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In order to fully exploit the nutrient density concept, thorough understanding of

the biological activity of single nutrients in their interaction with other nutrients and

food components from whole foods is important. This review provides a narrative

overview of recent insights into nutrient bioavailability from complex foods in humans,

highlighting synergistic and antagonistic processes among food components for two

different food groups, i.e., dairy, and vegetables and fruits. For dairy, bioavailability of

vitamins A, B2, B12 and K, calcium, phosphorous, magnesium, zinc and iodine are

discussed, whereas bioavailability of pro-vitamin A, folate, vitamin C and K, potassium,

calcium, magnesium and iron are discussed for vegetables and fruits. Although the

bioavailability of some nutrients is fairly well-understood, for other nutrients the scientific

understanding of uptake, absorption, and bioavailability in humans is still at a nascent

stage. Understanding the absorption and bioavailability of nutrients from whole foods

in interaction with food components that influence these processes will help to come

to individual diet scores that better reflect absorbable nutrient intake in epidemiologic

studies that relate dietary intake to health outcomes. Moreover, such knowledge may

help in the design of foods, meals, and diets that aid in the supply of bioavailable nutrients

to specific target groups.

Keywords: bioavailability, vitamins, minerals, dairy, fruits, vegetables

INTRODUCTION

Historically, the nutritional sciences are built on the study of single nutrients or food components
in relation to health outcomes. Although this has been a useful concept when it comes to specific
deficiency diseases, the picture became blurry when studying the role of nutrition in complex
diseases. The notion that the sum of the parts does not necessarily explain the result of the whole
has prompted a shift in focus from single nutrients to whole foods, meals, and dietary patterns.
Studying the biological activity of single nutrients in their interaction with other nutrients and
food components from whole foods, especially during their stay in the gastro-intestinal tract, helps
to better understand the underlying positive and adverse health effects of whole foods, meals, and
dietary patterns.

Bioavailability of nutrients from whole foods is a research area that has received ample
attention in the past decades, although studies in humans are still limited. Over time,
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some consensus has been reached on the definition of
bioavailability, which is the fraction of an ingested nutrient
that becomes available for use and storage in the body (1).
In this definition, bioavailability goes beyond mere absorption
from the gut and also includes the use and storage (retention)
in body tissue. The study of absorption and bioavailability
of nutrients from foods in humans requires sophisticated
methods that take into account endogenous nutrient losses
through the enterohepatic circulation as well as incorporation
of nutrients into storage tissue. Use of isotopes, both radio-
isotopes and stable isotopes, have greatly improved accuracy
and precision of in vivo nutrient bioavailability studies, either
as a single nutrient or as part of a food, meal, or dietary
pattern (2). Although in vitro methods are much cheaper and
faster than in vivo methods, allowing for large numbers and
experimental conditions, translation of findings to full body
human conditions is still cumbersome (3, 4). Therefore, this
review uses only bioavailability data from in vivo studies in
humans, although the underlying mechanisms of interactions
between food components are mostly based on in vitro or
animal studies.

The main objective of this review is to provide an overview
of insights into nutrient bioavailability from complex foods in
humans, thereby highlighting the current state of knowledge on
synergistic and antagonistic processes among food components.
Two different food groups are put in the spotlight for this
purpose, i.e., dairy, and fruits and vegetables. Both of these
food groups contain a myriad of nutrients, for some of which
the bioavailability is now well-understood, whereas others still
require further study. Both food groups also contain many
bioactive components and have a complex matrix, which affect
the kinetics of nutrient release, absorption, and bioavailability.
Understanding of these processes will help to better predict the
true nutrient value of foods and to incorporate this information
into diet scores in the future.

MILK AND DAIRY FOODS

Dairy refers to food products that have milk—mostly cow’s
milk—as their main ingredient such as buttermilk, yogurt,
cheese, and all closely related products. Dairy is characterized
by a relatively high amount of protein and fat, and can therefore
make an important contribution to calorie intake unless low-fat
alternatives are consumed. Intake of dairy varies greatly between
and within world regions, with an estimated average intake of
milk (excluding other dairy products) of ∼200–240 g per day
in Western Europe and North America, ∼130–300 g per day in
Latin America, ∼100–200 g per day in Africa, and 20–150 g in
Asia1. Despite controversy around the healthfulness of dairy with
respect to non-communicable disease risk, scientific evidence
consistently points toward either beneficial or neutral effects (5–
10). In addition, positive effects on bone mineral density have
been found, as well as reduced fracture risk in some populations
(9, 11). Such beneficial effects have been attributed to calcium

1https://www.globaldietarydatabase.org/our-data/data-visualizations/dietary-
data-region

as well as to various other nutrients and bioactive components
present in milk (11).

In industrialized countries, dairy stands out as source of
calcium, but it also contributes for 20–40% to the intake
of vitamins A, B2, B12, and K as well as of phosphorous,
magnesium, zinc, and iodine (12–23)2. In the next sections, the
absorption and bioavailability of these nutrients from milk and
dairy foods will be described, with special attention for calcium.

DAIRY AS A SOURCE OF CALCIUM

Dairy is by far the most important source of calcium in the
human diet and it has therefore been studied most extensively
among the nutrients derived from dairy. Bovine milk contains
an average of 120mg calcium per 100mL. In Europe and North
America,∼75% of dietary calcium is derived frommilk and dairy
products, with an additional 15% from vegetables and fruits,
5% from mineral water and the rest from other foods (24, 25).
Approximately 40% of calcium from dairy sources is absorbed
under normal circumstances, with higher absorption in children
and lower absorption in elderly (26, 27). In the body, 99% of
calcium is present in the skeleton. The efficiency of calcium
storage in bone tissue is mainly determined by physiological
factors (e.g., related to growth, pregnancy, and lactation), and
is regulated by several hormones, such as PTH, calcitonin,
calcitriol, and estrogens. Excessive absorbed calcium is excreted
in urine, feces, and sweat. Adults are generally in negative calcium
balance after their peak bone mass (∼35 y) and loose ∼10mg of
calcium each day, although in post-menopausal women the daily
loss may be 40mg per day or more (28). Bioavailability of calcium
is determined by absorption in the small intestine on the one
hand and by incorporation into bone tissue on the other hand.
Both of these processes can be influenced by dietary factors. The
bioavailability of calciummay therefore be defined as the fraction
of dietary calcium that is absorbed by the intestine and is used for
bone mineralization.

Intestinal absorption of calcium mostly happens by passive
diffusion, whereas active transport at low and moderate calcium
intake is under regulation of vitamin D (24). Fortification of milk
with vitamin D2 was shown to enhance calcium absorption (29).
A number of milk and dairy components have been found to aid
in the passive absorption of calcium (and also of other divalent
cations), such as phosphopeptides, casein and whey proteins,
lactose and phosphorous (Table 1). Phosphopeptides, which
are products of the enzymatic hydrolysis of casein, sequester
calcium thereby protecting it from precipitation by anions like
phosphates in the intestine (30–32). The same is true for alpha
lactalbumin and beta lactoglobulin, both whey proteins (24), and
for amino acids such as L-lysine and L-arginine (30). The calcium
bound to these amino acids, peptides, and proteins is readily
released during digestion by bringing it slowly into solution,
which is an important prerequisite for passive diffusion.

Lactose also seems to enhance calcium absorption, although
the mechanism has long been unclear (42). The most likely
explanation is that, like other sugars, lactose widens the

2https://wateetnederland.nl/resultaten/vitamines-en-mineralen/bronnen
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TABLE 1 | Synergistic and antagonistic effects of dairy food components on calcium bioavailability.

Dairy food component Synergism/antagonism References

Vitamin D ↑ active absorption of calcium at low and moderate intake (24)

Casein and phosphopeptides ↑ passive diffusion by binding and slow release of calcium into solution in the chymus (30–32)

Whey proteins alpha lactalbumin, beta

lactoglobulin

↑ passive diffusion by binding and slow release of calcium into solution in the chymus (24)

Amino acids (L-lysine, L-arginine) ↑ passive diffusion by binding and slow release of calcium into solution in the chymus (30)

Lactose ↑ passive diffusion by widening the paracellular spaces in the enteric cell lining (33)

Phosphorous ↓ absorption by binding into undigestible complexes ↑ re-absorption of calcium in the distal

part of the nephron ↑ uptake of absorbed calcium into bone

(24)

Sulfur-containing proteins ↓ calcium balance by inducing hypercalciuria (34–40)

Fat ↔ formation of insoluble soaps with calcium, but these are dissociated at the low pH of the

stomach

(41)

↑ Indicates an increase; ↓ indicates a decrease; ↔ indicates no effect.

paracellular spaces in the enteric cell lining, thereby enhancing
passive diffusion (33). However, studies have shown that this
mostly happens at relatively high doses of lactose (43, 44),
whereas in the amounts present in milk and dairy it is
less likely to contribute much to absorption (45, 46). When
lactose is hydrolyzed, such as in yogurt, or absent, such as
in cheese, calcium absorption does not seem to be affected
(47). Nevertheless, lactose seems to be important for calcium
absorption in case of high calcium intake in combination with
poor solubility, such as seen in babies and the elderly (48,
49). It may be that, similar to galactic-oligosaccharides, lactose
functions as a prebiotic and stimulates calcium absorption in
the cecum and colon by enhancing the growth of bifidobacteria
and thereby maintaining low pH (50, 51). This hypothesis is
supported by evidence from lactose-deficient patients, who do
not seem to have compromised calcium absorption (52).

Apart from factors that enhance calcium absorption, several
dairy components can inhibit the uptake of calcium (Table 1).
Protein, especially sulfur-containing protein, has been shown to
lead to a negative calcium balance through increased urinary
calcium excretion (24). Nevertheless, the conclusion of a working
group that more recently reviewed the current evidence linking
dietary protein intake with bone health was that, although a high
protein diet—either of animal or vegetable origin—is associated
with increased urinary calcium excretion, this is more likely due
to higher intestinal calcium absorption than to bone resorption
(53, 54). Milk fats can form insoluble soaps with calcium;
however, these are dissociated at the low pH of the stomach and
therefore do not affect calcium bioavailability negatively (41).
This explains that calcium from cheese is readily available for
absorption despite the high content of saturated long chain fatty
acids (24, 55).

Phosphorous plays a dual role in calcium absorption, by, on
the one hand, binding calcium and inhibiting its absorption in the
small intestine resulting in increased fecal excretion of calcium,
and, on the other hand, after being absorbed, by increasing
the reabsorption of calcium in the distal part of the nephron
or by enhancing the uptake of absorbed calcium into bone
(24, 54). The inhibitory properties of phosphorous on intestinal
calcium absorption may partly be countered by phosphorylation

of lactose, thereby keeping calcium in solution (24). However,
this hypothesis has not yet been confirmed (41, 55). Also, the high
phosphorous content of milk may counter the hypercalciuria
induced by protein (54, 56). The recommended dietary intake
ratio for calcium (mg) to phosphorous (mg) ranges from 1:1 to
1.5:1, with ratios <0.5 being associated with decreases in bone
mineral density (57). Moreover, excessive intake of phosphorous
has been shown to induce the secretion of fibroblast growth
factor 23 (FGF-23) from bone, thereby decreasing the formation
of 1,25-dihydroxyvitamin D3 and decreasing intestinal calcium
absorption (57, 58). Cow’smilk provides calcium and phosphorus
in a reasonable balanced ratio of∼1.2:1.

Overall, although intestinal absorption of calcium from milk
and dairy is very similar compared to other sources such as
calcium salts, vegetables, or mineral water, its net effect on
calcium retention is generally higher (59) with little difference
between the various dairy products (milk, acidified milk, yogurt,
skim milk, cream cheese, hard cheeses) (24). Diets including
dairy products can therefore be considered as the most optimal
calcium-dense option to prevent adverse health effects related to
a negative calcium balance.

DAIRY AS A SOURCE OF OTHER
NUTRIENTS

Vitamins
Vitamin A
The content of vitamin A in dairy ranges between 15 and 50 µg
in 100mL of milk to over 300 µg per 100 g of full-fat cheese
(Table 2). Vitamin A occurs in dairy products predominantly as
retinyl palmitate (60), but small amounts of ß-carotene can also
occur. Little is known about the bioavailability of vitamin A from
milk and other dairy products, but one study reports that ∼15%
of vitamin A from milk is absorbed and this appeared not to be
different for fortified milk (60). Moreover, it did not appear to be
different for full fat or skim milk, despite the fact that absorption
of fat-soluble vitamins is generally regarded to depend on the
fat content of a meal for solubilization and stimulation of biliary
secretion and for the formation of micelles (60).

Frontiers in Nutrition | www.frontiersin.org 3 July 2020 | Volume 7 | Article 101

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Melse-Boonstra Nutrient Bioavailability From Whole Foods

TABLE 2 | Bioavailability of vitamins and minerals from milk and dairy foods in humans.

Nutrient PRI/AI Content (per 100g) Bioavailability (%) Enhancing factors Inhibiting factors

Vitamin A 650 µg/d Milk

Yogurt

Soft cheese

Cheese

15 µg

31 µg

200–300 µg

>300 µg

15% Dietary fat

Vitamin B2 1.6 mg/d Milk

Yogurt

Soft cheese

Cheese

0.18mg

0.16mg

0.30–0.60mg

0.28 mg

67% Non-covalent binding to

protein

Covalent binding

Vitamin B12 4 µg/d Milk

Yogurt

Soft cheese

Cheese

0.45 µg

0.25 µg

1.1 µg

2.0 µg

65% Binding to transcobalamin

or casein

Binding to haptocorrin

Vitamin K-2 70 µg/d Milk

Yogurt

Soft cheese

Cheese

0.7–1.4 µg

0.1–3.3 µg

2.0–2.5 µg

68 µg

Unknown Dietary fat

Fermentation products

Long-chain

menaquinones (MK7−9)

Medium-chain

menaquinones (MK4)

Calcium 950 mg/d Milk

Yogurt

Soft cheese

Cheese

120mg

125–150mg

400–600mg

800 mg

40% Binding to casein and whey

peptides

Lactose, amino acids

Vitamin D (fortification)

Phosphorous

Sulfur-containing proteins

Phosphorous 550 mg/d Milk

Yogurt

Soft cheese

Cheese

100mg

100–120mg

300–500mg

>500 mg

Unknown Binding to casein and whey

peptides

Binding to phospholipids

Complexing with unbound

calcium

Magnesium 300 mg/d Milk

Yogurt

Soft cheese

Cheese

10mg

13mg

15–25mg

>30 mg

24–75% Binding to casein and whey

peptides

Lactose

High dosing

Zinc 7.5 mg/d Milk

Yogurt

Soft cheese

Cheese

0.4mg

0.4–0.6mg

2–3mg

3.4 mg

25–30% Mild acidic conditions

Whey and casein peptides

Low molecular ligands

(amino acids, organic acids)

Iodine 150 µg/d Milk

Yogurt

Soft cheese

Cheese

15 µg

15 µg

20–40 µg

21 µg

90% Inorganic, unbound

PRI, Population Reference Intake; AI, Adequate Intake for adult females. Source: EFSA: https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf.

Vitamin B2
With 0.18mg of riboflavin per 100mL of milk and 0.28mg
per 100 g of cheese, dairy forms an important source of
this water soluble vitamin (Table 2). In dairy, riboflavin is
mostly bound non-covalently to protein, predominantly as flavin
adenine dinucleotide (FAD) and to a lesser extent as flavin
mononucleotide (FMN).Milk also contains free riboflavin bound
to specific binding proteins (21). Hydrolysis of FAD and FMN to
riboflavin by phosphatases in the small intestine is a prerequisite
for its carrier-mediated absorption (21). Riboflavin has been
reported to be readily bioavailable from milk at∼67% (61).

Vitamin B12
Milk contains∼0.40–0.45µg of vitamin B12 per 100mL, whereas
cheese can contain up to 2 µg per 100 g (Table 2). The major
derivatives of vitamin B12 in bovine milk are hydroxycobalamin,
adenosylcobalamin, and methylcobalamin, and it is mostly
bound to the proteins haptocorrin, transcobalamin and casein
depending on the cow breed (62, 63). Vitamin B12 bound to

transcobalamin appeared to be better released in vitro, whereas
this was cumbersome when bound to haptocorrin (mainly
present in buffalomilk) and this may have implications for in vivo
bioavailability (63). A study in healthy adults> 60 y old, however,
revealed that∼65% of vitamin B12 from milk was absorbed (64),
whereas, in comparison, absorption of vitamin B12 from animal
foods is generally 50% or lower and even <5% for synthetic
supplements (62, 65). Nevertheless, a study comparing cyano-
B12 from a supplement with hydroxo-B12 from whey powder
improved vitamin B12 status similarly (66).

Vitamin K-2
Menaquinones are primarily synthesized by bacteria, and
therefore fermented dairy products such as yogurt and cheese
are good sources of this vitamin (67). Milk contains ∼0.7–1.4
µg of menaquinones per 100mL, whereas full-fat hard cheese
can contain up to 68 µg per 100 g (Table 2). Intake of long-
chain menaquinones (MKn) in particular has been associated
with decreased risk of cardiovascular disease (68, 69), in contrast
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to phylloquinone (vitamin K-1) derived from plant-based foods.
The menaquinone content of dairy products was assessed to
be highest in fermented cheeses and to be positively related to
fat content (70, 71). Vitamin K is a fat soluble vitamin, and as
such is absorbed through the lipid pathway. The bioavailability
of menaquinones from dairy sources has not been studied
in humans to date, with the exception of a study showing
that MK7-fortified yogurt resulted in slightly higher plasma
concentrations as compared to MK7 from a soft-gel capsule (72).
The length of the isoprene chain strongly determines absorption
and metabolism of menaquinones in the sense that MK7−9

are better absorbed than MK4 and have a longer half-life than
vitamin K-1 (67, 73).

Minerals and Trace Elements
Phosphorous
With a content of ∼100mg of phosphorous per 100mL milk
and >500mg per 100 g cheese, dairy is an important source
of phosphorous in the diet (Table 2). Although data are still
scarce, it is assumed that phosphorous derived from animal
foods is more bioavailable than phosphorous derived from plant-
based foods, as revealed by balance studies relating phosphorous
intake from dietary sources to urinary excretion (74, 75). This
may be explained by the binding of phosphorous to digestible
compounds in animal foods, such as proteins and phospholipids.
However, phosphorous also easily forms indigestible complexes
in the gastro-intestinal tract (e.g., with calcium), and its
bioavailability from dairy sources may strongly depend on
interaction with other meal components (74). No studies have
been done to date to directly measure the bioavailability of
phosphorous from dietary sources in humans.

Zinc
With a concentration of 0.4mg of zinc per 100mL milk forms
an important source of zinc (Table 2). Zinc is predominantly
present in the protein fraction in milk, specifically in casein
micelles, but is easily released under mild acidic conditions (76).
Approximately 25–30% of zinc is absorbed from milk (77, 78).
Apart from whey and casein peptides, also other low molecular
ligands and chelators that can bind Zn, such as amino acids
(histidine, methionine) and organic acids (citric, malic and lactic
acid), may promote zinc absorption (79).

Magnesium
Milk contains ∼10mg of magnesium per 100mL, but can be
triple that in cheese (Table 2). Absorption of magnesium from
milk was found to be strongly dose-dependent, with ∼75%
absorption reported from a serving of milk containing 46mg
of magnesium (80). With intake of magnesium at physiological
doses, absorption seems to be predominantly due to a saturable
mechanism and at higher amounts mainly by simple diffusion
(80). As for other divalent metals, i.e., calcium, iron and zinc,
peptides from casein or whey can bind magnesium, which may
promote absorption (81). Also, lactose appeared to promote
absorption of magnesium from milk in rats (81, 82), but this
was not confirmed in humans (83). As for calcium, unabsorbed

lactose may act as a prebiotic and stimulate magnesium uptake in
the large intestine, but this needs further investigation (84, 85).

Iodine
Iodine content of milk can vary substantially with a reported
range of 3.3–53.4 µg per 100mL, depending on the way of
farming, iodine intake of dairy cows, use of iodine-containing
udder cleansers, season, and processing (86, 87). Iodine in
milk is predominantly (>80%) present as inorganic iodide,
and in line with this iodine bioavailability from milk is high
(∼90%) (88).

VEGETABLES AND FRUITS

Vegetables and fruits form a widely diverse food group that
contains a broad range of essential nutrients. Vegetables and
fruits are generally low in fat and proteins and therefore
contribute relatively little to energy intake. Ample consumption
of vegetables and fruits is promoted worldwide. Such
recommendations are based on studies consistently showing that
higher intake of vegetables and fruits is negatively associated
with all-cause mortality and mortality from cardiovascular
disease and cancer (89, 90). Close to 75% of the world population
consumes less than the recommended 400 g of vegetables and
fruits on a daily basis (91). Low consumption of vegetables
and fruits is estimated to contribute 1.8% to the total global
burden of disease, primarily through cardiovascular diseases and
cancer (92).

So far, studies have failed to attribute the healthful effects of
vegetables and fruits to any of its isolated components. Therefore,
health benefits from vegetable and fruit consumption are rather
to be explained as the resultant of additive and synergistic effects
of its components (63–66). They are a particular rich source
of pro-vitamin A carotenoids, vitamin C, folate, vitamin K-1,
potassium, calcium, magnesium, iron, and several other trace
elements (14, 93)2.

Non-nutritive bioactive compounds are also present
in multitude, comprising of phenolics, carotenoids, and
glucosinolates. Although these bioactive compounds are
regarded as non-essential for human survival, they may exert
health effects such as reduced risk of non-communicable
and degenerative diseases (71–76). Delivery of fiber, both
digestible and indigestible, is another important nutritional
aspect of vegetables and fruits. It has an important impact on
satiety, gastrointestinal processing, metabolic parameters,
and microbiota composition. It constitutes a group of
heterogeneous polymers such as non-starch polysaccharides,
cellulose, resistant starch, inulin, lignins, chitins, pectin, beta-
glucans, and oligosaccharides. Dietary fiber may stimulate
intestinal fermentation, thereby altering the production
of microbial phenolic metabolites and enhancing mineral
absorption (94, 95). However, dietary fiber can also negatively
affect the absorption of nutrients because of gel formation,
increased viscosity, or binding and entrapment (96–98).
Other compounds present in vegetables and fruits may have
negative consequences for human nutrition and health, such
as alkaloids, oxalates, phytic acid, lectins, trypsin and protease
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TABLE 3 | Bioavailability of vitamins and minerals from vegetables and fruits in humans.

Nutrient PRI/AI Content (per 100g) Bioavailability (%) Enhancing factors Inhibiting factors

(Pro)-vitamin A 650 µg/d Carrot

Kale

Mango

Orange

694 µg

335 µg

26 µg

8 µg

0–36% Lipid droplets

Dietary fat

Entrapment in cell matrix/

structures

Crystallization

Dietary fiber

Folate 330 µg/d Spinach

Broccoli

Orange

Banana

130 µg

77 µg

33 µg

9 µg

60–98% 5-methyl tetrahydrofolate

vitamer

Presence of polyglutamate

chain

Vitamin C 95 mg/d Kale

Broccoli

Orange

Kiwi

100mg

47mg

51mg

79 mg

80–90% Vitamin E Flavonoids

Vitamin K 70 µg/d Kale

Spinach

Kiwi

623 µg

394 µg

11 µg

5% Fermentation products Entrapment in cell matrix/

structures

Potassium 3,500 mg/d Spinach

Kale

Banana

Kiwi

539mg

400mg

374mg

312 mg

60–85% Food matrix of

unprocessed vegetables

and fruits

Calcium 950 mg/d Kale

Spinach

Kiwi

Orange

180mg

105mg

30mg

23 mg

20–40% Phytate

Oxalate

Magnesium 300 mg/d Spinach

Kale

Banana

Kiwi

55mg

34mg

28mg

14 mg

25–35% Proteins

Medium chain triglycerides

Indigestible carbohydrates

Phytate

Oxalate

Cellulose

Lignin

Pectin

Iron 11 mg/d Spinach

Kale

Broccoli

Kiwi

2mg

1mg

0.6mg

0.5 mg

∼12% Vitamin C

Lactic fermentation

Entrapment in cell matrix

and structures

Phytic acid

PRI, Population Reference Intake; AI, Adequate Intake for adult females. Source: EFSA: https://www.efsa.europa.eu/sites/default/files/assets/DRV_Summary_tables_jan_17.pdf.

inhibitors, tannins, and cyanogens. Anti-nutrients can be
removed or inactivated by various food processing procedures,
such as fermentation, germination, boiling, leaching, and
extraction (99).

VEGETABLES AND FRUIT AS SOURCES
OF NUTRIENTS

Vitamins
Pro-Vitamin a Carotenoids
β-carotene, α-carotene and β-cryptoxanthin are the most
common dietary carotenoids that can be converted to vitamin A
(retinol) through central cleavage by β-carotene monooxygenase
(bco1). B-carotene has the highest affinity to the cleavage
enzyme, and, based on its chemical structure, can provide twice
as much retinol as compared to the other two carotenoids.
Therefore, and also because it is more abundant in the diet, β-
carotene has received the most attention in vitamin A research.
Liberation of β-carotene from the fruit or vegetable matrix is
one of the main limiting steps in its bioavailability (100, 101).
Green leafy vegetables, such as spinach and kale, are rich in β-
carotene (Table 3), but only around 5–10% of the total content

is bioavailable. In contrast, β-carotene from fruits show higher
bioavailability despite their relatively lower β-carotene content
(102, 103). This is explained by the digestibility of the particular
plant compartment where the β-carotene is stored. Notably,
green leafy vegetables store β-carotene in chloroplasts, which is
not easily digestible for humans, whereas mangoes, for instance,
store β-carotene in chromoplasts from which it is more readily
available. Moreover, β-carotene in its crystallized form, as found
in carrots, is not easily absorbed, in contrast to β-carotene present
in lipid droplets as found in papaya (102, 103). The amount
(µg) of β-carotene required to form 1 µg of retinol is referred
to as conversion factor; this is estimated as 2.1–3.8 µg of β-
carotene when it is provided as a supplement dissolved in oil
(Table 4). Conversion factors for β-carotene from a wide variety
of vegetables and fruits have been comprehensively summarized
(104). In contrast to the earlier retinol equivalents (RE) which
assumed that intake of 6 µg of β-carotene would yield 1 µg
of retinol, current insights have shown that the bio-conversion
efficiency is much lower for an average western diet. Therefore,
new retinol activity equivalents (RAE) for β-carotene have been
set at 12:1 (105). Conversion efficiency of α-carotene and β-
cryptoxanthin have hardly been studied, although lately there is
renewed interest in the latter (106, 107). Fat content of the diet
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TABLE 4 | Reported conversion factors and bioefficacy for β-carotene from

vegetables and fruits.

Food Conversion factora Bioefficacy (%)b

Synthetic β-carotene in oil 2.1:1–3.8:1 26–48

Fruits 12:1 8.3

Tubers 2.8:1–13.4:1 7.5–36

Cooked vegetables 10:1–28:1 1–3.5

Raw vegetables 13:1–77:1 0.01–7.7

aAmount (µg) of ingested β-carotene required from the food source to form 1µg of retinol.
bProportion of ingested β-carotene that is absorbed and converted to retinol. Based on:

Van Loo-Bouwman et al., Br J Nutr 2014 (104).

is the most important enhancer of carotenoid absorption (108–
110), whereas fiber present in the diet can reduce absorption
efficiency (96).

Folate
Green leafy vegetables and citrus fruits are important dietary
sources of folate (Table 3). In vegetables and fruits, folate is
mostly present in its polyglutamated form. Before absorption,
enzymatic cleavage of this glutamate chain by folylpoly γ-
glutamyl carboxypeptidase (FGCP) is necessary. It has been
shown that, as compared to supplemental folic acid, which is
a monoglutamate, polyglutamated folate has a bioavailability
of ∼70% (111, 112). Others have shown that 5-methyl-
tetrahydrofolate is the best bioavailable natural form of the
vitamin (113). Folate bioavailability ranges between 60 and
98% from a diet high in vegetables and fruits (91). Whereas,
the food matrix, dietary fiber, and low pH may inhibit folate
bioavailability, zinc enhances FGCP activity and therefore would
promote folate absorption (114). Dietary folate equivalents (DFE)
have been defined as 1.7 µg of dietary folate to deliver 1 µg of
folate to the body circulation (115).

Vitamin C
Certain fruits, such as kiwi and orange, but also many
vegetables are rich sources of vitamin C (Table 3). Unlike
some other vitamins, vitamin C derived from vegetables and
fruits largely shows similar bioavailability as compared to
synthetic vitamin C at 80–90% in human studies (116–118).
Nevertheless, entrapment of vitamin C in the food matrix,
premature degradation or inhibition by other food components
may decrease its bioavailability. Vitamin C interacts with vitamin
E by reducing tocopheroxyl radicals; vice versa, vitamin E might
preserve vitamin C in vivo (119). Although it is uncertain if
flavonoids can affect vitamin C absorption in vivo, several in vitro
studies showed that flavonoids inhibit the absorption of vitamin
C (120–122).

Vitamin K
Dark green leafy vegetables and herbs such as kale, parsley,
spinach, and green cabbage (Table 3) are rich in phylloquinone
(vitamin K1), whereas among the fruits kiwi and avocado
by exception contain reasonable amounts as well (123, 124).
Menaquinones (vitamin K2) are generally not found in vegetables

and fruits, but an exception to this is fermented vegetables such
as sauerkraut (124). Data on the bioavailability of phylloquinone
from dietary sources are scarce, but some studies show <5%
bioavailability from dark green leafy vegetables, while addition
of fat or oils improves bioavailability markedly (124–126). Low
bioavailability can be explained by binding of phylloquinone to
the membranes of plant chloroplasts (127).

Minerals
Potassium
Consumption of vegetables and fruits contributes importantly
to potassium intake, especially from dark green leafy vegetables
and certain fruits such as banana and kiwi (Table 3). High
intake of potassium has consistently been associated with
reduced blood pressure and risk for hypertension (128, 129).
Potassium is almost completely absorbed from dietary sources,
although matrix effects may hinder potassium absorption from
unprocessed vegetables and fruits to some extent. Estimates of
bioavailability range between 60 and 85% from such sources (130,
131). Little is known about factors that promote or inhibit the
absorption of potassium from individual dietary sources (132).

Calcium
Especially dark green leafy vegetables such as kale and spinach
contribute to dietary calcium intake (Table 3). Studies have
shown that calcium absorption from various vegetables is either
inferior or comparable to calcium absorption from milk with
bioavailability estimates ranging between 20 and 40% (133–
135), although Brassica sp. vegetables showed slightly higher
absorption (136). Phytate and oxalate content determine the
efficiency of calcium absorption from vegetables. Phytic acid,
or inositol polyphosphate, as well as oxalate, or ethanedioate,
form insoluble and non-digestible complexes with divalent
cations such as Fe2+, Zn2+, Ca2+, and Mg2+, which limits the
bioavailability of these minerals. Oxalate is the conjugate base of
oxalic acid, which is present in high amounts in certain vegetables
such as spinach, cabbage, broccoli, brussels sprouts, beetroot,
and rhubarb.

Magnesium
Magnesium can be derived in moderate amounts from fruits
and vegetables (Table 3). Magnesium from dark green leafy
vegetables was shown to have a bioavailability of 25–35% (137).
Magnesium is assumed to be absorbed as the ion rather than as
in the form of a complex (138). The absorption of magnesium
is inhibited by oxalate (139). As explained for calcium above,
oxalic acid can form indigestible complexes with divalent cations
at physiological pH. It has been shown before that addition of
oxalate-rich vegetables to the diet resulted in negative zinc and
magnesium balances. Spinach, an oxalate rich vegetable, indeed
showed lower magnesium bioavailability as compared to kale,
a vegetable low in oxalate (137). Other known dietary based
inhibitors of magnesium absorption are phytic acid, cellulose,
lignin, and possibly pectin, whereas proteins, medium chain
triglycerides, and indigestible carbohydrates are among the
enhancers (139).

Frontiers in Nutrition | www.frontiersin.org 7 July 2020 | Volume 7 | Article 101

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Melse-Boonstra Nutrient Bioavailability From Whole Foods

Iron
Green leafy vegetables are rich in iron (Table 3), but the
bioavailability of iron is relatively low—around 12% (140). The
low bioavailability is attributed to the indigestibility of cellular
components such as chloroplasts and mitochondria where iron
is stored (141). Vitamin C is well-known to aid non-heme
iron bioavailability, either by enhancing iron solubility or by
acting as a co-factor in the reduction of iron from the ferric to
the ferrous form by duodenal cytochrome B (142, 143). Fytic
acid is a strong inhibitor of iron absorption (144), whereas
the inhibiting properties of oxalate are less clear. One study
showed that oxalic acid did not reduce iron absorption from
kale (145). A study in human volunteers showed that lactic
fermentation of vegetables doubled iron absorption, which was
explained by the acidic conditions that promote the presence
of ferric iron, which is more stable in the gastrointestinal
tract (146).

CONCLUSION

Both milk as well as vegetables and fruits are nutrient-
dense foods that provide a myriad of nutrients which impact
human metabolism and health. Bioavailability is an important
explanatory step between the food source and potential health
effects of its food components. Much of the health benefits of

foods may be explained by additive, antagonistic and synergistic
processes at the level of uptake and absorption of nutrients. As
has become clear from this review, bioavailability values from
whole foods have been established in humans for some nutrients,
but are still lacking or need confirmation for others. Translation
of this information to individual diet scores will require detailed
dietary intake information, preferably at the meal level, while
taking information on bioavailability of nutrients from separate
foods as well as food-to-food interactions into account. This is
all the more complex, since bioavailability estimates are currently
already incorporated into dietary reference intakes at the
population (group) level to a certain extent. Furthermore, host-
related factors, e.g., nutrient status, disease state and genetics,
also play an important role in nutrient uptake and bioavailability
at the individual level and are often unknown. Nevertheless,
accounting for nutrient bioavailability based on food intake
pattern may result in better estimates of true individual
absorbable nutrient intake in relation to health outcomes.
Moreover, such knowledge may help in the design of foods,
meals and diets that aid in the supply of nutrients to specific
target groups.
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