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Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process

involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food

compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects.

Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and

improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters,

molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several

technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology

and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of

hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food

sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g.

(poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry.

Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their

interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors

affecting the bioavailability of the aforementioned bioactive food compounds.

Introduction

Food is for our sustenance, nourishment and enjoyment.

More than this, people are increasingly looking to non-

nutrient food components for added benefits from their

food which may play a role in health promotion, disease

prevention and performance improvement [1]. When con-

sidering these properties of food, we aim for long term

physiological effects, as opposed to acute effects as in the

case of most of the pharmaceutical drugs [2].

The majority of bioactive food compounds responsible

for the positive effects on well-being are predominantly

derived from the plant kingdom with some from animal

sources. Several epidemiological studies throughout the

years have suggested that diets rich in fruits and vegeta-

bles promote health and reduce the risk of certain chronic

and neurodegenerative diseases [3]. Five portions of fruits

or vegetables a day has become a rule of thumb for healthy

lifestyle dietary habits [4]. Many of these fruits and vegeta-

bles contain polyphenols which are secondary metabolites

in plants, and are considered as non-essential for suste-

nance of life but potentially contribute to the maintenance

of human health [5]. Similar to hydrophilic bioactive mol-

ecules, lipophiles derived from various plant and animal

sources may also exert beneficial effects on health. Long

chain polyunsaturated fatty acids derived from marine

animals or plant sources, and carotenoids of plant origin

are examples of lipophilic bioactive nutrients. Among the

food sources discussed in this review, coffee, tea, citrus fruit

and fish oil are included as examples of important ingredi-

ents for the food industry. Cereals, dairy products, nuts, red

wine and olive oil are also interesting sources of bioactive

food compounds, but will not be considered in this review.

In order to exert a health benefit, the compound of

interest, whether hydrophilic or lipophilic, needs to with-

stand food processing, be released from the food matrix

post-ingestion and be bioaccessible in the gastrointestinal

tract, undergo metabolism and reach the target tissue of
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action [2]. In other words, the bioactive compound in ques-

tion needs to be bioavailable before it can have an effect

[6]. It may be considered redundant to study the health

effects of dietary bioactive compounds if their bioavailabil-

ity is not also fully elucidated. Bioavailability is a key step

regarding functional foods and health claims related to

food components, followed by knowledge of the circulat-

ing metabolites, which leads to understanding of the

mechanisms of action in relation to the benefit.

Due to the complexity of food compounds, the many

factors affecting their transition during digestion, and also

to the different mechanisms of absorption of water soluble

and lipid soluble molecules, unravelling the bioavailability

of food constituents is challenging when compared with

pharmaceutical drugs. In addition, understanding, for

example, the polyphenol–gut microbiota interactions and

gut microbial bioconversion capability will facilitate

studies on bioavailability of bioactive food compounds in

the host and provide more insight into the health effects of

these molecules. Williamson & Clifford [7] reported that

since microbial metabolites could be present in very high

concentrations, colonic metabolites could be considered

as the missing link between the consumption of certain

polyphenols and their biological activity.

From a pharmacological perspective, bioavailability is

the rate and extent to which the bioactive compound or a

drug is absorbed and becomes available at the site of

action [8]. From a nutritional perspective, bioavailability is

the fraction of a given food that the body can utilize, and is

therefore a matter of nutritional efficacy [9, 10]. Bioavail-

ability addresses several processes such as liberation from

a food matrix, absorption, distribution, metabolism and

elimination phases (LADME).

The assessment of bioaccessibility and bioavailability

of health associated compounds is important for the

understanding of the relationship between food and nutri-

tion. The rate and extent of absorption can vary widely

between individuals. The inter-individual variability in bio-

availability depends on several key factors including diet,

genetic background, gut microbiota composition and

activity. Some bioactive food compounds such as polyphe-

nols, are relatively poorly absorbed, the absorption ranging

from 0.3% to 43%, and the circulating plasma concentra-

tions of their metabolites can be low [6]. Limited bioavail-

ability hinders the use of bioactive food compounds as

functional ingredients [11, 12]. Only by understanding the

mechanisms of absorption of food derived compounds,

can their bioavailability be enhanced and thus the poten-

tial for greater health benefits be realized.

In this review we focus on the nutrient bioavailability of

different bioactive food compounds, polyphenols and

PUFAs, two very different classes of compounds that have

been reported to contribute to a healthy diet. As groups of

bioactive food compounds, they differ greatly in their

origin, physicochemical properties and absorption mecha-

nisms, and yet they have similarities with regard to various

health related benefits, such as cardio vascular health

[13–17]. We also focus on the challenges faced with food

matrices, effects of processing, absorption mechanisms,

and selected technologies to improve the bioavailability of

bioactive food molecules, all in comparison with pharma-

ceutical drugs.

Bioaccessibility: the first step of
bioavailability

Bioaccessibility has been defined as the fraction of a com-

pound which is released from the food matrix in the gas-

trointestinal lumen and thereby made available for

intestinal absorption [18]. Mastication in the mouth initi-

ates the process and several digestive fluids containing

different enzymes continue to break down the food matrix

in the stomach and throughout the remainder of the gas-

trointestinal lumen [19]. Bioaccessibility is influenced by

the composition of the digested food matrix, the syner-

gisms and antagonisms of the different components [10],

but also by physicochemical properties, such as pH, tem-

perature and texture of the matrix [20]. The digested food

is predominantly broken down in the small intestine by

bile, pancreatic and other enzymes secreted from the

intestinal mucosa [19]. These digestive aids are crucial for

lipid soluble bioactive compounds, such as some vitamins

(A, D, E and K), carotenoids and PUFAs. The sequential

obligatory steps of lipid digestion prior to absorption are

partial gastric hydrolysis, emulsification by bile and further

lipolysis by pancreatic lipases. These enzymes release free

fatty acids and monoacylglycerol which form micelles so

that the lipids can be absorbed across the water barrier

and into the intestinal enterocytes [21–24].

The caloric content and the volume of the food matrix

can cause physiological changes in the gastrointestinal

tract which affects the bioaccessibility of digested com-

pounds [25–27]. Walsh et al. [28] observed in an in vitro

model that the bioavailability of isoflavonoids from foods

containing fat and protein exceeds that of isoflavonoid

supplements consumed without food. Brown et al. [29]

showed that both full fat and reduced fat salad dressing

improved carotenoid absorption in human subjects when

compared with consumption of salad with fat free salad

dressing.

Processing of plant foods can influence the bioaccessi-

bility of nutrients, mainly through changes in the plant cell

wall structure and properties [30]. Since plant cell walls are

largely resistant to degradation in the upper gut, they rep-

resent an important barrier for the release of bioactive

compounds. One example is ferulic acid in whole grain

wheat, where ferulic acid has a limited bioavailability due

to its high binding affinity to polysaccharides. Anson et al.

[31] studied the bioaccessibility of ferulic acid from wheat

fractions and breads consumed by human subjects. The

authors observed that wheat ferulic acid had a low bioac-
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cessibility (< 1%). However, the bioaccessibility was higher

when free ferulic acid was added to flour (~60%). Also fer-

mentation of wheat prior to baking broke the ferulic acid

ester links to fibre, thus releasing ferulic acid and subse-

quently improving its bioavailability [32].

By contrast, pharmaceutical drugs can be taken

without a meal, keeping the drug dissolution less compli-

cated than the bioaccessibility of a bioactive food com-

pound, since limiting factors are less and orally taken drugs

are mostly water soluble. The effects of food on drug bio-

availability are usually studied by evaluating the rate and

extent of absorption of a drug when administered after a

meal vs. no co-digested meal. Changes observed are

related to transit time, luminal dissolution, permeability

and systemic availability [8]. Drug dissolution has been

extensively studied in the pharmaceutical industry.

However, with foods, bioaccessibility has not been investi-

gated to the same extent, although there is a lot of poten-

tial for improving bioefficacy via greater liberation of

bioactive compounds from food matrices beyond that of

the matrix effect per se [5].

Bioavailability

After bypassing the challenge of being released from the

food matrix and becoming bioaccessible, bioactive food

compounds can be absorbed in the gastrointestinal tract.

The absorption of these compounds can be influenced by

solubility, interaction with other dietary ingredients,

molecular transformations, different cellular transporters,

metabolism and the interaction with the gut microbiota,

resulting in changes to their bioavailability [20]. The differ-

ent solubility of lipophilic and hydrophilic compounds

results in different absorption mechanisms [33]. Before it

was thought that dietary lipids pass unaltered through the

intestinal wall since structure wise similar lipid particles

were found both in the gut and in the systemic and lym-

phatic circulation. However, lipid bioavailability is not so

simple and even today it is not completely elucidated [34].

Our food contains diverse classes of lipids, the main ones

being triacylglycerides, phospholipids, glycolipids, free

fatty acids, sterols, vitamins and their precursors [35].

Owing to the physiology of the small intestine, with the

presence of an unstirred water layer across the intestinal

barrier, lipid absorption can be compromised [36].To over-

come the intestinal water barrier, the size of dietary lipid

particles is reduced, and after these digestion products

form micelles where bile salts and other amphiphilic nutri-

ents act as emulsifiers. Lipases of the gastric juice hydro-

lyze lipids at the emulsion–water interphase resulting in

diacylglycerols and free fatty acids [34]. Uptake of lipids by

the enterocyte is believed to take place through passive

diffusion but also through facilitated diffusion via trans-

porters [37]. Once in the enterocyte, fatty acids are

re-esterified with monoacylglycerols to form triacylglycer-

ols prior to secretion into the lymphatic circulation via tria-

cylglycerol rich lipoproteins also called chylomicrons [23].

Unlike hydrophilic compounds, lipid soluble compounds

are not readily excreted from our body. Lipids are either

stored within the liver or re-excreted into the circulation as

lipoproteins and further stored in the adipose tissue.

Hydrophilic compounds, such as polyphenols and most

drugs have a more simplistic mechanism of absorption

than lipids.Most polyphenols found in foods exist as esters,

glycosides or polymers which cannot be absorbed as such

[11]. Enzymatic hydrolysis takes place with most polyphe-

nols at the brush border of small intestine epithelial cells.

This liberates the aglycone which can then enter the ente-

rocyte. Aglycones can be liberated also in the enterocyte

by cytosolic b-glucosidase-mediated hydrolysis [38, 39].

In the enterocytes flavonoid aglycones can be conjugated

by the phase II enzymes, resulting in methylated and/or

glucuronidated forms. Some of the metabolites can

be effluxed back from the enterocyte into the intestinal

lumen by ABC-transporters [11, 38–40]. The absorbed

metabolites as well as the flavonoids which escaped con-

jugation in the enterocyte pass next into hepatocytes via

the hepatic portal vein where further conjugation takes

place. From the liver, bioactive metabolites can be excreted

either into systemic circulation or into the bile. Polyphenol

metabolites present in the systemic circulation are finally

excreted into urine [38, 39, 41]. Since a large portion of

polyphenols and some larger molecules are not absorbed

in the small intestine, these compounds reach the large

intestine where they are metabolized by the microbiota

into smaller molecules.

The difference and similarities of food bioactives

(lipophilic and hydrophilic) and pharmaceutical drugs with

regards to bioavailability are highlighted in Figure 1.Taken

together, the metabolism of bioactive compounds of

foods, as with drugs, affects their physical and chemical

properties, which make them more water soluble and

more readily excreted at the end of the bioavailability

pathway [42]. This process, also referred to as metabolic

detoxication, leads to the near absence of aglycones in the

systemic circulation. Previous thinking that the aglycones

were the active forms of flavonoids should be

re-considered since the conjugated forms are the ones

most likely to express a biological activity [6, 11, 41, 43].

Factors affecting bioavailability

Structure of bioactive molecules
The molecular structure of a bioactive compound affects

its absorption considerably [44]. For example, it is well

known that high molecular weight compounds, such as

the oligomeric proanthocyanidins and complex lipids, do

not pass through the intestinal cells unless they are firstly

broken down [45]. Also the sugar moiety of flavonoids has

been suggested to be an important determinant in their
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absorption in humans [46, 47]. Flavonoids attached to

b-glucosides, one of the most predominant forms in nature

[48], can be absorbed to a very small extent as such and/or

metabolized by enzymes (e.g. b-glucosidases and lactase-

phlorizin hydrolase) in the small intestine [42, 46, 47, 49].

However, when flavonoids are attached to an additional

rhamnose moiety, as in the case of quercetin from tea, they

need to reach the large intestine to have the sugar moie-

ties cleaved off by the intestinal microbiota before absorp-

tion [50, 51].

Moreover, it is not only the chemical structure of bioac-

tive food compounds, but also their isomeric configuration

that can affect their absorption. As for some drugs, flavo-

noids with different stereochemistry exhibit different

bioavailability and bioefficacy. This is the case for (–)-

epicatechin and (+)-catechin bioavailability [52, 53], the cis-

isomers and all-trans isomer of lycopene bioavailability

[54], the biological activity of (R/S) equol [55], and for the

metabolism of (R/S) hesperidin [56, 57]. In the last example,

hesperitin-7-glucoside was found to have an R : S ratio of

39 : 69 in human plasma and urine samples, suggesting

that the S configuration could be more bioavailable [57].

Another example is that of lycopene, a bioactive caroten-

oid from tomato, which is present as 95% all-trans isomer

in tomatoes, yet the cis isomers represent around 50% of

lycopene in human plasma through a combination of

isomerization in the gastrointestinal tract and greater bio-

availability of cis-isomers in crossing the intestinal wall [58,

59].

Transport mechanisms
The different transport mechanisms which take place in

the intestinal lumen are one of the most important factors

affecting the bioavailability of ingested food compounds

and drugs. These include passive diffusion, facilitated

diffusion and active transport. The first two mechanisms

involve diffusion towards a concentration gradient

through the intestinal cells into the blood circulation. The

later mechanism works against the concentration gradient

and can result either in the increase of compounds in the

blood circulation or in the efflux of the ingredients back to

the intestinal lumen [60].

As many drugs and bioactive food compounds do not

have the optimal physicochemical properties necessary

for passive diffusion,trans-membrane transporters are

needed for enhancing their permeability. Membrane

transporters are involved in two mechanisms related to

permeability of compounds, uptake and efflux. Vitamin

Xenobiotics

Intestinal Lumen

Faecal excretion

Microbiota

Urinary excretion Faecal excretion

Hepatocytes
Systemic

circulation

Enterocytes

-OH -Conj

-OH Efflux
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-OH
-Conj

-OH -Conj

Phase I Phase II Phase I Phase II

Dissolution
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Polyphenols
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B

Figure 1
General scheme on the absorption, metabolism and excretion for xenobiotics (A) and examples of compounds discussed in this review (drugs, polyphenols

and PUFAs) (B). , drug; , polyphenols; , other food ingredients; , micelles; , PUFAs in form of TAG; , Metabolites (from drugs and polyphenols);

, microbial metabolites; -OH -Conj , phase I and phase II metabolites; , PUFA hydrolyzed from TAG; , PUFA re-esterified as TAG and released as

chylomicron
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transporters, GLUT-family, SGLT-family and organic anion

transporters (OAT1), amongst others, are involved in the

uptake of compounds and enhance their transport across

the intestine [61].The ABC (ATP Binding Cassette) family of

transporters, including P-glycoprotein (P-gp) and breast

cancer resistance protein (BCRP), on the other hand, are

examples of efflux mechanisms, and can hinder the bio-

availability of drugs and bioactive food compounds [61].

The activity of different efflux transporters affects the dis-

position of drugs and bioactive compounds through

several different mechanisms, such as limitation of absorp-

tion, facilitation of the elimination by secretion into bile

and urine, and limitation of distribution to target tissues

[62].

Intestinal transport systems have different selectivity

towards different bioactive compounds. The transporters

can be blocked by certain nutrients, significantly affecting

the bioavailability of other xenobiotics [61]. It has been

reported that competition for transport by organic anion

transporters can cause retention of certain drugs in cell

culture models, leading potentially to longer plasma half-

lives [63]. Whitley et al. [64] studied the ability of organic

anion transporters and organic anion-transporting

polypeptides to transport ellagic acid. These authors

reported that there is a very high affinity of ellagic acid to

organic anion transporters, especially hOAT1, indicating a

potential interaction of ellagic acid with drugs such as

b-lactam antibiotics, angiotensin converting enzyme

inhibitors, non-steroidal anti-inflamatory drugs, antiviral

drugs, prostaglandins and diuretics. Itakagi et al. [65]

described the food bioactive compound–drug interaction

between ferulic acid and nateglinide (a hypoglycaemic

agent) involving a transport system. The concomitant

administration of nateglinide with ferulic acid-rich sources

could lead to inhibition of absorption of the drug, reducing

its oral bioavailability. Although these examples are from in

vitro cell culture models, it has been reported that flavo-

noids are well known substrates for the ABC family of

transporters involved in the efflux mechanism, and affinity

with these transporters has been suggested as one of the

main reasons for poor bioavailability of these bioactive

compounds [66–68].

Although the uptake of lipids and lipid digestion prod-

ucts has been hypothesized to be passive for many

decades, scientific evidence reported that transport pro-

teins like FATP4, FABPpm and CD36 may be involved in

lipid transport across the intestinal barrier [23]. This rela-

tively new discovery has propagated a hypothesis that if

one family of membrane transporters is common to mul-

tiple nutrients, there might be competitive inhibition of

absorption of other nutrients using the same transporter.

An example of this phenomenon is reported by Richelle

et al. [69], where plant sterols reduced absorption of cho-

lesterol, carotenoids and alpha-tocopherol in normocho-

lesterolaemic subjects, most likely by competing with lipid

membrane transporters.

Metabolism and food–drug interactions
Once the drug or bioactive food molecule has entered into

an enterocyte, it may be subjected to metabolism by cyto-

chrome 450 enzymes (CYP) (phase I) which modify the

xenobiotic structure by reactions such as oxidation and

reduction. In general, polyphenols are not considered as

substrates for CYP enzymes, unlike drugs, but they are

subjected to several phase II enzymes leading to conjuga-

tion with methyl (catechol-O-methyltransferases – COMT),

sulfate (sulphotransferases – SULT) and glucuronyl

groups (uridine-5′-diphosphate glucuronosyl-transferases

– UDPGT). This results in molecular forms, which are differ-

ent from the original constituents of the digested food [70].

The activity of CYP family enzymes can be inhibited or

activated by co-administered bioactive compounds or

drugs.For example, inhibition of CYP enzymes can increase

circulating amounts of lipid soluble vitamins, as is the case

for the sesame seed lignin, sesamin, which can consider-

ably increase g-tocopherol concentrations in humans [71,

72]. Grapefruit juice has also been reported in many scien-

tific papers in respect to food–drug interactions [73–75]. It

has been proposed that bergamottin (a furanocoumarin)

and derivatives could be responsible for the interaction [76,

77]. Grapefruit juice can produce clinically important

increases in oral drug bioavailability when co-administered

with substrates of cytochrome P450 3A4 (CYP3A4), leading

to an increase in the plasma concentration of the drug [76,

78]. This in turn should be considered as it would lead to

toxic supra-pharmacologic plasma concentrations. It has

been reported in an animal study that the presence of

lipids could also promote drug absorption. An example of

this is the use of eicosapentaenoic (EPA) and docosahexae-

noic (DHA) acids as a vehicle for ciclosporin A, an immuno-

suppressive agent, for increasing its bioavailability. The

suggested mechanism involved here was the inhibition of

CYP3A by DHA [79]. An opposite example, i.e. decrease in

the plasma concentration of the drug, is the food–drug

interaction reported in the case of St John’s wort (Hyperi-

cum perforatum) and drugs such as ciclosporin and indina-

vir,where the interaction led to a low plasma concentration

of the drug, thus compromising its therapeutic effect [80,

81].

Improvement of bioavailability

Improving the bioavailability of bioactive food com-

pounds is fundamental to improve their bioefficacy.

Several approaches have been evaluated for the improve-

ment of bioaccessibility and bioavailability of bioactive

ingredients and drugs. These include technological and

chemical modifications of the molecules to improve their

solubility or the site of absorption, design of colloidal

systems (micelles and vesicles), and use of nanosystems

(nanoparticles), among others [82]. Examples of materials

commonly used to improve the bioavailability of drugs

M. J. Rein et al.
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include chitosan, polymers, cyclodextrins and dendrimers.

These materials are also applicable to many bioactive food

compounds.

Nanotechnology is currently one of the major fields

studied in pharmaceutical research [83]. Although there

are many cases where systemic bioavailability is improved

by means of nanotechnology, the main reason for the

design of such nanosystems is to improve local bioavail-

ability, or the delivery of a certain drug to a target tissue

[83]. In principle, the use of nanosystems could facilitate

the entering of the drug or bioactive compound through

biological barriers, besides avoiding the metabolic modifi-

cations that could lead to low absorption. However, it is

very important to understand, from an efficacy perspec-

tive, that bioavailability parameters might be influenced by

the composition material and the physico-chemical prop-

erties of the nanoparticles [84, 85]. Therefore, human

studies to identify potential risks of the use of nanoparti-

cles should be taken into consideration. Tzeng et al. [86]

reported the use of a nanoparticle engineering process for

the enhancement of antioxidant activity and solubility of

kaempferol. These authors suggested that kaempferol

nanoparticles could be considered as a low dose alterna-

tive in health foods and future clinical research. Curcumin,

the major curcuminoid compound, is well known for many

potential health benefits [87, 88]. However, due to its

insolubility in water, this compound has a very low bio-

availability [89]. A method to improve the bioavailability of

curcumin in rats was achieved by introducing PLGA [poly

(lactic-co-glycolic acid)] nanoparticles that had 5.6 fold

higher bioavailability and longer half-life when compared

with free curcumin [84]. Yu et al. [90] developed a food

grade curcuminoid organogel with high bioaccessibility

and high loading of curcumin. They demonstrated that in

in vitro models this preparation could be regarded as an

alternative to the nanoparticle approach for improving

bioavailability.

Several technologies for encapsulation of food bioac-

tive molecules are aimed to improve bioavailability. These

technologies include spray drying, coacervation, liposome

entrapment, inclusion complexation, cocrystallization,

nanoencapsulation, freeze drying, yeast encapsulation and

emulsion [91]. For example, Fernandez-Garcia et al. [92]

evaluated in several in vitro digestion models an emulsifier

system to improve the bioaccessibility of carotenoids. The

use of microencapsulation, liposomes, gel emulsions and

plant spore exines as delivery systems for PUFAs has dem-

onstrated improved bioavailability when compared with

fish oil, a typical representation of normal dietary intake

[35, 93–96].

Other potential ways to improve the bioavailability of

bioactive compounds and drugs could be achieved

through the competition and inhibition of intestinal cell

transporters [97]. The intestinal P-glycoprotein efflux

pump has been reported as one of the major contributors

to the low oral bioavailability of a number of compounds

reported in animal studies [84]. In vitro experiments

suggest that the bioavailability of the flavonoid hesperidin

may be enhanced by inhibiting the ABC transporters by

competitive exposure to other flavonoids, such as querce-

tin, resulting in a decrease of the efflux of hesperidin

[98]. The same approach has been suggested for (–)-

epigallocatechin 3-gallate (EGCG), where the combination

of the bioactive compound with naturally occurring inhibi-

tors of efflux proteins resulted in increased cytosolic levels

of the compound [99].

Other approaches for improving bioavailability are

structural modifications of bioactive compounds and the

processing of the food matrix. For example, it has been

reported in animal and human studies that quercetin, the

aglycone form of rutin, is more bioavailable than the

parent flavonol [50, 100]. Carotenoids, such as lycopene

and zeaxanthin, generally have a low bioavailability in

humans [101]. By processing raw tomatoes into tomato

paste, the bioavailability of lycopene is increased due to

release from the food matrix, but also due to isomerization

of trans lycopene into the more bioavailable cis form [102,

103]. Alternatively, entrapping lycopene with whey pro-

teins improves its bioavailability to the same level as that

of tomato paste [104], and zeaxanthin bioavailability is

improved three-fold by homogenization with hot milk

[105]. Another example for improved bioavailability

through improved bioaccessibility is phytosterols, plant

sterols with chemical structures similar to that of choles-

terol. When phytosterols are added to food products,

changes in product texture are observed due to

re-crystallization. The insoluble crystalline phytosterols

cannot be absorbed in the intestine thus resulting in a very

low bioavailability. Crystallization retardation, emulsifica-

tion technologies [106] and synthesis of colloidal phyto-

sterols leads to an enhanced solubilization of phytosterols

[107] thereby improving the bioaccessibility and conse-

quently the bioavailability of phytosterols.

Examples on the complexicity of
bioavailability of food bioactive
components: (poly)phenols

Coffee
Coffee contains high levels of phenolic compounds called

hydroxycinnamates, consisting principally of chlorogenic

acids. They are a family of esters formed between a phe-

nolic acid, e.g. caffeic or ferulic acid, and quinic acid. The

main chlorogenic acid in coffee is 5-caffeoylquinic acid

[108], although other caffeoylquinic, feruloylquinic and

di-caffeoylquinic acids are present in significant quantities.

Phenolic metabolites of chlorogenic acids have been

studied for potential bioefficacy, and controversy still

remains as the results are not entirely clear [109, 110]. In

addition, only a few studies have investigated the bioavail-

ability of coffee phenolic and chlorogenic acids.

Bioavailability of bioactive food compounds
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Due to the intricate and complex metabolic pathways

in humans [111, 112], chlorogenic acids may be trans-

formed into phenolic acids (caffeic, ferulic and isoferulic

moieties), and subsequently into colonic metabolites

(dihydrocaffeic and dihydroferulic acids). With extensive

conjugation at the level of the intestine and the liver, many

different metabolites (aglycone, sulfate, glucuronide and

methyl) could then be identified from a single cup of

coffee. Because of this complexity, many studies have used

enzymatic cleavage to reduce the number of metabolites

measured, to increase the accuracy of the quantification,

thus dismissing the diversity of the coffee metabolites

[113]. Recently, conjugated metabolites were measured in

great numbers [112, 114] although validated quantifica-

tion of these metabolites is yet to be performed using

proper standards [114, 115].

Research on the effect of the food matrix on the bio-

availability of coffee phenolic compounds has been

limited. Some reports have investigated the potential

effect of proteins, especially from milk, on the bioavail-

ability of coffee phenolics. For example, using in vitro/ex

vivo modelling of the digestive process showed some

binding of caffeoylquinic acid to proteins (albumin,

casein), but the relevance of those findings to an in vivo

setting remains to be determined. In the framework of

human bioavailability studies, the main effect investi-

gated was also the addition of milk in coffee. Renouf et al.

[116] investigated the effect of adding 10% whole milk or

sugar/non-dairy creamer to coffee on the bioavailability

of phenolic acids equivalents. The milk treatment showed

no significant difference in the area under the curve

(AUC), maximum concentration (Cmax) or time when

maximum concentration was reached (tmax) of caffeic acid,

ferulic acid and isoferulic acid equivalents compared with

coffee alone. With respect to the sugar/non-dairy creamer

treatment, the AUC of caffeic acid, ferulic acid and isoferu-

lic acid equivalents were similar to coffee alone. However,

Cmax of caffeic acid and isoferulic acid equivalents were

significantly lower and tmax of ferulic acid and isoferulic

acid equivalents were significantly longer for the sugar/

non-dairy creamer group compared with coffee. There-

fore, even if the delivery of chlorogenic acid metabolites

was not significantly different between treatments, the

addition of sugar/non-dairy creamer to coffee led to sig-

nificant changes in plasma appearance of those metabo-

lites (‘flatter’, but ‘longer’ curves). More recently, a report

by Duarte & Farah [117] showed that urinary excretion of

chlorogenic acids and metabolites was significantly

lowered when soluble coffee was reconstituted in 100%

whole milk (40 � 27% ingested dose) compared with

coffee reconstituted in water (68 � 20% ingested

dose).

Tea
Tea (Camellia sinensis L.) is the second most consumed

beverage worldwide after water. The different types of tea

(green, oolong and black) differ depending on the exten-

sion of the oxidative processing, leading to the presence of

different compounds such as flavan-3-ols in green tea

(minimally processed), theaflavins and thearubigins in

oolong (partial oxidation) and black tea (complete oxida-

tion). Several epidemiological studies have suggested an

inverse correlation between tea consumption and chronic

and degenerative diseases, possibly related to their

polyphenol content [118].

As most of the studies on tea report benefits related to

the consumption of green tea, the proposed beneficial

effects have been attributed to the presence of flavan-3-

ols such as (–)-epigallocatechin 3-gallate (EGCG). EGCG is

the main flavan-3-ol present in green tea and it has been

reported to be present in human plasma mainly in its

native form [115]. Flavan-3-ols are suggested to be

absorbed in the small intestine and undergo extensive

metabolism. Following consumption of green tea, flavan-

3-ols appear to be rapidly absorbed having a maximum

concentration (Cmax) of between 0.5 to 2 h, followed by

rapid metabolism and excretion.

One limiting factor for a better absorption of flavan-3-

ols, is the affinity of these compounds by P-glycoprotein

and multidrug resistance proteins (MRPs) leading to a sig-

nificant percentage of these compounds being effluxed

back into the lumen [119]. The importance of colonic

metabolism for EGCG bioavailability should not be under-

estimated as there is a substantial recovery of colonic

metabolites in human urine [120]. Del Rio et al. [121] have

suggested that when all the metabolites are taken into

account (conjugates and microbial metabolites) the green

tea flavan-3-ols could be considerably more bioavailable

than previously reported.

Tea is usually consumed during a meal,or accompanied

by creamers (dairy or non-dairy) or sugars, and sweeteners

are added in tea products such as ready-to-drink bever-

ages. Many studies have reported the effect of milk addi-

tion on the bioavailability and bioaccessibility of flavan-3-

ols from black and green teas. In general these studies have

found that the addition of milk to tea had a negligible

effect on bioavailability and bioaccessibility of tea flavan-

3-ols [122, 123].

As previously described, due to low bioaccessibility

and bioavailability of most polyphenols, there have been

many attempts to improve the bioavailability of these

compounds. Several approaches to improve the bioavail-

ability of EGCG have been tested, such as chemical modi-

fications, dosing formulation and combination with other

food ingredients [82]. Another strategy to improve the

absorption of flavan-3-ols is their administration during

the fasting state; however, it is important to note that

some human studies have shown that high doses of

green tea preparations can be potentially hepatotoxic

[124]. Although there are many studies describing green

tea bioavailability and associated health benefits, there

are still many aspects that need further investigation.
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Cocoa
Historically, cocoa products have been extensively used for

a vast array of medicinal purposes. The long list of its

medical applications includes from treatment of mental

fatigue to strengthening of gums [125]. Cocoa extract is a

complex intrinsic matrix that contains many potentially

bioactive compounds [126]. These cocoa compounds

include not only polyphenols but also methylxanthines

such as theobromine and caffeine [127]. Similar to tea,

flavan-3-ols are the most important group of polyphenols

in cocoa products [128]. Specifically, (–)-epicatechin and

procyanidins (oligomers of (–)-epicatechin compounds)

are the main flavan-3-ols found in these foods. Contrary to

some other polyphenols like quercetin and hesperetin, (–)-

epicatechin and procyanidins are not found attached to

sugar moieties in plants or plant-derived foods.

Following consumption of cocoa products, (–)-

epicatechin is absorbed within 1 to 4 h, with tmax between 1

to 2 h. Once absorbed, (–)-epicatechin is completely glu-

curonidated, sulfated and/or methylated [129, 130]. Several

beneficial effects have been attributed to the consump-

tion of (–)-epicatechin [128]; and the improvement of car-

diovascular biomarkers is the most consistent beneficial

effect demonstrated in human intervention studies [16,

131–133].

According to Baba et al. [134], (–)-epicatechin bioacces-

sibility is similar when a cocoa beverage or a chocolate bar

is consumed. The authors reported that 29.8 � 5.3% and

25.3 � 8.1% of the initial intake was absorbed when five

volunteers consumed equal amounts of (–)-epicatechin in

a beverage or chocolate form, respectively.

As a beverage, cocoa is regularly consumed with milk.

Many controversial scientific articles have been published

about the effect of milk proteins on the bioavailability of

(–)-epicatechin. Serafini et al. [135] reported a detrimental

effect of milk over the bioavailability of (–)-epicatechin,

showing a lower (–)-epicatechin AUC (approximately

-40%) when 100 g chocolate was ingested with 200 ml of

whole milk. In contrast, several other groups have demon-

strated that milk has no effect on the bioavailability of

cocoa polyphenols [136–139]. Recently, it has been pro-

posed that milk decreases urinary excretion of cocoa

flavan-3-ol metabolites in humans but not the plasma

pharmacokinetics [140].

In addition to the possible effect of milk, it has been

demonstrated that (–)-epicatechin bioavailability can be

improved by the co-ingestion of cocoa products with

other foods. Schramm et al. [141] showed that (–)-

epicatechin AUC and Cmax can be increased by ingestion of

carbohydrates and Neilson et al. [142] concluded that the

physical form of the food and also the sucrose content may

influence the tmax and Cmax of cocoa flavan-3-ols.

Procyanidins are also highly present in cocoa extracts.

Because of their large structure and molecular weight, pro-

cyanidins are poorly absorbed [143, 144]. Currently, only

procyanidin B2 has been reported to be detected in

human plasma after consumption of cocoa products [145],

suggesting that the highest molecular weight procyani-

dins, which are not absorbed in the small intestine, can

reach the large intestine and interact with the gut micro-

biota. Recently, it has been suggested that procyanidins

could modulate the growth of selected gut micro-

organisms with potential prebiotic benefits in humans

[146]. Consequently, further investigations of the interac-

tion of procyanidins with the gut microbiota and espe-

cially the bioavailability of the breakdown products

produced by these interactions are warranted.

Citrus fruits
Hesperidin belongs to the flavanone group of flavonoids,

and it is mostly present in citrus fruits such as oranges,

lemons, and grapefruits.The highest amount of hesperidin

is found in the solid tissues, mainly in the pith of the fruit.

Hesperidin is associated with benefits on bone health and

cardiovascular health [147, 148]. Similarly to other more

complex flavonoid glycosides, hesperidin is absorbed in

the large intestine where it is hydrolyzed by the gut micro-

biota and the aglycone is then absorbed by passive trans-

port [6, 149]. Several bioavailability studies on hesperidin

have shown a late tmax value (4.4 h–7.0 h) suggesting that

absorption takes place in the colon [150–154]. However,

modification of hesperidin to hesperetin-7-glucoside, by

enzymaticly cleaving the rhamnose moiety with a a-L-

rhamnose, has been known, not only to increase the bio-

availability of this flavanone [155, 156], but also to alter the

absorption kinetics by having a much earlier tmax (0.6 h vs.

7 h) [154] suggesting that the site of absorption has

changed.

Dosage also affects the bioavailability of hesperidin. It

has been shown that the relative absorption is increased

with higher doses of hesperidin.This is the case also for the

relative urinary excretion of the flavanone [152, 154].

The food matrix has not been shown to have an impact

on hesperidin bioavailability. Consumption of orange juice

with full-fat yogurt did not significantly affect the Cmax or

tmax values [153], nor did food processing have an effect on

hesperidin bioavailability when comparing the consump-

tion of orange fruits with the consumption of orange juice

[150].

Lipids

PUFAs
Bioactive PUFA, such as eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) are lipids that may exert ben-

eficial biological functions in the human body such as pre-

vention of heart disorders and maintenance of cognitive

function [157–160]. Dietary sources of PUFA are usually

limited to single cell oils, marine derived fatty fishes, fish oil

and related fractions, and are incorporated into a variety of

food products [157]. The underlying mechanism of apical
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uptake of lipid digestion products still remains to be fully

elucidated. However both active (apical membrane pro-

teins: fatty acid binding protein and fatty acid translocase)

and passive transporters have been proposed [161]. Intes-

tinal cell models have suggested saturable transport for

long chain fatty acids but not for short chain fatty acids

[162].

Hypothetically, the bioavailability of matrix embedded

PUFA may differ from its supplemental counterpart. Many

studies have focused on the bioavailability of EPA and DHA

but the mechanism of their uptake into absorptive epithe-

lial cells and intracellular events leading to basolateral

secretion is still derived from knowledge obtained for long

chain fatty acids. In some pathological states, such as

malabsorptive conditions, absorption of PUFA is reduced.

Similarly, Orlistat™, a lipase inhibitor, may also lead to a

reduction in the absorption of total lipids by as much as

30% [163].Therefore, in order to modulate bioavailability of

these bioactive PUFA a clear understanding of physiologi-

cally orchestrated steps of pre-absorptive and absorptive

events is essential.

Conclusions

Identifying the bioavailability of bioactive food com-

pounds and pharmaceutical drugs is essential when evalu-

ating their potential health benefits as well as their toxicity.

The bioavailability of orally ingested drugs includes the

same steps as in bioactive food compounds (LADME) and

faces some of the same challenges including transporters,

molecular structures, and enzymes. However, unravelling

the bioavailability of bioactive food compounds is even

more challenging than with drugs since many other

factors such as bioaccessibility, food matrix effect and the

gut microbiota can affect bioactive food compounds

during digestion.

Bioactive food molecules are a diverse group of com-

pounds. They include lipophilic and hydrophilic molecules

with complex chemical structures resulting in a number

of different absorption mechanisms. For polyphenols,

even within the same subclass of compounds, there are

significant differences in absorption. For PUFAs, their bio-

accessibility is a challenge since these lipids can be repre-

sented in different dietary forms and structures, i.e.

triacylglycerides or phospholipids. Liberation of PUFA

from these constituents varies, affecting their extent of

bioavailability. Although there are many studies reporting

the bioavailability and the bioefficacy of these bioactive

food components, understanding their interactions,

metabolism and mechanism of action warrants further

work. In addition, it should be considered that current

analytical methods for estimating bioavailability in

humans through identification of main metabolites have

limitations. For example, if we only look at urinary excre-

tion data we underestimate the actual bioavailability, as

for most of the bioactive food compounds their metabo-

lism has not been fully characterized.

The next important step in understanding the bioavail-

ability of bioactive food compounds is to identify properly

the circulating metabolites in order to have a better under-

standing of the fate of the parent compounds. Only when

the circulating forms of a bioactive food molecule or a

drug are known, a more complete picture related to bio-

availability and possible correlation to bioefficacy can be

obtained. For drugs, this is a requirement when performing

bioavailability studies and this type of approach can be

translated to nutrition research too.
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