
Chemistry and Materials Research                                                                                                                                                    www.iiste.org 

ISSN 2224- 3224 (Print) ISSN 2225- 0956 (Online) 

Vol.7 No.3, 2015 

 

1 

Bioadsorption of 2,6-Dichlorophenol from Aqueous Solution onto 

Plantain and Pineapple Peels Mixture Used as Adsorbent: 

Optimization Studies Based on Taguchi Method, Batch 

Equilibrium, and Kinetic Modelling 
 

S. E. Agarry      O. O. Ogunleye
* 

Department of Chemical Engineering, Biochemical and Chemical Engineering Biotechnology Laboratory, 

Ladoke Akintola University of Technology, P. M. B. 4000, Ogbomoso, Nigeria 
*
Corresponding author: E-mail: ooogunleye@yahoo.com 

 

Abstract 

The feasibility of using pineapple/plantain peels mixture to remove 2, 6-dichlorophenol (2,6-DCP) from its 

aqueous solutions was investigated under batch mode. The effects of factors such as pH, initial 2, 6-DCP 

concentration, temperature and pineapple/plantain peels adsorbent ratio on the removal process were evaluated. 

Four factors and three levels according to Taguchi’s (L9) orthogonal array were used to assess and optimize the 

bioadsorption behaviour of pineapple/plantain peels mixture. Analysis of variance was applied to determine the 

significant factors that affect bioadsorption.  The levels of significant factors were optimized using Signal to 

Noise ratio. The results showed that bioadsorption of 2, 6-DCP was dependent on these factors. However, pH 

was the major factor that affects the percentage (%) removal of 2,6-DCP with its % contribution of 52.23. An 

optimum parameter combination for the maximum percentage removal of 2,6-DCP was obtained using the 

analysis of Signal to Noise (S/N) ratio. The best conditions for bioadsorption of 2,6-DCP were determined by the 

Taguchi method and desirability approach as pH = 7, initial 2,6-DCP concentration of 300 mg/l, temperature 

50 °C, and pineapple/plantain adsorbent ratio of 2:1. The equilibrium bioadsorption data were analyzed by 

Langmuir and Freundlich isotherm models. The Freundlich isotherm model provided the best fit (R
2 
= 0.9980) to 

the experimental data. The maximum monolayer bioadsorption capacity ( maxQ ) was found to be 76.92 mg/g. 

The bioadsorption kinetics data of 2, 6-DCP were analyzed by pseudo-first-order, pseudo-second-order and 

intraparticle diffusion models. The pseudo-second order kinetic model gave the best fit. Therefore, 

pineapple/plantain peel adsorbent mixture has potential for application as an effective bioadsorbent for 2, 6-DCP 

removal from aqueous solution.  

Keywords: Bioadsorption; Bioadsorption isotherms; Kinetics; Pineapple-Plantain peel mixture; 2, 6-

Dichlorophenol; Taguchi method. 

 

1.0 Introduction 

Chlorophenols constitute an important class of pollutants because of their wide use in the production of wood 

preservers, pesticides and biocides (Bae et al., 2002; Agarry et al., 2012). These compounds are present in the 

wastewater generated from industrial activities such as petrochemical, pharmaceutical, wood preserving, plastic, 

rubber proofing, pesticide, iron steel, textile, and paper and cellulose bleaching industries (Fattahi et al., 2007; 

Hamad et al., 2010). Chlorophenols as environmental pollutants are highly toxic and carcinogenic with strong 

odour emission, not readily biodegradable and persistent in the environment and thus poses a serious ecological 

problem and public health risk causing problems with the human respiratory and nervous system (ATSDR, 1999; 

Tan et al., 2009).  

 Therefore, removing chlorophenols from aqueous solution is important prior to discharging wastewater 

into the environment. Consequently, many treatment processes have been applied for the removal of 

chlorophenols from waste waters. Some of these processes include: adsorption (Hamad et al., 2011; Agarry et al., 

2013a), photo-fenten degradation (Poulopoulos et al., 2008), catalytic wet oxidation (Chaliha and Bhattacharyya, 

2008), photocatalytic degradation (Devipriya and Yesodharan, 2010), and biodegradation (ElKarmi et al., 2009). 

Liquid-phase adsorption has been shown to be an effective way for removing suspended solids, odors, organic 

matter, and oil from aqueous solutions (Annadurai et al., 2002). Activated carbon is most widely used as 

adsorbent  in the removal of heavy metals, hydrocarbons and other hazardous chemicals (Hameed, 2009) which 

may be found in waste waters because of its high adsorptive capacity, but its high cost and difficulty in 

regeneration limits its commercial application in large-scale waste water treatment (Popuri et al., 2007).   

  This has led to research for cheaper substitutes. One of these cheaper substitutes is the use of 

agricultural byproducts which is an ubiquitous green waste which may cause some serious environmental 

pollution. Some of the agricultural waste products that has been developed as adsorbents with varying success 

for the removal of contaminants include, orange peels (Owabor and Audu, 2010, Agarry and Aremu, 2012), 

banana peels (Achak et al., 2009), banana stalk (Ogunleye et al., 2014), spent tea leaves (Hameed, 2009; Agarry 
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et al., 2013a), peanut husk (Hu et al., 2011) and pineapple peels (Agarry and Aremu, 2012; Solidum, 2013). 

More and more interests are focused on developing these agricultural wastes as adsorbent for wastewater 

treatment due to their relative high sorption affinity, ubiquitous presence in the environment, and the ease of 

being modified to materials with higher efficiency (Chen et al., 2011; Agarry and Aremu, 2012).  

 The classical method of varying the level of one factor at a time over a certain range and holding the 

rest of the test factors constant in order to determine their effects as well as to optimize these factors is a time 

and labor consuming work. However, the use of statistical experimental design and the Taguchi method 

(SureshKumar et al., 2008; Rajan et al., 2010; Kumar et al., 2013) are of recent gaining popularity as it can 

determine the effect of the factors on characteristic properties and the optimal conditions of factors. It is an 

efficient and less time consuming method. Taguchi method is a combination of mathematical and statistical 

techniques used in an empirical study. It is economical for characterizing a complicated process. It uses fewer 

experiments in order to study all levels of all input parameters, and filters out some effects due to statistical 

variation. The Taguchi’s design can further simplify by expending the application of the traditional experimental 

designs to the use of orthogonal array. This method is a simple, efficient and systematic approach to optimize 

designs for performance, quality and cost. Recently, Kumar et al. (2013) and Zolghamein et al. (2013) used 

Taguchi methodology to optimize process parameters involved in the adsorption of Cu (II) and Cd (II) heavy 

metals onto neem leaves and Carpinus betulus tree leaves, respectively. Nevertheless, the use of Taguchi method 

in studying the effects and optimization of process parameters in adsorption process is still very limited. Agarry 

et al. (2013b) have made use of plantain peel as adsorbent for the adsorption of 2,6-dichlorophenol from aqueous 

solution and the use of pineapple peels as a low cost adsorbent in immobilizing Pseudomonas aeruginosa for 

phenol removal has been reported (Agarry and Aremu, 2012). However, the mixture of two or more agricultural 

wastes to be used as adsorbent in the removal of organic chemicals or hydrocarbon pollutants has rarely been 

reported in the literature. 

 Therefore, the purpose of this work is to investigate the possibility and potential of using the mixture of 

cellulose-based waste, plantain peel and pineapple peel as a non-conventional low cost adsorbent for 

bioadsorption of 2, 6-dichlorophenol (2,6-DCP) from aqueous solution. The main effects of physical parameters 

such as initial 2,6-DCP concentration, pH, temperature, and mixture ratio of adsorbent on the bioadsorption 

process were investigated using Taguchi method. More also, the bioadsorption equilibrium isotherms and kinetic 

parameters were determined and evaluated.  

 

2.0 Materials and Methods 

2.1 Preparation of synthetic wastewater sample   
All the reagents used for the current investigation were of analytical grade from E. Merck Ltd., India. A stock 

solution was prepared by dissolving 1 g of 2,6-DCP (Sigma Aldrich) in 1 L of sterilized de-ionized water. From 

this original stock solution, five test working solutions with various concentrations (100, 200, 300, 400, and 500 

mg/L) were prepared by dilution with de-ionized water.   Before mixing the adsorbent, the pH of each 2,6-DCP 

solution was adjusted to the required value by 0.1 M NaOH or 0.1 M HCl solution.  

 

2.2 Plantain and pineapple peel collection and bioadsorbent preparation   
Plantain peels used in this study were collected from local food sellers, restaurants and eateries located in 

Ogbomoso while pineapple peels, a waste product of pineapple pulp were obtained from pineapple fruits bought 

from a local market in Ogbomoso, Nigeria. The plantain and pineapple peels were washed and sundried for 10 

days. The respective dried plantain and pineapple peels were then reduced to small-sized particles by grinding 

using a serrated disk grinder. The powdered particles were sieved to obtain a desired average particle size of 1.68 

mm. The plantain peel powdered particles and the pineapple peel powdered particles were separately washed 

thoroughly with sterilized de-ionized water and dried in the oven for 2 – 3 h at 60
o
C, after which they were 

stored in sterilized closed glass bottles prior to use as a bioadsorbent. Both the powdered plantain and pineapple 

peels were differently pretreated with chemical solvent to increase the 2, 6-dichlorophenol uptake efficiency. For 

this purpose, 100 g of each powdered peels were treated with 1000 ml of 1M H3PO3 for 24 h and then kept on 

water bath (70
o
C) for 30 min. It was later cooled and neutralized with 500 ml of 1M NaOH. The filtrates were 

separated and dried in the oven at 60
o
C for 4 – 5 h. The pretreated powdered plantain and pineapple peels were 

used as mixed bioadsorbent for the study.  

 

2.3 Characterization of plantain and pineapple peel 

The plantain and pineapple peel was each characterized for surface functional groups by Fourier Transform Infra 

Red Spectroscopy (FT-IR) method using a Perkin–Elmer 2000 infrared spectrometer. The spectrum of the 

biosorbent was recorded in 400−4000 cm
−1

. 
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2.4 Batch equilibrium bioadsorption studies   
The batch biosorption tests were carried out in a glass-stoppered 250 ml Erlenmeyer conical flask with 100 ml of 

working volume and an initial concentration of 100 mg/L of 2,6-DCP having a solution pH of 7.  A weighed 

amount (2.0 g) of bioadsorbent (mixture of plantain and pineapple peels) was added to the solution. The flasks 

were agitated at a constant speed of 150 rpm for 150 min in a temperature controlled – water bath shaker at 30
o
C. 

Different initial 2,6-DCP concentration (100, 200, 300, 400, 500 mg/L) were evaluated during the present study. 

Samples were collected from the flasks at predetermined time intervals of 30 min for analyzing the residual 2,6-

DCP concentration in the solution. Prior to analysis, samples were centrifuged to separate bioadsorbent from the 

adsorbate and minimize interferences. At time t = 0 and equilibrium, the 2,6-DCP concentrations were 

determined using UV-spectrophotometer at an absorbance wavelength of 340 nm. The amount of bioadsorption 

at equilibrium, eq (mg/g) was calculated according to Eq. (1) (Crisafully et al., 2008): 

                      
W

VCC
q eo

e

)( −
=             (1) 

Where oC and eC (mg/l) are the initial and final (equilibrium) concentrations of 2,6-DCP in waste water. V (ml) 

is the volume of the waste water and W (g) is the mass of dry bioadsorbent used.  

 

2.5 Batch bioadsorption kinetic studies 

The procedures of kinetic studies were basically identical to those of batch equilibrium studies.  

The amount of 2,6-DCP sorbed at time t , tq  was calculated according to Eq. (2) (Xun et al., 2007): 

       
W

VCC
q to

t

)( −
=       

    (2) 

Where tC  is the concentration of 2,6-DCP in waste water at time t .The percentage of 2,6-DCP removal was 

calculated using Eq. (3) (Hamad et al., 2011):   

                  Removal (%) = 100×
−

o

to

C

CC
            (3) 

2.6 Optimization studies 

The selected experimental design parameters are as given in Table 1.  

 

Table 1: Process parameters and their levels 

Symbol Factors Levels 

1 2 3 

A pH 4 7 10 

B Initial Concentration (mg/l) 100 300 500 

C Temperature (
o
C) 30 40 50 

D Pineapple: Plantain adsorbent Ratio 1:1 1:2 2:1 

 Table 1 shows four factors and three levels used in the experiment. If three levels were assigned to each 

of these factors and a factorial experimental design was employed using each of these values, number of 

permutations would be 64. The fractional factorial design reduced the number of experiments to nine. The pH 

(A), initial 2,6-DCP concentration (B), temperature (C) and plantain/pineapple biosorbent ratio (D) were 

assigned to the 1st, 2nd, 3rd and 4th column of L9 array respectively. The orthogonal array of L9 type was used 

and is represented in Table 2. This design requires nine experiments with three parameters at each of these three 

levels. The interaction between main factors was neglected. The S/N ratios were computed for percentage (%) 

2,6-DCP removal in each of the 9 trial conditions and their values are as given in Table 2. 
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Table 2: Experimental layout using an L9 (3
4
) orthogonal array and the experimental results 

Run Main Factors % 2,6-DCP Removal Average S/N Ratio (dB) 

A B C D 1 2 3   

L1 1 1 1 1 94.50 94.52 94.56 94.53 11.58 

L2 1 2 2 2 95.0 95.20 95.40 95.20 11.60 

L3 1 3 3 3 97.85 97.80 98.05 97.90 11.68 

L4 2 1 2 3 98.70 98.65 98.68 98.67 11.70 

L5 2 2 3 1 99.74 99.79 99.82 99.78 11.74 

L6 2 3 1 2 96.70 96.80 97.10 96.87 11.65 

L7 3 1 3 2 93.40 93.25 93.10 93.25 11.54 

L8 3 2 1 3 96.25 96.38 96.47 96.37 11.64 

L9 3 3 2 1 95.90 95.84 95.88 95.87 11.62 

 

2.4 Data Analysis  

Analysis of Variance (ANOVA) was used to determine the significance of each factor while signal to noise ratio 

(S/N) was used in deciding the optimum levels of the factors. ANOVA is a statistically based objective decision 

making tool for detecting any differences in average performance of groups of tested items. It thus determines 

the effects of the different factor – level combination through an analysis of their variability. The final outcome 

of the ANOVA table is the determination of F-value. The F- value is a measure of how statistically significant a 

particular factor is to the overall experiment. It is the ratio of the variance due to the factors and the variance due 

to the error. The F-value for each factor from the experiment is compared with the values from existing tables 

which are generated for different levels of ‘confidence’. If the F- value of the experimental factor is much larger 

than that of the standard value, in the F examination, then this factor bears an important effect in the experiment. 

Signal to Noise (S/N) ratio is a performance measure designed by Taguchi and it selects the factor levels that 

maximize this ratio. The term signal represents the quality characteristic while noise is a measure of the 

variability (as measured by the variance) of the characteristics. The S/N equation depends on the criterion for the 

quality characteristics to be optimized. There are three forms of S/N ratios, smallest -is - best, nominal- is - best 

and highest-is - best quality characteristics, which are generally applicable in contamination, strength and 

dimension, respectively.  

1. Lowest -is-best   

     
n

y

NS

n

i

ni )log(10

/ 1

,∑
=

−

=                                 (4)                         

n = number of tests in a trial  

 

2. Nominal -is - best        

   VNS log10/ −= (variance only)                                    (5)   

 

3. Highest -is-best    

n

y
NS

n

i ni
∑

=

−

=
1 ,

)1log(10

/                               (6)                                         

Whatever is the type of characteristic, the transformations are such that the S/N ratio is always interpreted in the 

same way, the larger the S/N ratio better the result. 

 

3.0 Results and Discussion 

3.1 Characterization of plantain and pineapple peels 

FT-IR spectrum of plantain and pineapple peels were obtained in order to identify the functional groups like -OH, 

-CO, -CHO, N-H, - CONH, -C=C- and -COOH present in these peels  that can be involved in bonding with 2,6-

DCP during bioadsorption.. Table 3 shows the FT-IR spectrum elucidation of dried plantain and pineapple peels 
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structure with a particle size of 1.68 mm.  

 

Table 3: FT-IR spectrum elucidation of dried plantain peel and pineapple peel structure 

Adsorbent Absorption Peak Number (cm
-1

)  Suspected Functional Groups 

Plantain peel 766.06 C-H (bend), C=C (out of plane) 

 1033.95 C-O (alcohol), C-H (in plane), C=N (bend) 

 1395.85 C-H (bend), C-O (alcohol), C-N, OH (carboxylic acid) 

 1620.98 C-H (alkane), C=C, C=O (stretch) 

 3445.71 C-H (stretch), OH (stretch), OH (non-bonding), N-H 

(stretch) 

Pineapple peel   

 576 C-H (bend), C=C (out of plane)  

 1053.00 C-O (alcohol), C-H (in plane), N-H (amine group)  

 1395.85 - 1253.36 C-H (bend), C-O (alcohol), C-N, OH (carboxylic acid) 

 1641.24 C-H (alkane), C=C, C=O (stretch) 

 2925.71 C-H, CH2 and CH3 (alkane), COOH (carboxylic acid) 

 3435.00 C-H (stretch), OH (stretch), OH (non-bonding), N-H 

(stretch) 

 For the plantain peel, the bands in the region of 3445.71 cm
-1

 were assigned to OH stretch (alcohol and 

carboxylic acid), OH non-bonding, those at 1620.98 cm
-1

 to C-H (alkane), C=C (aromatic) and C=O stretch and 

the bands appearing at 1395.85 cm
-1

 to C-H bend, C-O (alcohol), C-N, and OH (carboxylic acid). The absorption 

peaks (bands) at 1033.95 cm
-1

 were attributed to C-O (alcohol), C-H and C=N bend (nitriles). The weak band in 

the region of 776 cm
- 1

was assigned to C-H bend and C=C which are out of plane. For the pineapple peel, the 

bands in the region of 3435.00 cm
-1

 were assigned to OH stretch (alcohol and carboxylic acid), OH non-bonding, 

those at 2925.71 cm
-1

 to C-H, CH2, CH3 (alkanes) and COOH (carboxylic acid) and the bands appearing at 

1641.24 cm
-1

 to C-H (alkane), C=C (aromatic) and C=O stretch. The absorption peaks (bands) at 1395.85-

1253.36 cm
-1

 were attributed to C-H bend, C-O (alcohol), C-N, and OH (carboxylic acid) and that at 1053.00 cm
-

1
 to C-O (alcohol), C-H and C=N bend (nitriles). The weak band in the region of 576 cm

- 1
was assigned to C-H 

bend and C=C which are out of plane. The FT-IR spectra showed that carboxyl, carbonyl and hydroxyl groups 

were very prominent functional groups on the surface of both the plantain and pineapple peels which could play 

major role in 2,6-DCP bioadsorption. 

 

3.2 Taguchi’s analysis of 2,6-DCP Bioadsorption   

Nine different set of experiments were performed using the design factor combinations in the specified 

orthogonal array table. Three replicates were carried out for each of the factor combinations. The completed 

response table for these data appears in Table 4.  In order to estimate the effect of factor A (pH of the solution) 

on the average value of response variable, sum of the average three observed response at level 1 of factor A was 

divided by 3 to obtain the average response at level 1 of factor A. The average responses at level 2 and 3 were 

obtained in a similar manner. The estimated effects are presented Table and shown graphically in Fig. 1. 

 

Table 4. Estimated individual factor effects on percentage removal of 2,6-DCP by pineapple/plantain peels 

mixture  

Factors Levels 

1 2 3 

pH (A) 95.88 98.44
*
 95.16 

Initial 2,6-DCP Concentration (B) 95.48 97.12
*
 96.88 

Temperature (C) 95.92 96.58 96.98
*
 

Plantain: Pineapple peels sorbent Ratio (D) 96.73 95.11 97.65
*
 

*Optimum level 
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The estimated individual factor’s effect on % removal of 2,6-DCP from aqueous solution is shown in Fig. 1.  

  

  
Fig. 1. Estimated individual factor effects at different factor level on percentage removal of 2,6-DCP by 

pineapple/plantain peels mixture (a) pH (b) Initial 2,6-DCP concentration (c) temperature (d) pineapple/plantain 

peels adsorbent ratio 

 Fig. 1(a) shows the effects of pH on the adsorption of 2,6-DCP by mixture of plantain and pineapple 

peels. pH of the solution is an important operational parameter that governs the adsorption process of organic 

chemicals or metals in solution. This is because it affects the solubility of the chemical ions concentration of the 

counter ions on the functional groups of the adsorbent and the degree of ionization of adsorbate during reaction 

(Agarry et al., 2013b). At the range of pH 4 to 10, the % 2,6-DCP removal increased from 95.88% at pH 4 to 

98.44% at pH 7 and decreased to 95.16% at pH 10.  The seemingly high adsorption of 2,6-DCP at lower pH was 

due to high electrostatic attraction between the negatively charged 2,6-DCP molecules and positively charged 

adsorption sites. As the pH increased, there were fewer H+ ions present in the solution and consequently more 

negatively charged sites were made available and this facilitated decreased 2,6-DCP removal due to electrostatic 

repulsion. The effects of initial 2,6-DCP concentration on its adsorption is shown in Fig. 1 (b). The percentage 

removal of 2,6-DCP generally increased with increase in the initial concentration of 2,6-DCP. However, the 

maximum percentage removal was obtained using 300 mg/L and above this value it decreased. This observation 

is in contrast to our earlier report (Agarry et al., 2013) when modified plantain peels alone was used for 2,6-DCP 

adsorption from aqueous solution. This observation indicates that the rate of bioadsorption was high at moderate 

to high sorbate concentration which resulted in higher percentage removal of 2,6-DCP as compared to lower 

concentration. This may be due to decreased concentration gradient which acts as increased driving force to 

overcome the resistances to mass transfer of 2,6-DCP between the aqueous phase and the solid phase (Baek et al., 

2010; Agarry et al., 2013). Fig. 1 (c) shows the effects of temperature on 2,6-DCP bioadsorption onto pineapple 

and plantain peels mixture. It could be observed that the percentage removal of 2,6-DCP from aqueous solution 
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generally increased with increment of the solution temperature. This observation is in agreement with our earlier 

report (Agarry et al., 2013) when modified plantain peels alone was used for 2,6-DCP adsorption from aqueous 

solution. This observation suggests that bioadsorption of 2,6-DCP onto pineapple/plantain peel mixture was an 

endothermic process. 

 The effects of pineapple/plantain peels adsorbent ratio on the bioadsorption of 2,6-DCP from aqueous 

solution is as shown in Fig. 1 (d). It is seen that the mixing ratio of pineapple and plantain peels affects the rate 

of 2,6-DCP bioadsorption. The pineapple/plantain peels adsorbent ratio of 2:1 (i.e. the mixture having a larger 

pineapple peels component) relatively elicited greater 2,6-DCP bioadsorption than those with 1:1 and 1:2 

pineapple/plantain peels adsorbent ratio, respectively. However, the pineapple/plantain peels adsorbent ratio of 

1:1 (i.e. equal mixture of pineapple and plantain peels) relatively performed better (with 96.73% 2,6-DCP 

removal) than pineapple/plantain peels adsorbent ratio of 1:2 (i.e. the mixture having a larger plantain peels 

component) having a 95.12% of 2,6-DCP removal. Table 3 suggests that the optimum condition for the 

maximum % of 2,6-DCP removal is the combination of A2B2C3D3  levels of the respective control factors. It is 

evident from Fig. 1 that pH (Factor A) has the greatest increasing effect on the % of removal rate. 

 

3.3 ANOVA and Signal to Noise Ratio Analysis for Percentage Removal Rate of 2,6-DCP   
The pH, initial concentration, temperature and plantain/pineapple adsorption ratio were studied for their effects 

on % removal of 2,6-DCP from aqueous solution. From Table 2 the ANOVA for % removal of 2,6-DCP and % 

contribution of each factor are found and are presented in Table 5.  From Table 5, it is seen that the F-calculated 

value for pH, initial concentration, temperature and plantain/pineapple adsorption ratio time are infinity while 

the F-table value is 10.9, which indicates that all the factors studied have a significant effect on the % removal 

rate of 2,6-DCP. The percent contributions of the factors are shown in Table 5. Percent contribution indicates the 

relative power of a factor to reduce variation (Esme, 2009). For a factor with a high percent contribution, a small 

variation will have a great influence on the performance. According to Table 3, pH was found to be the major 

factor affecting the % removal rate of 2,6-DCP (52.23%), whereas pineapple: plantain peel adsorbent ratio was 

found to be the second ranking factor (29.09%) and relatively followed by initial 2,6-DCP concentration. The 

percent contribution of temperature is much lower, being 4.98%.  

Table 5: ANOVA results for percentage removal of 2,6-DCP by pineapple/plantain peels mixture 

Factor SS DF MS F-value % Contribution 

pH (A) 17.82 2 8.91 ∞ 52.23 

Initial 2,6-DCP Concentration (B) 4.67 2 2.34 ∞ 13.70 

Temperature (C) 1.70 2 0.85 ∞ 4.98 

Pineapple: Plantain Peels Adsorbent Ratio (D) 9.92 2 4.96 ∞ 29.09 

Error 0 0 0   

Total  8    

 The effect of each factor on the S/N ratio at different levels can be separated out because the 

experimental design is orthogonal. It was found from Table 2 that the combination of the levels A 2, B 2, C 3, 

and D 1 gives higher % removal rate of 2,6-DCP than the levels A 1, B 3, C 3, D3 (Experiment 3) and A 2, B 3, 

C1, D 2 (Experiment 6). However, according to the mean Signal to Noise (S/N) ratio which has been determined 

for each level of the significant factors using the formula highest-is–best (Table 6), levels A 2, B 2, C 3, and D 3 

are chosen as the optimum set of levels for the factors considered to maximize the percentage removal rate of 

2,6-DCP. In order to verify the optimum process conditions selected, confirmatory experiments were performed.  

Table 6: Mean S/N ratio (dB) response for the bioadsorption of 2,6-DCP by pineapple/plantain peels 

Factors Levels Maximum – Minimum 

1   2   3  

pH (A) 11.62 11.70 11.60 0.10 

Initial 2,6-DCP Concentration (B) 11.61 11.66 11.65 0.05 

Temperature (C) 11.62 11.64 11.65 0.02 

Plantain: Pineapple peels adsorbent Ratio (D) 11.65 11.60 11.67 0.07 

Total mean (S/N) 
−

η = 34.92 

 Fig. 2 shows the S/N ratio plot where the dashed line is the value of the total mean of the S/N ratio. 
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Basically, the larger the S/N ratio, the better is the percentage removal rate. 

  
Fig. 2. S/N ratio plot for percentage removal of 2,6-DCP at different factor level 

 

3.4. Confirmation Test  
In this study, after determining the optimum conditions and predicting the response under these conditions, a 

new experiment was designed and conducted with the optimum levels of the factors considered. The result is 

presented in Table 7. 

Table 7: Results of confirmation experiment 

 Optimal Process Parameters 

Experimental Predicted 

Level A2B2C3D3 A2B2C3D2 

% 2,6-DCP Removal 96.20 96.49 

S/N (dB) 11.58 11.54 

 

3.5 Bioadsorption isotherms  
A number of isotherms have been developed to describe equilibrium relationships. In the present study, 

Langmuir and Freundlich isotherm models were used to describe the equilibrium data. The Langmuir isotherm 

model (Langmuir, 1918) was used to describe observed bioadsorption phenomena. The Langmuir model is as 

given in Eq. (7): 

                  

e

e

e
aC

aCQ
q

+
=

1

max
       (7) 

Where maxQ and a  are isotherm constants. The maxQ and a can be determined from the linear plot of eq1 vs. 

eC1 as shown in Fig. 3(a).  
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Fig. 3. Linear regression fitting of bioadsorption isotherms to the batch equilibrium data of 2,6-DCP 

bioadsorption by pineapple/plantain peels mixture (a) Langmuir isotherm (b) Freundlich isotherm 

 Langmuir equation is valid for monolayer sorption unto a surface with a finite number of identical sites 

which are homogeneously distributed over the sorbent surface (Popuri et al., 2007). The estimated constants 

from the linear plot of ( eq1 vs. eC1 ) (Fig. 3a) are given in Table 8. It can be explained apparently that when 

a  > 0, sorption system is favorable (Chen et al., 2008).  In this study, a  is 0.0456 L/mg and the maximum 

monolayer bioadsorption capacity ( maxQ ) was obtained to be 76.92 mg/g.  Sathishkumar et al. (2009) obtained 

17.94 mg/g as the maximum monolayer adsorption capacity of maize cob carbon for the adsorption of 2,4-DCP 

while Agarry et al. (2013) obtained 14.25 mg/g g as the maximum monolayer adsorption capacity of modified 

plantain peels for the adsorption of 2,6-DCP. 

 

The Freundlich isotherm model (Freundlich, 1906) is given in Eq. (8): 

    
n

efe CKq /1
=          (8) 

Where fK  and n  are Freundlich constants. fK  is roughly an indicator of the adsorption capacity (mg/g) and 

n  is the adsorption intensity. The fK  and 1/ n  can be determined from the linear plot of eqlog vs. eClog  as 

shown in Fig. 3(b). The evaluated constants are given in Table 8.  

 

Table 8: Bioadsorption isotherm parameters and correlation coefficients for the bioadsorption of 2, 6-

dichlorophenol by pineapple/plantain peels mixture  

Isotherm Models                    Isotherm Constant Parameters           Correlation Coefficient  

                                                               Name Value                                
2R  

Langmuir Isotherm                           maxq (mg/g)               76.92                 0.9870 

                                                         a (L/mg)                   0.0456                                                       

                                                                                                                                                            

Freundlich Isotherm                        fK (mg/g)(L/mg)             4.58                 0.9980 

                                                           n1                                  0.68                                                                                                                         

 Generally, the tested isotherm models fitted well to the equilibrium bioadsorption experimental data 

with high correlation coefficient, however, the Freundlich isotherm model provided the best fit with a higher 

correlation coefficient ( =
2R 0.9980) to describe the bioadsorption process. A similar observation has been 

reported for the adsorption of 2,6-DCP onto modified plantain peels (Agarry et al., 2013b), adsorption of 2, 4-

DCP onto activated bamboo charcoal (Ma et al., 2010) and the adsorption of 2,4,6-trichlorophenol (TCP) onto 

coir pith carbon (Namasivayam and Kavitha, 2004) and coconut shell carbon (Radhika and Palanivelu, 2006). In 

this study,
 fK  and 1/ n  were found to be 4.58 mg/g (L/mg)

 1/n 
and 1.47, respectively. Agarry et al. (2013b) 
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obtained fK  and n  of 2.79 and 3.03 for the adsorption of 2,6-DCP onto modified plantain peels. Achak et al. 

(2009) obtained fK  and n  of 0.13 and 1.13 for the adsorption of phenolic compounds from olive mill 

wastewater onto banana peel; while Namasivayam and Kavitha (2004) and Radhika and Palanivelu (2006) 

correspondingly obtained a fK : n  value of 1.2: 0.7 and 2.05:1.5 for the adsorption of 2,4,6-TCP onto coir pith 

carbon and coconut shell activated carbon, respectively. 

 

3.6 Bioadsorption kinetics modelling  
In order to analyze the rate of bioadsorption and possible adsorption mechanism of 2, 6-DCP onto 

pineapple/plantain peel adsorbent mixture, the Lagergren pseudo first- order (Mckay and Ho, 1999), pseudo 

second-order (Ho and Mckay, 2000) and intraparticle diffusion (Weber and Morris, 1963) were applied to 

bioadsorption data. 

The Lagergren pseudo first-order kinetic model equation (Mckay and Ho, 1999) is represented in an integral 

form as given in Eq. (9): 

    tkqqq ete 1ln)ln( −=−        (9)  

Where, 
eq  is the calculated maximum equilibrium biosorption capacity (mg/g) and 1k  is the biosorption rate 

constant (min
-1

). The values of 
eq and 1k  at different concentrations were calculated from the slope and 

intercept of the linear plots of )ln( te qq − vs t  (Fig. 4a).  

 
Fig. 4. Kinetic model fitted to the batch kinetic data of 2,6-DCP bioadsorption by pineapple/plantain peels 

mixture at different initial 2,6-DCP concentration (a) Pseudo first-order kinetics (b) Pseudo second-order 

kinetics, (c) Intraparticle diffusion 
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The respective values are given in Table 9. It is seen that the bioadsorption rate constant ( 1k ) generally 

increased with increased initial 2,6-DCP concentration. 

 The pseudo-second- order kinetic model which is based on the assumption that chemisorption is the 

rate-determining step and can be expressed as: 

 

       

eet q

t

qkq

t
+=

2

2

1
   (10) 

 Where 
2k is the rate constant of second order bioadsorption (g/mg/min). The initial bioadsorption rate, 

h (mg g
-1

 min
-1

) is represented as in Eq. (11) (Sari et al., 2010): 

            
2

2 ead qkh =    (11) 

 Values of 
2k and eq  were calculated from the plots of tqt vs. t  (Fig. 4b) for different initial concentration. 

The respective constant values are given in Table 6. It is observed that the rate constant 
2k  generally increase 

with increased initial 2,6-DCP concentration. Also, as evident from Table 9, the initial adsorption rate, h , 

increased with increase in initial 2,6-DCP concentration suggesting that bioadsorption of 2,6-DCP by 

pineapple/plantain peel adsorbent mixture was favorable at higher concentration. The increase in initial 

biosorption rate with increase in 2,6-DCP concentration may be due to increased concentration gradient which 

acts as increased driving force to overcome the resistances to mass transfer of 2,6-DCP between the aqueous 

phase and the solid phase (Baek et al., 2010).  

Table 9: Pseudo first-order, pseudo second-order and intraparticle diffusion kinetic parameters    and 

correlation coefficients obtained for the bioadsorption of 2, 6-dichlorophenol by pineapple/plantain peels 

mixture   

Kinetic Model        Initial concentration (mg/L) 

100          200        300        400        500 

Pseudo first-order 
1k  0.054 0.065 0.065 0.063 0.072 

 
eq
(theo.)

 8.31 15.23 21.12 38.24 31.06 

 
eq
(exp)

   12.00 23.54 34.97 46.39 57.40 

 2R  0.867 0.883 0.871 0.958 0.843 

Pseudo second-order      

 
2k  0.059 0.065 0.065 0.063 0.072 

 
eq
(theo.)

 12.20 23.81 35.71 47.62 58.82 

 h  8.78 36.85 82.89 142.9 249.1 

 2R  0.999 0.999 1.000 1.000 1.000 

Intraparticle diffusion      

 
pK  0.124 0.123 0.132 0.134 0.121 

 C  10.60 22.17 33.49 44.89 56.05 

 2R  0.865 0.854 0.856 0.862 0.863 

       

             a= min
-1

, b = mg/g, c = g/(mg.min), d = mg g
-1

min
-1

, e = mg/g.min, f = g/mg 

 

 The intra particle diffusion kinetic model (Weber and Morris, 1963) can be written as presented in Eq. (12): 

    CtKq pt +=
2/1

       (12) 

Where pK is the intra particle diffusion rate constant (mg/g min
-½

) and C is the intercept. The intercept of the 

plot reflects the boundary layer effect. Larger the intercept, greater is the contribution of the surface sorption in 

the rate controlling step. Intra particle diffusion is the sole rate-limiting step if the regression of tq  vs. 
2/1t  is 

linear and passes through the origin (Weber and Morris, 1963). In fact, the linear plots at each concentration (Fig. 

4c) did not pass through the origin. This deviation from the origin is due to difference in the rate of mass transfer 
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in the initial and final stages of the bioadsorption. This indicated the existence of some boundary layer effect and 

further showed that intra particle diffusion was not the only rate limiting step.  The calculated diffusion 

coefficient pK  values are listed in Table 9. The pK values shows no trend with increase in initial 2,6-DCP 

concentration.  

 Generally, all the tested bioadsorption kinetic models fitted well to the bioadsorption kinetic data with 

high correlation coefficient at different initial 2,6-DCP concentration, however, the pseudo second-order kinetic 

model gave the best fit with higher correlation coefficient to describe the bioadsorption behaviour of 2,6-DCP 

onto pineapple/plantain peels adsorbent mixture. Similar observations have been reported for the adsorption of 

chlorophenols onto other single adsorbents (Wang et al., 2011; Agarry et al., 2013). 

 

4. Conclusions 

In this study, pineapple/plantain peel adsorbent mixture was tested and evaluated as a possible bioadsorbent for 

removal of 2,6-DCP from its aqueous solution using batch bioadsorption technique. The Taguchi method was 

applied to investigate the effects of pH, initial 2,6-DCP concentration, temperature and pineapple/plantain peels 

adsorbent ratio on percentage removal of 2,6-DCP by pineapple/plantain peels adsorbent mixture. The level of 

importance of the factors considered was determined using ANOVA. Based on the ANOVA method, it was 

found that all the four factors, pH, initial 2,6-DCP concentration, temperature and pineapple/plantain peels 

adsorbent ratio have profound influence on the percentage removal of 2,6-DCP from aqueous solution. The 

solution pH is the major factor that affects the percentage (%) removal of 2,6-DCP with its % contribution of 

52.23% and is relatively followed by pineapple/plantain peels adsorbent ratio (29.09%) and initial 2,6-DCP 

concentration (13.70%). An optimum parameter combination for the maximum percentage removal of 2,6-DCP 

was obtained by using the analysis of signal-to-noise (S/N) ratio. The optimum test condition at which the 

maximum percentage removal of 2,6-DCP was obtained has been determined to be A2B2C3D3 levels. The 

experimental results confirmed the validity of the used Taguchi method for optimizing the parameters in 

bioadsorption operations. Bioadsorption equilibrium data fitted very well to both the Langmuir and Freundlich 

isotherm equation. Nevertheless, Freundlich isotherm equation gave the best fit, confirming the non-ideal 

heterogeneous adsorption capacity of 2,6-DCP onto pineapple/plantain peel adsorbent mixture with a 

bioadsorption capacity ( fK ) of 4.58 mg/g and bioadsorption intensity (1/ n ) of 0.68 at 30
o
C. The maximum 

monolayer bioadsorption capacity ( maxQ ) was found to be 76.92 mg/g. The bioadsorption kinetics followed 

pseudo-second-order kinetic model with a very good correlation coefficient. Intra-particle diffusion was not the 

sole rate controlling factor.  
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