces with alternating
interfacial properties. b Protein
adsorption transforms the
synthetic textured identity into a
biological alternating identity. c
Nanotextures allow bioadhesion
but might lead to easy removal
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charge or energy with varying success [155, 171, 173–175,
177–179, 194, 196]. In addition, incorporation of
antimicrobially active metal ions is a common strategy to limit
microbial settlement especially on resin-based composite ma-
terials [211, 212]. Nevertheless, many novel promising ap-
proaches appeared within the last years. Especially
superhydrophobic nanotextured surfaces with both antifoul-
ing and/or antimicrobial activity inspired by nature appear
promising [241, 284, 286]. In addition, many studies focused
on incorporating nanoparticles with antimicrobial or anti-
adhesive properties mainly into resin-based composite mate-
rials [216–220, 302]. The majority of these studies were con-
ducted in vitro showing the general applicability of these ap-
proaches. However, more studies directly in the oral environ-
ment are necessary to prove “real-life” applicability in the
mouth. In addition, long-term stability and biocompatibility
were rarely evaluated. Still, these approaches are promising
pathways for biofilm management on oral implants or resin-
based composite materials and warrant further attention.

The majority of strategies for biofilm management focused
on single strategies like easy-to-clean surfaces, bacteriostatic
or bactericidal surface properties, or incorporation of antimi-
crobial substances via surface coupling or nanoparticles or
carriers. While some approaches already combined different
strategies [225], further improvement may well be achieved
by increased combinatory approaches.

Overall, the main question arises which approaches warrant
further research in respect to functionality, sustainability, and
biocompatibility. While functionalization of surfaces with an-
timicrobial or anti-adhesive properties might be beneficial in a
short-term perspective, sustainability and biocompatibility re-
main questionable. Modifying roughness or surface charges
(wettability) also offered inconclusive results in a plethora of
studies. While generation of nanostructured topographies to
generate superhydrophobic and/or bactericidal surfaces
showed promising results, the question about the long-term
prospective of these approaches still remains. First, with few
exceptions, these strategies were rarely evaluated in the oral
cavity and beneficial protective properties may be lost due to
pellicle formation. Secondly, structures limited to the outer
surface may not be sustainable in the oral cavity since they
will be lost over time due to erosion and degradation of the
outermost surface. Although still relatively limited data are
available yet, smooth biphasic nano- and microtextures may
be very promising in the future. Especially resin-based com-
posites or solid materials with incorporated nano- or
microsized insertions combine several favorable features.
Used alternations might be polar–nonpolar, positively–
negatively charged, or hard–soft physicochemical properties.
Many bacteria can adopt and adhere to interfaces with very
different properties, but it is not clarified how well they can
adapt to substrates that change their properties across a pre-
sumable adhesion area (Fig. 7a). Total vanishing of the

synthetic identity of the alternating surface properties by ad-
sorption of biomolecules is most likely a priori prevented,
because of translation into a biologically alternating identity
due to modulated adsorption intensities (Fig. 7b), alternating
molecular conformations, or differently extended hard and
soft protein coronas on, for example, surface partitions with
low and high energies. Not at least, nanotextures might induce
adsorption of loosely bound protein layer, which will delam-
inate or can easily be removed when reaching a certain thick-
ness or a destabilizing load with microbes (Fig. 7c). Such
surfaces would combine anti-adhesive properties with pre-
sumable good biocompatibility, and when applied with inser-
tions, antirepellent properties are not limited to the surface,
thereby tolerating certain degrees of biodegradation.

Conclusions

Advances in the design and quality of artificial prosthetic ma-
terials in the oral environment and other parts of the body
vastly increased the life span and life quality of people. But
as outlined, still many problems arise with the control of mi-
crobial settlement and propagation on these surfaces.
Therefore, it is a worthwhile and challenging endeavor to
invest in the improvement of these materials to reduce com-
plications and recurrence of oral and other diseases. In partic-
ular, there are many possibilities to improve existing prosthet-
ic or filling materials by nanostructuring or functionalization
of surfaces. In addition, combinatorial approaches of several
strategies may lead to vastly improved materials for use in the
oral environment. However, most promising for the future
may be functionalized biphasic structures by incorporation
of nanoparticles into existing dental materials due to presum-
ably high functionality, durability, and biocompatibility.

In summary, novel enhanced materials and resin-based
composites for coating of dental restorations, fillings, fixed
particles, dentures, and prosthetic implants or orthodontic de-
vices will hopefully lead to less complications or failures of
these materials, thereby reducing the risk of caries, periodon-
titis, gingivitis, peri-implantitis, or other implant-related
diseases.
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