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Abstract—A new Application-Specific Instruction-set Proces-
sor (ASIP) architecture for biological sequences alignment is
proposed in this manuscript. This architecture achieves high
processing throughputs by exploiting both fine and coarse-
grained parallelism. The former is achieved by extending the
Instruction Set Architecture (ISA) of a synthesizable processor
to include multiple specialized SIMD instructions that implement
vector-vector and vector-scalar arithmetic, logic, load/store and
control operations. Coarse-grained parallelism is achieved by
using multiple cores to cooperatively align multiple sequences
in a shared memory architecture, comprising proper hardware-
specific synchronization mechanisms. To ease the programming,
a compilation framework based on an adaptation of the GCC
back-end was also implemented. The proposed system was
prototyped and evaluated on a Xilinx Virtex-7 FPGA, achieving
a 200MHz working frequency. A sequential and a state-of-the-
art SIMD implementations of the Smith-Waterman algorithm
were programmed in both the proposed ASIP and an Intel Core
i7 processor. When comparing the achieved speedups, it was
observed that the proposed ISA achieves a 40x speedup, which
contrasts with the 11x speedup provided by SSE2 in the Intel Core
i7 processor. The scalability of the multi-core system was also
evaluated and proved to scale almost linearly with the number
of cores.

I. INTRODUCTION

Bioinformatics applications represent one class of algo-
rithms with particularly high performance and efficiency re-
quirements. Among those, protein and Deoxyribonucleic acid
(DNA) sequence alignment algorithms, whose optimal solu-
tions are usually obtained by using Dynamic Programming
(DP) methods, tend to present a large runtime when executed
in current General Purpose Processors (GPPs).

The Smith-Waterman (SW) algorithm [1], characterized
by an O(nm) time complexity, is a widely established DP
algorithm to obtain the local alignment between a query
sequence (q) and a database sequence (d), of sizes m and
n respectively. It operates in two distinct phases: it starts
by filling a score matrix H, followed by a traceback phase
over this matrix. The matrix is filled by using an affine gap
penalty model [2] (see eq. 1), where a and [ represent the
cost of gap opening and extension, and Sbc(q]i], d[j]) denotes
the substitution score value obtained by aligning character
q[é] against character d[j]. The initial conditions are given by
H{(i,0) = H(0,5) = E(i,0) = F(0,j) = 0.
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H(i—1,j = 1) + Sbe(qlil, d[j]),

H(i,j) = max 11228;; (1
0

F(i,j) = maX{H(i—l,j)—a; F(z‘—l,j)—,@}

E(i,j) = max{H(i,j ) —a; Bl,j—1)— 5}

To speedup the alignment, several hardware accelerators
were developed [4], but such solutions lack the adaptability
and flexibility provided by GPPs and by Application Specific
Instruction-set Processors (ASIPs). On the other hand, various
SIMD parallelization approaches on GPPs have also been
presented [3]. One of the fastest was proposed by M. Farrar [3],
who adopted a pre-computed query profile for the entire
database sequence, and optimized the processing scheme by
using a striped access pattern, where the computations are
carried out in several separate stripes that cover different parts
of the query sequence (see Fig. 1(a)).

The query is divided into p equal length segments of size
t = [(m+p—1)/p|, where p denotes the number of vector
elements that can be accommodated in a SIMD register (each
SIMD vector element is assigned to one distinct segment).
Each matrix column, corresponding to a database symbol d[j],
is processed in t iterations, where each iteration simultaneously
processes p query symbols, separated by t—1 lines in the score
matrix. Fig. 1(b) illustrates the data dependencies between the
last segment and the first segment of the next column of the
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(a) Striped processing scheme. (b) Data dependencies.

Fig. 1. Farrar’s SIMD implementation of the SW algorithm [3]. The first
five SIMD iterations were numbered and represented with different gray levels
(for simplicity, only 4 data elements are shown in each SIMD register).
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score matrix H. With this processing pattern, it is possible to
move the conditional statements related to the commitment of
the vertical dependencies to an independent lazy loop, executed
outside the inner loop, where they have to be considered
only once, before starting the processing of the next database
symbol, thus reducing the impact of the vertical dependencies.

To further accelerate this class of algorithms, a new ASIP,
specifically adapted for biological sequence alignment algo-
rithms, is proposed in this manuscript. The attained processing
throughput is achieved as a result of a two-fold improvement
in the original architecture: i) extension of the processor ISA
to support multiple specialized SIMD vector instructions, to
extensively exploit fine-grained parallelism; and ii) imple-
mentation of an extensive multi-core computational structure,
composed by multiple instantiations of the designed ASIP, in
order to efficiently exploit coarse-grained parallelism.

II. DEDICATED SIMD INSTRUCTION SET FOR
BIOLOGICAL SEQUENCES ALIGNMENT

Due to its higher performance and prevalence in most
widely established bioinformatics applications, Farrar’s SIMD
implementation [3] will be herein adopted as the elected case-
study. By analyzing the algorithm’s pseudo-code (see Fig.2(a)),
it is clear that the adoption of vector arithmetic instructions will
potentially accelerate this algorithm. These instructions should
not only speedup the operations between vectors, but they
might also facilitate the several operations between vectors
and scalars, which are particularly useful when subtracting the
gap penalties. The shifting of the F' and H vectors can also be
efficiently implemented with a vector element shift instruction.
Since all these new instructions will be dealing with SIMD
vectors, it is also advantageous to include new memory access
instructions, to handle vector-sized variables.

A special attention should be also devoted to the definition
of optimized control instructions. This effort is justified by
the significant predominance of loop procedures in these DP
algorithms (generally implemented with conditional branch
instructions), as well as the severe penalties that these control
instructions generally impose on deep pipeline architectures.
In particular, a new specialized branch instruction to simul-
taneously assert a branch condition in all vector elements,
without any additional processing, will significantly increase
the achieved performance (e.g.: execution of the lazy loop).

Although not limited at this respect, the proposed instruc-
tion set and the corresponding data-path (see section III)
provides support for the same register and vector-element
sizes as Intel SSE2 (used by Farrar [3]), i.e. 128-bit registers,
with 8 or 16 elements. Furthermore, the vector elements of
each register can take any size, starting from 8 bits to the
limit imposed by the register size. However, to obtain a fair
comparison with Farrar’s [3] SSE2 implementation, only 128-
bit registers with 8-bit vector elements will be considered in
this particular case-study. On the other hand, any non-SIMD
instruction will only operate over the least-significant part of
the register (corresponding to a scalar word). Such solution
confines the critical-path to the non-SIMD data-path, thus
making it independent of the extended SIMD register size.

The proposed ISA extension defines 48 specialized SIMD
instructions for arithmetic, logic, memory access and control
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operations. By comparing Farrar’s [3] algorithm implementa-
tion based on Intel SSE2 ISA (see Fig.2(b)) with an imple-
mentation based on the proposed ISA (see Fig.2(c)), it can
be observed that an immediate gain, regarding the number
of instructions, is promptly achieved with the proposed ISA,
with more visible advantages in the lazy-loop. The major
contributor to this reduction is the new set of vectorized control
instructions, that significantly reduce the control overhead.

It is also important to note that another significant ad-
vantage of the proposed ASIP arises from the fact that it
adopts a strict Reduced Instruction Set Computer (RISC)
paradigm based on a shallow pipeline structure, contrasting
with Intel’s Complex Instruction Set Computer (CISC) model.
As a consequence, the observed difference in the number
of instantiated instructions, together with the RISC single-
cycle per instruction ratio (instead of CISC multiple-cycle per
instruction), will significantly augment the processing gain, as
it will be demonstrated in section V.

Pseudo-code [3] Intel SSE2 ASIP

Iv r3, r9, r23

VvH = vH + vProfile[i][j] addvv 13, 18, r3

paddusb (r8,rcx,1),xmm1

psubusb xmm9,xmm1
pmaxub xmm1,xmm3
movdga (rax,rcex,1),xmm2
pmaxub xmm2,xmm1
pmaxub xmm0,xmm1

vMax = max(vMax, vH)
load VvE[j]

vH = max(vH, vE[j])

VH = max(vH, vF)

maxvv r19, r19, r3
Ivr5,r7, r11
maxvyv r4, r3, r5
maxvyv r4, r4, r6

2 vHStore[j] = vH movdga xmm1,(r11,rcx,1) svr4, r7,r10
1S VvH = vH - gapOpen psubusb xmm7,xmm1 rsubvs r4, r24, r4
5 VE[j] = VE[j] - gapExtnd psubusb xmm5,xmm2 rsubvs r5, r12, r5
= VE[j] = max(vE[j], vH) pmaxub xmm1,xmmz2 maxvv r5, r5, r4
| vF = vF - gapExtnd psubusb xmm5,xmm0 rsubvs r3, r12, r6
VF = max(vF, vH) pmaxub xmm1,xmm0 maxvv r6, r3, r4
) addik r11, r0, 13824
store VE[j] movdga xmma2,(rax,rcx,1) SV 15, 17, i1
vH = vHLoad[j] movdqa (r9,rcx,1),xmm1 Ivr8,r7,r22
add $0x10,rcx addik r7,r7, 16
cmp r13,rex xorir18,r7, 4
jne 7be <start+Ox14a> bnei r18, -72
movslq ecx,r10
shl $0x4,r10
lea (rdi,r10,1),r8
VH = max(vH, vF) pmaxub xmmO0,xmm1 maxvyv r3, r4, r5
vHStore[j] = vH movdga xmm1,(r11,r10,1) svr3,r6,r10
load VE[j] movdga (r8),xmm2 Ivr4,r6, r11
vH = vH - gapOpen psubusb xmm4,xmm1 rsubvs r3, 17, 13
VE[j] = max(vE[j], vH) pmaxub xmm2,xmm1 maxvv r4, r4, r3
store VE[j] movdga xmm1,(r8) sv r4, r6, r9
VF = vF - gapExtnd psubusb xmm8,xmm0 rsubvs r5, 18, 15
addik r18, r0, 63
if (++j > seglLen) add $0x1,ecx addik r6, r6, 16
a1 cmp ecx,edx cmpri8,r6,r18
9 jg 87b <start+0x207> bgei r18, 12
J vF =VvF <« 8 psllidg $0x1,xmmO0 sllv r5, r5
1S j=0 mov $0x0,ecx addk r, r0, r0
movslqg ecx,r8
shl $0x4,r8

movdga (r11,r8,1),xmm1
movdga xmm1,xmm2
psubusb xmm4,xmm2
movdga xmmO0,xmm11
psubusb xmm2,xmm11
movdga xmm11,xmm2
pcmpegb xmm6é,xmm2
pmovmskb xmm2,r8d
cmp $0xffff,r8d

jne 83e <start+0x1ca> bgtiv r3, -68

addik r11, r0, 13936
Ivr4,r6,r10
rsubvs r3, 17, r4

vH = vHStorel[j]
vT = vH - gapOpen

vT =VvF -vT rsubvv r3, 13, 15

(@) (o) (©

Fig. 2. Farrar’s SIMD implementation of the SW algorithm [3]: (a) Pseudo-
code definition; (b) Intel SSE2 assembly code; (c) Proposed ISA assembly
code. Instructions outlined in bold face belong to the specialized ISA. Shaded
areas outline the blocks of identical operations that require a different number
of instructions to complete in the two implementations. Only the inner and
lazy loops are illustrated in this figure.



III. SIMD PROCESSOR ARCHITECTURE

The MB-LITE [5] soft-core was used as the base architec-
ture for the implementation of the proposed ISA, not only due
to its simple and portable processing structure, but also because
it is a compliant implementation of the well known MicroBlaze
ISA. Furthermore, since the GNU Compiler Collection (GCC)
already supports the MicroBlaze processor, adding the new
instructions’ mnemonics and opcodes was easily accomplished
by conveniently adapting the corresponding back-end.

The MB-LITE design is highly configurable and is rela-
tively easy to adapt to the proposed ISA. Accordingly, some
groups of instructions were left out, including the multipli-
cation and barrel shifter operations, as well as all floating
point and special register operations. In fact, the reduced
hardware resources that are required by this core were also
taken into account, prospecting the bases for a scalable multi-
core processing platform to exploit coarse-grained parallelism.

Despite being fully parameterizable, the configuration of
the designed SIMD module that was adopted for this specific
case-study uses 128-bit registers with 16 8-bit SIMD elements.
To support the proposed extension of the ISA, the execution
unit had to be modified, by extending its original Arithmetic
and Logic Unit (ALU) to include a new SIMD module. As
an example, the addition and subtraction operations require
one adder per SIMD vector element, together with some extra
multiplexing logic. Since different types of SIMD operations
are supported (vector-vector, vector-scalar and inner-vector),
the required vector elements have to be selected from the
corresponding registers and only then does the execution unit
perform all the parallel arithmetic operations. The results are
then chosen based on appropriate control signals.

The new maximum instruction, particularly useful for this
class of algorithms, deserved a special attention. It was based
on the already existing compare instruction, comprising a
subtraction followed by a signal evaluation. Therefore, the
same logic can be used to implement these two instructions,
requiring only a multiplexer to choose the maximum between
the two operands. To avoid increasing the critical-path, the
decision logic was moved to the next pipeline stage and to the
pipeline forwarding lines. This new maximum instruction not
only substitutes one compare and one branch instruction, but
it also prevents the pipeline flush (gaining 3 or 4 clock cycles),
depending on whether the branch has delay slots or not.

Whenever possible, the same opcode was assigned to the
new SIMD instructions as their non-SIMD counterparts, by
using unused fields to distinguish them in the processor control
unit. With this option, it was possible to re-use most of the
original decoding structures, except for a few control signals
that had to be generated from such bit-fields.

IV. MULTI-CORE PROCESSING PLATFORM

Many High Throughput Short Read (HTSR) sequencing
applications require the alignment of multiple query sequences
to one or more database sequences. This requirement adds
a thread-level parallelism to the computation, where multiple
cores concurrently align multiple query sequences with one or
more database sequences. To allow this parallel computation,
a shared memory is used to store the database and query
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sequences [6]. The computation is controlled by a master core,
which manages the sequence alignment queue and the multiple
processing elements. To initiate the sequence alignment, the
master core needs to communicate a minimal set of data to the
target processing core, which consists of the address (in main
memory) and the length of the query and database sequences.

To compute the alignment score for multiple query se-
quences, the architecture ilustrated in Fig. 3 is now proposed. It
is composed of: a memory element, to store both the biological
sequences and the alignment scores; a master core, which
is responsible for managing the sequence alignment queue;
multiple processing cores based on the specialized SIMD
ASIP; and a mutex circuit, to handle core synchronizations.
All elements are interconnected by an AMBA 3 AHB-Lite
compatible shared bus. To reduce the amount of data that
is transferred between the master and the processing cores,
it was considered the shared memory model studied in [7],
specifically developed for this application domain.

V. EXPERIMENTAL RESULTS

To evaluate the proposed multi-core processing framework,
a thorough performance analysis of the complete system was
conducted, by prototyping it in a Xilinx Virtex 7 FPGA
(XCT7VX485T). To synthesize the design and perform the
place-and-route procedure, the Xilinx ISE 14.4 tool-chain was
used. Accurate clock cycle measurements of the required time
to execute the biological sequences analysis in the proposed
platform was achieved by using Modelsim SE 10.0b.

Table I depicts an evaluation of the resources overhead
introduced by the proposed extended ISA and of the attained
maximum operating frequencies for both a single-core config-
uration of the proposed ASIP and for the multi-core system.
The extension of the original MB-LITE ISA to support the
new instructions led to a frequency decrease of about 27 MHz
relative to the original MB-LITE implementation (not shown
in the table). This demonstrates that the ISA extension had
a reduced impact on the original critical path, which is now
limited by the added multiplexing logic that is required to
implement the SIMD instructions.

To demonstrate the advantages of the proposed SIMD
ISA, the number of clock cycles required to execute a DNA
sequence alignment procedure on both the proposed ASIP
and on a state-of-the-art superscalar GPP, capable of multiple
instruction issue, out-of-order and speculative execution (Intel
Core i7 950 processor) was measured. For this test, both
the sequential and the Farrar’s SIMD versions of the SW
algorithm were considered. The sequence alignment code was
compiled with GCC 4.6.2, using flags -O2 (sequential case)
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TABLE 1.

MULTI-CORE SYSTEM HARDWARE SPECIFICATIONS.

Prop. ASIP Multi-core structure
(pProcessor) 2 cores 16 cores \ 32 cores
Registers 1014 (<1%) | 2354 (<1%) 18671 3%) 37519 (6%)
LUTs 3943 (1%) 8725 (2%) 70430 (23%) 139309 (45%)
LUT-FF pairs 921 (22%) 2118 (23%) 15082 (20%) 30486 (20%)
RAM/FIFO - 68 (6%) 432 (41%) 848 (82%)
Freq. (MHz) 199.1 181.3 167.6 151.7
TABLE II. CLOCK CYCLES(x10%) AND OBTAINED SPEEDUP VALUES.
Sequence Intel Proposed ASIP
Size Sequential ~ SSE2  Speedup Sequential ~ SIMD  Speedup
128 0.124 0.027 5.90 0.651 0.016 40.69
256 0.242 0.032 7.56 1.302 0.032 40.69
512 0.481 0.053 9.08 2.604 0.068 38.29
1024 0.957 0.094 10.18 5.209 0.135 38.59
2048 1914 0.181 10.57 10.416 0.270 38.58
4096 3.830 0.339 11.30 20.834 0.541 38.51
8192 7.668 0.675 11.36 41.665 1.081 38.54
16384 15.300 1.374 11.14 83.325 2.163 38.52
Average 9.64 39.05

and -O (SIMD case), corresponding to the most favorable
parametrization for each case. On the Intel architecture, cycle-
accurate measurements were obtained by using the PAPI
library to read the processor performance counters. For the
considered benchmark, a DNA data-set was used, which is
composed of several database sequences ranging from 128
to 16384 elements and a query sequence of length 64. The
database sequences correspond to a random selection of sub-
sequences of the Homo Sapiens chromosome Y genomic contig
(NT_011875.12), while the query sequence was generated
by randomly combining reads from run ERR004756 of study
ERP000053 (human DNA).

Table II presents the average number of clock cycles
required to execute the DNA sequence alignment with the
proposed ASIP and the Intel Core i7. As it can be observed
in this table, the Intel Core i7 achieves a maximum speedup
of 11.36x, while the ASIP, with the proposed ISA, achieves a
maximum speedup of 40.69x, i.e., a value about 4 times higher.
This result demonstrates that the proposed ISA extension is
well tuned for operations commonly adopted in sequence
alignment algorithms. Furthermore, it is important to recall
that the ASIP SIMD register size was configured to a 128-bit
width, for the single purpose of ensuring a fair comparison
with the Intel processor, although it may be easily extended in

To analyze the scalability of the multi-core system, the
obtained speedup was measured, when all the processing cores
are executing Farrar’s SIMD version of the sequence alignment
algorithm. Fig. 4 presents the obtained speedup values in what
concerns the clock cycles and the total processing time of
the proposed multi-core structure. Such speedup values were
obtained by using a single ASIP core as the reference. The
observed speedup increases almost linearly for configurations
up to 16 cores. With additional cores, the contention in the
shared bus becomes a limiting factor [7], thus reducing the
effectiveness of the extra cores and resulting in a sub-linear
speedup increase. Still, when considering the initial non-SIMD
sequential implementation as reference, the obtained results
demonstrate that an 750x processing time speedup can be
obtained with a 32-core parallel SIMD implementation of the
proposed ASIP. It should be noticed that, due to the Block-
RAM resource requirements of each core, a maximum of 38
processing cores can be instantiated on the prototyping FPGA.

VI

A new ASIP architecture, specifically adapted for bio-
logical sequence alignment algorithms, was proposed. The
presented ASIP is able to achieve high processing through-
puts through an optimized architecture that exploits both
fine and coarse-grained parallelism. Fine-grained parallelism
is achieved by expanding the MicroBlaze ISA to support
multiple specialized SIMD instructions, and by conveniently
adapting the pipeline architecture of the MB-LITE soft-core.
This adaptation provided a speedup of about 40x, when com-
pared to a non-SIMD implementation of the SW algorithm.
In contrast, the same SIMD implementation executed in an
Intel Core i7 only achieved a speedup of about 11x. Coarse-
grained parallelism was also exploited by using a multi-
core computational structure composed of multiple ASIPs.
A functional prototype on a Xilinx Virtex-7 FPGA device
demonstrated that a linear speedup can be achieved with up to
16 processing cores. Furthermore, experimental setups using
more cores demonstrated that the proposed system is capable
of achieving a cumulative speedup of 750x with 32 cores,
despite the observable contention in the interconnection bus.

CONCLUSION
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